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Stratifying vascular disease patients into
homogeneous subgroups using machine
learning and FLAIR MRI biomarkers
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Karissa Chan1,2 , Corinne Fischer3, Pejman Jabehdar Maralani4, Sandra E. Black5,6,7,8, Alan R. Moody4 &
April Khademi1,2,3,4,5,9

This study proposes a framework to stratify vascular disease patients based on brain health and
cerebrovascular disease (CVD) risk using regional FLAIR biomarkers. Intensity and texture biomarkers
were extracted fromFLAIR volumesof 379 atherosclerosis patients. K-Means clustering identified five
homogeneous subgroups. The 15 most important biomarkers for subgroup differentiation, identified
via RandomForest classification, were used to generate biomarker profiles. ANOVA tests showed age
and white matter lesion volumewere significantly (p < 0.05) different across subgroups, while Fisher’s
tests revealed significant (p < 0.05) differences in the prevalence of several vascular risk factors across
subgroup. Based on biomarker and clinical profiles, Subgroup 4 was characterized with
neurodegeneration unrelated to CVD, Subgroup 3 identified patients with high CVD risk requiring
aggressive intervention, and Subgroups 1, 2, and 5 identified patients with varying levels of moderate
risk, suitable for long-term lifestyle interventions. This study supports personalized treatment and risk
stratification based on FLAIR biomarkers.

Cerebrovascular disease (CVD) is defined as neurological deficits caused by
arterial insufficiency or occlusion, venous occlusive disease, or hemorrhage
and can manifest in a person as an acute nonfatal event, or fatal event, with
stroke being the primary disease type1. There are approximately 795,000
acute strokes every year in theUSwhich carries an annual healthcare cost of
$17.9 billion2. As a result, CVD is a leading cause of serious long-term
disability, and the second leading cause of death worldwide, posing a sig-
nificant global health challenge.

There aremany risk factors for CVD, some of themost commonbeing
highbloodpressure, highBMI, diabetes, smoking, age, carotid artery disease
(stenosis and atherosclerosis), previous CVD events and more3–5. Despite
improvedmanagement of these risk factors, there is still a large public health
burden of CVD, creating urgency to develop newmethods in characterizing
disease earlier and more accurately to prevent fatal and non-fatal events
attributed to CVD.

Recent research has proposed brain-based subtyping methods in
neuroimaging as a step towards precision medicine in diagnostics and

therapeutics6. Subtypingmethods use biomarkers to categorize subjects into
homogeneous subgroups, which in the context of CVD, can be used to
categorize subjects into risk factor groups for targeted therapy and clinical
trials. Additionally, novel brain subtypes can be used for early detection,
finding distinct disease phenotypes, and to learnmore aboutmechanisms of
disease. In Drysdale et al., the authors use brain subtyping methods with
fMRI biomarkers to uncover novel signatures for different disease courses in
brain disorders such as depression7. As many neurological disorders are
comorbid and often present overlapping clinical symptoms, subtyping can
also be used to identify distinguishing features of disease7,8.

MR imaging provides insight into CVD manifestation in the brain,
with existing studies showing that in addition tomajor events suchas stroke,
MRI canvisualize other pathologies causedbyCVDsuchas lacunes, infarcts
and white matter lesions (WML)9,10. The T2 Fluid Attenuation Inversion
Recovery (FLAIR) MRI sequence is commonly used to identify CVD
pathology as the suppressed cerebrospinal fluid (CSF) signal enhances
contrast between healthy tissue and high signal due to ischemia. While
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WML in FLAIRMRI have beenheavily studied11,12, there is growing interest
in other features fromFLAIR thatmay be related to neurodegeneration and
CVD. Previous research suggests FLAIR intensity is related to myelination
and water content13,14, while FLAIR texture was found to be related to
microstructural tissue integrity and organization14,15. FLAIR texture bio-
markers in WM tracts and WML penumbra (boundary) regions differ-
entiated patients with mixed disease (vascular and dementia) and
subcortical vascular disease, respectively, from healthy and demented non-
vascular disease patients15. As a routinely acquired imaging sequence,
FLAIRholds clinical promise as an attractive and cost-effectivemodality for
stratification of subjects with CVD. In this work, we aim to uncover clini-
cally distinct subgroups ofCVDpatients throughunsupervised clustering of
explainableFLAIRbiomarkers and toanalyze clinical information to further
characterize the subgroup phenotypes.

We hypothesize regional FLAIR texture and intensity biomarkers can
discern changes in brain health linked toWM disease and CVD risk levels.
Low,moderate andhighCVDrisk levels are consideredbasedon theburden
of vascular risk factors, existence of infarcts and high WML volume16, and
subsequent occurrence of ischemic events. The characterization of homo-
geneous subgroups can aid in betterunderstandingofCVDandmay further
facilitate personalized treatment decisions through stratification.

Methods
Data
This study was approved by the local institutional review board of a
Canadian university (Toronto Metropolitan University). Due to the ret-
rospective nature of the study, informed consent was waived by the local
research ethics board (2021-430-3). The Canadian Atherosclerosis Ima-
ging Network (CAIN) dataset is a multicenter pan-Canadian study con-
taining 379 baseline FLAIR imaging volumes of patients with
atherosclerotic disease pertaining to carotid artery disease17. The inclusion
criteria of the study were the following: 1) male and female patients over
the age of 18 years, 2) patients with mild to severe carotid artery disease
(carotid stenosis >= 30%). Data on the occurrence of ischemic events
including stroke and transient ischemic attacks were acquired during
yearly follow-up imaging. FLAIR images were acquired using GE, Philips,
and SIEMENS scanners from 8 different imaging centers with magnetic
field strength of 3 T and acquisition parameters TR, TE, TI of
9000–11000ms, 117–141ms, and 2200–2500 ms respectively. FLAIR
images had voxel sizes of 0.4286–1mm× 0.4286–1 mm x 3mm. Carotid
artery imaging was completed with a volumetric high resolution T1 fat-
saturated gradient Echo image for IPH identification and MRI angio-
graphy for stenosis measurements (MRIPH)17. On baseline images,
established lacunar and territorial infarcts were identified by a neuror-
adiologist (P.M.). Cohort demographics are shown in Table 1. Addi-
tionally, the FLAIR Brainder atlas18 and blood supply territory (BST) atlas
developed in Chan et al. 15 were used.

Image pre-processing
FLAIR volumes were intensity standardized19, brain extracted20 and regis-
tered to atlas space15 using the Advanced Normalization Tools (ANTs)
symmetric normalization20,21, resulting in dimensions of 256x256x55 for all
volumes. To extract WM tract regions, a generative adversarial network
(GAN) model was trained as in Chan et al. 22 which demonstrated high
accuracies for diffusion tensor imaging (DTI) fractional anisotropy (FA)
volumes particularly in the WM region.

The registered FLAIR volumes were used to generate corresponding
FA volumes for each patient. The unsupervised tract segmentation method
in Chan et al. 15 was then used to acquire FLAIR tract masks for all patients.
This involved using K-means clustering to segment tract regions from the
FAvolumes andmorphological operations to clean the resultingbinary tract
masks. The Dice Similarity Coefficient (DSC) metric was used to compare
synthetic tract masks to those segmented from the 107 acquired real FA
volumes, alongwith additional evaluationmetrics shown in Supplementary
Table 123–25.

To extract white matter (WM) tract regions, a generative adversarial
network (GAN) model was trained following the method in Chan et al. 22,
which demonstrated high accuracy specifically for diffusion tensor imaging
(DTI) fractional anisotropy (FA) volumes, particularly inWM regions. The
motivation for generating FA volumes from registered FLAIR images stems
from the limitations of FLAIR images in distinguishing fine white matter
tracts, as this level of precision is necessary for studies of brain connectivity
and tract-specific pathology. While FLAIR imaging is effective for identi-
fying lesions and gross WM abnormalities, it does not provide sufficient
contrast for isolating individual tracts, which requires the finer detail pro-
videdbyFAmapsderived fromDTI. By synthesizingFAvolumes,we aimed
to leverage the higherWM contrast from FA without acquiring DTI for all
patients. The synthetic FA maps were generated by training the GAN to
model the mapping between FLAIR and FA, ensuring tract delineation
could be performed in a manner similar to tractography from actual DTI
datasets. The GANmodel was trained and evaluated using 420 FLAIR and
DTI volumes (11,957 images), including volumes from the CAIN
dataset alongside a separate multi-center cohort of dementia and vascular
disease patients22.

Once the FA maps were generated, the unsupervised tract seg-
mentation method from Chan et al. 15 was applied. This involved using
K-means clustering to identify the WM tract regions from the FA
volumes, followed by morphological operations to refine the binary
tract masks. The synthetic tract masks were then compared against 107
real FA volumes, acquired through DTI from the same patients, using
the DSC to assess the accuracy of the segmentation. The resulting mean
DSC of 0.644 demonstrates comparable performance to existing
unsupervised brain tissue segmentation techniques23–26, while providing
a more accessible method forWM tract segmentation in datasets where

Table 1 | Summary of CAIN clinical data

All patients, N = 379

Age, mean (SD) 70.33 (7.97)

Sex, male (%) 62.5%

MOCA, mean (SD) 24.98 (5.32)

WML volume (mL), mean (SD) 19.82 (19.28)

Left stenosis (%/100), mean (SD) 0.331 (0.288)

Right stenosis (%/100), mean (SD) 0.340 (0.264)

Left IPH volume (mL), mean (SD) 0.024 (0.083)

Right IPH volume (mL), mean (SD) 0.023 (0.079)

Systolic blood pressure (mmHg),
mean (SD)

138.37 (19.36)

Diastolic blood pressure (mmHg),
mean (SD)

73.45 (9.43)

Weight (kg), mean (SD) 78.61 (14.78)

BMI (kg/m2), mean (SD) 27.59 (4.92)

Waist circumference (cm),mean (SD) 95.81 (15.64)

Hypertension, N/% 28/ 7.38%

Diabetes mellitus, N/% 8/2.11%

Hyperlipidemia, N/% 26/6.86%

Smoking, N/% 15/3.96%

Coronary artery disease, N/% 12/3.17%

Myocardial infarction, N/% 5/1.31%

Peripheral vascular disease, N/% 6/1.58%

Atrial fibrillation, N/% 3/0.79%

Existing infarcts (observed at
baseline imaging), N/%

41/10.8%

Future ischemic event occurrence,
N/%

30/7.92%
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DTI is not readily available. Additional evaluation metrics of the WM
tract segmentations are shown in Supplementary Table 1.

Regions of interest
Three major regions of interest are included in this work: the WM
tracts, WML penumbra, and BST regions (Fig. 1). TheWM tract region
is analyzed as an entire region of all tracts combined. WM tract bio-
markers were found in an existing study to be optimal in differentiating
patients withMixed (vascular and dementia) disease from other disease
groups15. This is expected as the tracts are at the distal borders of BSTs,
where they are susceptible to vascular insufficiencies. The WML
penumbra, which is the boundary region directly surrounding WMLs,
was found in previous studies to carry signs of abnormal diffusion and
cerebral blood flow alterations related to vascular disease27–29. Addi-
tionally, studies have found biomarkers extracted from penumbra
regions to be optimal for identifying subcortical vascular MCI patients
from other disease groups15, and for observing progression of WM
injury27. WML penumbra sub-regions were segmented into five regions
P1 (adjacent toWML) to P5 (most distal) using themethods outlined in
Chan et al. 15. Each penumbra region is a voxel (0.86 mm) further from
the WML than the previous. Lastly, the BST atlas was employed to
segment FLAIR volumes into regions supplied by the middle cerebral
artery (MCA), posterior cerebral artery (PCA), and anterior cerebral
artery (ACA), as the BSTs are directly related to cerebral vascularization
and are likely to be affected by vascular disease. The FLAIR Brainder
atlas with the masks of the MCA, PCA, and ACA territories are shown
in Supplementary Fig. 1. This resulted in a total of 9 regions of interest.

Biomarker extraction
Three FLAIR texture markers - damage, integrity and wavelet biomarkers -
and FLAIR intensity were computed to provide a comprehensive assess-
ment of WM alterations, which are critical markers for assessing CVD and
neurodegeneration. These biomarkers were specifically chosen based on
their strong correlations found in previous studies14,15 with fractional ani-
sotropy (FA) and mean diffusivity (MD), two widely recognized diffusion

metrics used to characterize microstructural integrity and tissue changes in
the brain. This resulted in four biomarkers from each of the nine regions for
a total of 36 biomarkers per subject.

Damage biomarker. Measures fluctuations in intensity in a local win-
dow of an image, thus describing heterogeneity of tissue intensity. Higher
damage values indicate more roughness in the tissue which is associated
with lower cognitive scores and increased water diffusion described by
DTI MD values14,15 (Eq. 1).

Damage ¼
XN

i¼1

XN

j¼1

WijUij ð1Þ

where Wij is the distance between pixels si and sj and Uij is the absolute
difference of their intensities14.

Integrity biomarker. Measures the repetition of local texture patterns, in
which a higher number of similar repeating structured patterns indicates
more tissue integrity which is correlated with better cognition and lower
MD/higher FA values14,15 (Eq. 2).

Integrity ¼
Xp�1

p¼0

s Ip � Ic
� �

2P;where s xð Þ ¼ f1;when x > 0; 0 otherwise

ð2Þ

where P is the number of neighbours, Ip is the intensity of the neighbouring
pixel, and Ic is the intensity of the central pixel

14.

A3 mean (wavelet) biomarker. Computed as the mean of the
approximation coefficients from the three-level decomposed FLAIR
volumes using a Haar wavelet, and describes the homogeneity of tissue
on a microstructural level15. Lower A3Mean values are associated with

Fig. 1 | Visuals of the ROIs in this work. A Sample
mean texture maps in ACA, MCA, and PCA BST
regions. B Sample microstructural integrity maps of
WM tract regions from samples slices of a volume,
lower to higher slices from left to right and top to
bottom. CMiddle slice of original FLAIR volume
(left), andWML penumbra regions P1 (green) to P5
(light pink) delineated on FLAIR NABM slices.
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higher tissue integrity and structural organization as shown by cor-
relations with MD and FA15.

Intensity biomarker. Computed as themedian intensity value ofmasked
regions.

Following themethods as inChan et al. 15 andBahsoun et al. 14, textures
were computed exclusively from the normal-appearing brain matter
(NABM) volume to ensure that only non-lesioned, normal tissue was
analyzed. NABM volumes were created by removing WML and CSF from
each patient’s FLAIR image. Damage and integrity texture maps are com-
puted on a slice-wise basis for each NABM volume, resulting in 3D texture
volumes.The regions of interestwere thenmasked from the texture volumes
and voxel-wise averaged across slices to create 2D texture maps per region.
Themedian of the 2D texturemapswere taken as thefinal biomarker values
for damage and integrity. For intensity, regions were masked from the
FLAIRNABMvolumes and themedian intensity valuewas computed as the
intensity biomarker. For the A3 Mean biomarker, regions were masked
from the wavelet-decomposed approximation volumes and the mean
coefficient value was computed as the final biomarker.

From previous studies, negative correlations found between DTI MD
values and A3 Mean and integrity in all regions15 identify these markers as
“integrity” markers, which are lower for low levels of neurodegeneration.
Similar “integrity”marker trends were found for intensity in only the BST
regions15. Conversely, damage in all regions, and intensity in the WML
penumbra and tract regions, are identified as “damage”markers in previous
studies where higher values indicate more neurodegeneration.

Brain subtyping
Unsupervised K-means clustering was performed to identify patient sub-
types using FLAIR biomarkers. K-means clustering involves iteratively
assigning data points with similar features to a cluster by minimizing the
total distance between data points and the subgroup centroid. The FLAIR
biomarkers were z-score standardized to have amean of 0 and variance of 1.
Principal component analysis (PCA) was then employed to reduce the
feature dimensionality to two principal components describing 95% of the
variance in the data. The optimal number of clusters, k, was determined
using the elbow method. The resulting clusters/subgroups describe homo-
geneous brain signatures.

FLAIR biomarker signatures
To examine the important biomarkers for differentiating subgroups found
using K-means clustering, amulti-class RandomForest classifier (RFC)was
trainedusing the biomarkers to classify subjects into eachcluster. Evaluation
was completed using all the FLAIR biomarkers with 5-fold cross validation.
Feature importance was determined based onmean decrease in impurity, a
commonmethod for determining important features in decision tree-based
models30. FLAIR biomarker signatures are then constructed for each sub-
group using the 15 most important biomarkers contributing to the classi-
fication task. To analyze the global disease burden per subgroup, composite
integrity and damage biomarkers are computed by taking the mean of all
z-scored regional damage/integrity biomarkers per subgroup.

Subgroup characterization
To characterize the patient subgroups, demographic and clinical variables
including age, MOCA score, WML volume, degree of left and right carotid
stenosis, left and right IPH volume were used. Further, CVD risk factors
were included as categorical variables, with specific thresholds for conver-
sion to binary categories. These CVD risk factors included: hypertension,
diabetes, hyperlipidemia, smoking, high BMI ( > 25)3, high waist cir-
cumference ( > 88.9 cm for females, >101.6 cm for males)3, coronary artery
disease (CAD), peripheral vascular disease (PVD), myocardial infarction
(MI), atrial fibrillation, high systolic blood pressure ( > 140mmHg)3, high
diastolic blood pressure ( > 90mmHg)3, and the presence of prior infarcts.
Each risk factor was converted into a binary categorical variable, where the
presence of the condition or risk (e.g., BMI > 25, systolic blood

pressure > 140mmHg) was assigned a value of 1, and the absence was
assigned a value of 0. Similarly, the occurrence of ischemic events (including
TIAs and strokes) after baseline imagingwas also treated as a binary variable
(event = 1, no event = 0).

To create a compound CVD risk score, these CVD risk factors are
aggregated into a singlemeasure basedon theprevalence of the risks for each
subgroup. The compound CVD risk score per subgroup was estimated
using the prevalence of each risk factor in each subgroup, subtracted by the
population prevalence of each risk factor, and summed across risk factors.
All factors were given equal weighting. As a result, the compound risk score
quantifies the level of CVD risk in each subgroup relative to the entire
population where a risk score of 0 is the population risk. “Low-“ and “high-
risk” thresholds were quantified as the mean plus/minus one standard
deviation of the risk scores. The final characterization of subgroups con-
siders: 1) neurodegenerative brain biomarker signatures, 2) significant
clinical variables, 3) compound CVD risk, and 4) future ischemic events.

Statistical analysis
Pearson’s correlation tests were performed to investigate the associations
between clinical variables and FLAIR biomarkers. ANOVA or Kruskal-
Wallis and their respective post-hocs withmultiple comparison corrections
(Tukey’s HSD and Bonferroni, respectively) were performed to compare
clinical variables and FLAIR biomarkers between the patient subgroups.
Fisher’s Exact Tests were also performed to investigate associations between
Subgroup and the prevalence of each vascular risk factor as well as future
ischemic events. Fisher’s Exact Test is a statistical test used for the analysis of
categorical variables and small sample sizes, and calculates the exact prob-
ability of obtaining the observed samples in the data. Significance in the
Fisher’s test indicates there are differences in risk factor prevalence across
the patient subgroups but does not identify specific pairwise differences
between subgroups. Statistical significance was defined as p < 0.05 for
all tests.

Results
In total, 36 total regional texture and intensity biomarkers were extracted
from each of the 379 patients. The biomarkers were used to cluster the
patients into homogeneous subgroups using unsupervised K-Means clus-
tering, and statistical tests were employed to investigate the clinical char-
acteristics of each subgroup.

Brain subtyping and FLAIR biomarker signatures
Using the regional FLAIR biomarkers extracted for the dataset, the
optimal number of clusters was determined to be K = 5 using the elbow
method. The resulting cluster sizes ranged from 27–108 patients. The
FLAIR biomarkers were then used to train a multi-class RFC to deter-
mine the 15 features to include in the biomarker profiles. The resulting
classifier had mean classification accuracy, recall, precision, and
F1 score of 0.842, 0.853, 0.842, and 0.84 respectively - indicating the
biomarkers are robustly clustering the subgroups. The 15 most
important biomarkers identified from the classification and results of
ANOVA andKruskal-Wallis tests are shown in Table 2, with significant
differences (p < 0.001) across the five subgroups for every FLAIR bio-
marker. Post-hoc tests showed majority of the biomarkers were sig-
nificantly different across all subgroups (Supplementary Fig. 2).

Subgroup biomarker profiles are shown in Fig. 2A and composite
integrity and damage biomarkers are shown in Fig. 2B. Composite bio-
markers are computed by taking the mean of all z-scored regional damage/
integrity biomarkers by subgroup. Subgroup 4 exhibits the most neurode-
generation, represented by significantly higher intensity and damage bio-
markers (p < 0.001) and significantly lower integrity biomarkers (p < 0.001)
than all other subgroups, with the highest composite damage and lowest
composite integrity. Subgroup 1 has the lowest composite damage with a
slight positive composite integrity which indicates this group has better
brain health. This is also confirmed on a regional level, where Subgroup 1
had significantly lower WML penumbra intensity (p < 0.001), lower BST
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damage (p < 0.001) and higher BST integrity (p < 0.001) than all subgroups
except Subgroup 5. Subgroup 5 exhibits low composite damage and highest
composite integrity. MCA and PCA damage are not significantly different
from Subgroup 1 while the integrity biomarkers are significantly higher
(p < 0.001) than all other groups. As shown by the composite damage
marker, which is the mean of all z-scored regional damage biomarkers,
Subgroup 2 exhibits slight positive composite damage which reflects the
increased regional damage in the MCA and PCA regions only. Subgroup 3
has different trends, with second highest composite damage due to the
significantly higher damage biomarkers across all regions in the regional
biomarker profile. Subgroup 2 has the second lowest composite integrity
due to the decreased integrity biomarkers across all regions, whereas Sub-
group 3 only has a slight negative composite integrity due to decreased
integrity biomarkers in the MCA region.

Clinical profiles
Summary statistics of clinical variables are shown in Table 3, and the
z-scored subgroup profiles are visualized in Fig. 3A. Statistically significant
differences (p < 0.05) were found for age, WML volume, and left IPH
volume,whileMOCA score did not reach statistical significance (p = 0.051),
as shown in Table 3.

Post-hoc tests (Supplementary Fig. 3) revealed significant differences
in age (p < 0.05) betweenmost subgroups, except for Subgroups 2 and3, and
Subgroups 1 and 5, which were not significantly different. For WML
volume, significant differences were observed between all subgroups except
for Subgroups 2 and3, and importantly, Subgroups 3 and 4,which exhibited
similarWMLvolumes despite their other clinical differences. Regarding left
IPH volume, Subgroup 4 was significantly lower than all other sub-
groups (p < 0.05).

Although MOCA score approached significance (p = 0.051), the dif-
ferences between Subgroups 3 and 4were not statistically significant. This is
an important distinction, as while Subgroups 3 and 4 have similar WML
volumes and MOCA scores, they exhibit markedly different profiles in
terms of age and left IPH volume, with both showing statistically significant
differences between the two subgroups (p < 0.05).

Pearson’s correlations between clinical variables and the 15 important
FLAIR biomarkers are shown in Fig. 4. Age and WML volume are sig-
nificantly correlated with most biomarkers and regions, while MOCA
shows a significant positive correlation with the wavelet biomarkers in the

BST andWMLpenumbra regions. Right stenosis and right IPH volume are
significantly correlated only with WM tract intensity, while left stenosis is
significantly associated with bothWM tract intensity andMAD in the PCA
and MCA.

CVD risk profiles
Results of the Fisher’s Exact test for each risk factor are shown in
Supplementary Table 2, with hypertension (p < 0.01), diabetes
(p < 0.05), hyperlipidemia (p < 0.05), smoking (p < 0.05), high BMI
(p < 0.01), high sBP (p < 0.05), and baseline infarcts (p < 0.001) showing
significant associations with Subgroup. For patients with ischemic
events occurring in the future, Fisher’s Exact Tests demonstrated a
significant association between Subgroup and future event occurrence
(p < 0.05). The percentage of risk factors and events by subgroup is
shown in Supplementary Fig. 4. Subgroup 3 had the largest prevalence
of hypertension, hyperlipidemia, smoking, high BMI, sBP, and dBP.
Comparatively, Subgroup 4 has the lowest prevalence of CVD risk
factors and future events.

The compound CVD risk scores computed using the vascular risk
factors and events are shown in Fig. 3B. Subgroup 4 exhibits the lowest
risk score of -1.05, followed by Subgroup 2, 1, and 5 with risk scores of
0.29, 0.79, and 1.14 respectively, and finally Subgroup 3 with the highest
risk score of 2.28. Using the thresholds, Subgroup 4 is lower than the
mean and would be considered low CVD risk, Subgroups 1, 2, 5 are
medium CVD risk, and Subgroup 3 is considered high risk CVD. Sub-
group 3 also had the highest number of strokes in the future, followed by
Subgroup 1 and Subgroup 5. The lowest number of future ischemic
events is in Subgroups 2 and 4.

Subgroup characterization
The subgroup characteristics are defined in Table 4 using the com-
pound integrity and damage markers, MoCA, clinical variables that
were significant in the statistical analyses, compound CVD risk scores,
and future event prevalence. Subgroup differences in values are indi-
cated by a ↑ if the value was significantly higher than other subgroups
and populationmean, ↓ for a value significantly lower, and -- for values
that were not significantly different for a subgroup compared to the
other groups and were similar to the population mean. While there
were no statistically significant differences in MoCA scores across

Table 2 | Mean (SD) values of FLAIR biomarkers by subgroup, along with p-value results of ANOVA/Kruskal-Wallis tests for
significant differences between subgroups

Subgroup 1 2 3 4 5 p-value

N 92 53 108 27 99 -

MCA A3 Mean 173.71 (6.38) 158.01 (7.26) 163.55 (7.49) 140.28 (13.73) 178.31 (6.98) <0.001

ACA A3 Mean 174.26 (7.10) 160.14 (7.90) 164.98 (6.97) 141.20 (13.17) 177.47 (7.40) <0.001

P2 A3 Mean 151.02 (10.56) 139.43 (8.88) 151.45 (10.06) 136.76 (15.23) 165.44 (8.90) <0.001

P3 A3 Mean 155.35 (10.06) 144.77 (8.32) 156.68 (9.16) 141.67 (15.25) 170.10 (8.28) <0.001

P4 A3 Mean 159.21 (9.66) 149.31 (8.05) 161.09 (8.46) 145.57 (15.38) 174.20 (7.77) <0.001

P5 A3 Mean 162.91 (9.37) 153.42 (7.89) 165.03 (7.90) 148.81 (15.53) 178.00 (7.35) <0.001

MCA Integrity 122.45 (1.09) 119.72 (1.67) 120.49 (1.65) 117.43 (2.95) 122.72 (1.19) <0.001

ACA Intensity 271.98 (3.32) 272.85 (2.69) 276.06 (3.14) 274.80 (5.71) 275.62 (3.13) <0.001

PCA MAD 2551.39 (382.70) 3355.38 (491.66) 3096.83 (447.93) 4105.12 (822.73) 2413.48 (335.23) <0.001

MCA MAD 2795.46 (358.46) 3631.78 (475.92) 3518.92 (512.87) 4507.16 (857.23) 2675.46 (382.08) <0.001

Tract Intensity 271.16 (5.66) 276.42 (5.13) 280.89 (4.69) 286.58 (7.40) 276.38 (5.17) <0.001

P2 Intensity 284.83 (5.64) 291.11 (4.89) 297.17 (5.51) 307.11 (10.25) 291.14 (5.15) <0.001

P3 Intensity 278.57 (5.00) 283.50 (4.47) 288.99 (4.38) 296.27 (9.02) 284.46 (4.09) <0.001

P4 Intensity 275.02 (4.91) 279.28 (4.53) 284.34 (3.84) 289.56 (8.24) 280.74 (3.66) <0.001

P5 Intensity 272.86 (4.89) 276.69 (4.54) 281.30 (3.57) 285.12 (7.84) 278.46 (3.51) <0.001

Bold values identify statistical significance (p < 0.05).
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Fig. 2 | Regional and composite FLAIR biomarker profiles for clustered subgroups. A Z-scored FLAIR biomarker profiles for each subgroup of top 15 important
biomarkers. Integrity biomarkers are shown in blue andDamage biomarkers are shown in red.BComposite Z-scored damage (right) and integrity (left) biomarkers by subgroup.

Table 3 | Summary statistics of patient subgroups with p-values of ANOVA t-tests. Bolded values indicate significant
differences.

Cluster 1 2 3 4 5 p-value

N 92 53 108 27 99 -

Gender (M/F, %F) 59/33, 35.9% 35/18, 34% 77/31, 28.7% 18/9, 33.3% 48/51, 51.5% -

Age 68.04(7.46) 71.87(6.54) 71.94(6.6) 75.59(9.43) 68.45(8.91) <0.001

MOCA 24.7(5.71) 25.7(2.97) 24.73(5.36) 22.15(8.11) 25.91(4.69) 0.051

WML volume 11.19(9.47) 24.43(24.01) 24.63(19.1) 41.28(32.46) 14.27(10.12 <0.001

Right stenosis 0.3(0.3) 0.38(0.31) 0.33(0.24) 0.32(0.25) 0.37(0.23) 0.428

Left stenosis 0.27(0.32) 0.37(0.28) 0.36(0.27) 0.39(0.3) 0.33(0.27) 0.407

Right IPH volume 0.018(0.068) 0.012(0.03) 0.022(0.061) 0.024(0.056) 0.035(0.12) 0.836

Left IPH volume 0.028(0.092) 0.02(0.058) 0.036(0.11) 8e-6 (4e-5) 0.017(0.06) <0.05

Bold values identify statistical significance (p < 0.05).
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subgroups, we observed numerically large variations in these scores,
which we present for context and to acknowledge potential trends.

Subgroup 3 (second highest damage and lower integrity compared
to themean) shows the highest CVD risk score, with a higher number of
future strokes, as well as significantly higher patient age and WML
volume compared to the mean. While this group has a high CVD risk
score and significant damage accumulation in the brain, the future event
prevalence is similar to that of Subgroups 1 and 5, based on the risk
percentage.

Subgroup 4 (highest damage and lowest integrity) is the oldest patient
group, with the highest WML volume and significantly lower left IPH
volume. Although this group has a numerically lower MoCA score com-
pared to other subgroups, the difference is not statistically significant.
Interestingly, Subgroup 4 has the lowest compound CVD risk score among
all subgroups, despite its higher WML burden and lower biomarkers of

integrity. This group also shows a relatively low number of future strokes,
though its associationwithneurodegeneration remains unclear basedon the
available data.

Subgroups 1, 2, and 5 represent moderate CVD risk groups. Subgroup
2 (mean damage and second lowest integrity biomarkers) has significantly
higher age and WML volume than Subgroups 1 and 5, yet its risk score is
lower than both. Subgroup 2 also exhibits the lowest number of future
strokes. Subgroup 1 (lowest damage and mean integrity biomarkers) is the
youngest group with the lowest WML volume and a moderate CVD risk
score, slightly lower than Subgroup 5. Despite having a large number of
future ischemic events, its CVD risk is comparable to other subgroups.
Subgroup 5 (second lowest damage and highest integrity biomarkers) has
the second lowestWML volume (significantly higher than Subgroup 1) and
is among the youngest groups. It has the highest CVD risk score of the
moderate-risk groups and shows a large number of future strokes.

Fig. 3 | Characterization of subgroups using z-scored demographic/clinical variables andCVD risk scores. AZ-scored profiles of each subgroup.* indicate variables with
significant differences (p < 0.05) between groups. B Compound CVD risk score shown by subgroup. High/low score thresholds are shown as dashed lines.
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Discussion
This work uses FLAIR texture and intensity biomarkers to detect WM
changes and offers novel stratification of subjects with different levels
of CVD risk. Biomarker and clinical differences suggest different
underlying processes across subgroups. Automated stratification
offers a novel, non-invasive approach for early detection and stratifi-
cation which can be used to tailor prevention and treatment strategies
to avert future ischemic events. Existing studies utilize clinical factors
and clustering methods to stratify stroke patients into subgroups with
and without subsequent events, for the prediction of vascular
outcomes31–33. Sperber et al. 34 used clustering methods to stratify
stroke patients with cerebral small vessel disease based on lesion type.
However, these studies did not include non-stroke patients or imaging
biomarkers. Other regression studies often focus on associations
between imaging biomarkers, vascular risk factors, and events, to
observe relationships between CVD risk and changes in tissue
microstructure or event recurrence3,35. While promising, these fra-
meworks do not provide comprehensive methodologies for risk stra-
tification. As such, the novelty of our work is three-fold. First, we
demonstrate that explainable FLAIR biomarkers can distinguish
patients with varying CVD risk and clinical profiles, from an athero-
sclerotic cohort. These findings are valuable due to the incorporation

of imaging biomarkers which could be used to monitor patients over
time or early disease detection. Secondly, the regional FLAIR bio-
markers are correlated with various clinical variables, demonstrating
they are quantifying structural changes in the brain related to disease
factors. Lastly, this work considers prior, existing, and future CVD-
related factors for each patient in the cohort. This provides a more
comprehensive profile of CVD burden and risk, addressing the gaps
left by previous methodologies.

Among the subgroups, there was one group with low CVD risk
(Subgroup 4), one group with high CVD risk (Subgroup 3) and three
subgroups withmoderate CVD risk (Subgroups 1, 2, 5). A key finding is
Subgroup 4, with advanced neurodegeneration, cognitive impairment,
highest age and largest WML loads, accompanied with minimal CVD
risk factors. This may suggest neurodegeneration is being driven by
processes related to accelerated aging or AD, rather than primarily
CVD. While WML burden is often associated with CVD, several
studies9,36 postulated that both vascular andADprocesses contribute to
WML development. This could perhaps explain the highWML load in
Subgroup 4, given its lower CVD risk, although it is not significantly
different from Subgroup 3. Uncovering this homogeneous group
within a vascular disease cohort underscores the utility of the frame-
work in potentially differentiating underlying disease mechanisms

Fig. 4 | Heatmap of R correlation coefficients between clinical variable and FLAIR biomarker. * indicate significant correlations (p < 0.05).

Table 4 | Subgroup characterization.

Composite Biomarkers Significant clinical variables

Subgroup Damage Integrity Age WML L IPH MoCA CVD Risk Future stroke

1 ↓ -- ↓ ↓ -- -- MED 23.3%

2 -- ↓ ↑ ↑ -- ↑ MED 13.3%

3 ↑ -- ↑ ↑ -- -- HIGH 26.7%

4 ↑↑ ↓↓ ↑↑ ↑↑ ↓ ↓↓ LOW 13.3%

5 ↓ ↑ ↓ ↓ -- ↑ MED 23.3%

https://doi.org/10.1038/s44303-024-00063-x Article

npj Imaging |            (2024) 2:56 8

www.nature.com/npjimaging


which could help to choose optimal candidates for therapy or to learn
more about disease37. To analyze the relationship to AD further would
require other variables such as blood biomarkers, PET imaging and
spatial WML patterns38.

Subgroup 3 exhibits accumulated brain damage and this subgroup
is likely at an advanced stage of vascular disease and CVD5. Con-
tributing factors to the severity of Subgroup 3 may include a markedly
high prevalence of MI, though it did not reach statistical significance
due to sample size. Witt et al. 39 observed a three-fold increase in stroke
risk during the first 3 years after incident MI, suggesting the FLAIR
biomarker profiles, particularly high WML penumbra and tract
intensity may be capturing structural differences in patients with MI.
These patients could be automatically identified for aggressive man-
agement of lifestyle and cardiovascular risk factors to avoid future
negative outcomes such as stroke and death.

The proposed framework offers a nuanced understanding of brain
health patterns in patients with moderate CVD risk, despite the fact that
stratifying groups with less severe disease levels is more challenging10. The
moderate CVD group with the lowest risk (Subgroup 2), characterized by
low integrity and minimal damage, presents clinical features that do not
clearly support accelerated aging. Rather, this subgroup’s low CVD burden
and previous infarcts suggest that its patients may benefit frommonitoring
for signs of further CVD risk. Subgroup 2 also had the largest proportion of
prior infarcts and patients may have received treatment after the stroke,
which could have aided in reducing the CVD burden in the brain. Zhang
et al. 35 found that drug adherence after stroke was a significant factor in
predicting stroke recurrence within a 3-year period. However, this would
have to be confirmed using a dataset with treatment information in the
future.

Subgroups 1 and 5 have less neurodegeneration and share similar
biomarker characteristics and risk factors (i.e., large number of future
events, lower age, low WML volume). However, they are also unique
with different levels of damage and integrity between groups, and
Subgroup 5 had the highest MoCA scores in the cohort, suggesting
cognitive resilience despite moderate CVD risk. Though these differ-
ences in MoCA scores were not statistically significant, we note them
here as potential areas for further study. Subjects from these groups had
a high number of future stroke events, making it important to identify
them, and apply any appropriate therapy early. Subjects are relatively
young in these cohorts and could benefit from short- and long-term
health benefits afforded by making lifestyle changes (i.e., physical
activity, nutrition, weight management, avoidance of tobacco and
management of cardiovascular health–related factors such as choles-
terol, blood pressure, and glucose)40. The automated biomarker system
can be used to automatically identify these subjects for lifestyle inter-
vention, to preserve brain health through minimizing modifiable risk
factors41.

Interestingly, themoderateCVDrisk groups Subgroups1 and5display
notable prevalence of patients with AF and PVD respectively, despite not
reaching statistical significance due to small sample sizes of patients with
these risk factors. AF is associated with the presence of infarcts10 corre-
sponding to the larger proportion of baseline infarcts in Subgroup 1, while
PVDis associatedwith increasedWMLvolume42,which supports thehigher
WML volume in Subgroup 5. These differences, noted without statistical
significance, suggestAF andPVDaspotential contributors to the biomarker
and clinical differences between these subgroups that warrant further
investigation.Most notably, Subgroup 5 is the only groupwithmorewomen
(51.5%) than men, while the proportion of females in all other subgroups
was between 28–35%. Bonberg et al. 4 found a larger impact of hypertension
and smoking onWMdamage in women, aligning with the high prevalence
of these risk factors observed in Subgroup 5. The brain biomarkers for the
two subgroups indicateminimal accumulated brain damage withmoderate
CVD risk.

A few limitations exist in our study. While the study cohort inclusion
criteria was >=30% stenosis, the mean stenosis of the entire population was

~33% indicating the majority of the cohort had mild stenosis. Future work
should include a larger sample size of subjects with severe carotid artery
disease, which may allow effects of carotid atherosclerosis to be better dis-
tinguished between the subgroups. To further investigate sex differences in
the clusters, the study population should also include more female subjects
in the future. However, as CVD is more common in men (though the
difference decreases with age), the cohort used in this work is a natural
sampling. Further, the analysis did not consider the effects of treatments or
medications, which should be considered as factors within each subgroup
for any future analyses. Lastly, the analysis is done cross-sectionally,making
it difficult to draw conclusions about the dynamic processes of CVD and
AD-related pathology. Longitudinal experiments as well as validation and
refinement of subtypes using integrated diffusion or ASL biomarkers could
be performed in future work to further explore pathological mechanisms.
Additionally, single-subject studies analyzing new subjects with respect to
the subgroups should be investigated in the future to optimize translation.

This study proposes a framework for utilizing regional FLAIR texture
and intensity biomarkers to stratify patients with atherosclerosis into
homogeneous disease subgroups. By leveraging FLAIRMRI, clinicians can
effectively differentiate between various pathological mechanisms, disease
stages, and risk factors associated with CVD and its interactions with
neurodegeneration. The identified subgroups, namely Subgroup 4 char-
acterized by non-vascular related pathology, Subgroups 1, 2 and 5 repre-
senting moderate risk CVD cohorts, and Subgroup 3 with high CVD risk,
provide valuable insights into disease manifestations. These subgroups not
only shed light on the differential effects of CVD on brain health but also
highlight the potential for personalized treatment decisions and risk
stratification.

Data availability
The data that support the findings of this study are available from the
authors but restrictions apply to the availability of these data, which were
used under license from the Canadian Atherosclerosis Imaging Network
(CAIN) for the current study, and so are not publicly available. Data may,
however, be available from the authors upon reasonable request and with
permission from CAIN.
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