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Abstract

The determination of the relationship between a pair of individuals is a fundamental application of genetics. Previously, we
and others have demonstrated that identity-by-descent (IBD) information generated from high-density single-nucleotide
polymorphism (SNP) data can greatly improve the power and accuracy of genetic relationship detection. Whole-genome
sequencing (WGS) marks the final step in increasing genetic marker density by assaying all single-nucleotide variants (SNVs),
and thus has the potential to further improve relationship detection by enabling more accurate detection of IBD segments
and more precise resolution of IBD segment boundaries. However, WGS introduces new complexities that must be
addressed in order to achieve these improvements in relationship detection. To evaluate these complexities, we estimated
genetic relationships from WGS data for 1490 known pairwise relationships among 258 individuals in 30 families along with
46 population samples as controls. We identified several genomic regions with excess pairwise IBD in both the pedigree and
control datasets using three established IBD methods: GERMLINE, fastIBD, and ISCA. These spurious IBD segments produced
a 10-fold increase in the rate of detected false-positive relationships among controls compared to high-density microarray
datasets. To address this issue, we developed a new method to identify and mask genomic regions with excess IBD. This
method, implemented in ERSA 2.0, fully resolved the inflated cryptic relationship detection rates while improving
relationship estimation accuracy. ERSA 2.0 detected all 1st through 6th degree relationships, and 55% of 9th through 11th

degree relationships in the 30 families. We estimate that WGS data provides a 5% to 15% increase in relationship detection
power relative to high-density microarray data for distant relationships. Our results identify regions of the genome that are
highly problematic for IBD mapping and introduce new software to accurately detect 1st through 9th degree relationships
from whole-genome sequence data.
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Introduction

The identification of related individuals from genetic data has a

broad range of applications. The validation of known relationships

in familial disease-gene studies ensures that pedigree errors or

sample switches do not adversely affect power [1]. In case-control

studies, the removal of related individuals is a standard quality

control step to avoid spurious associations [2]. Population genetics

studies typically must either explicitly account for familial

relationships [3], or else exclude related individuals from analyses

that rely on random mating and representative sampling

assumptions [4]. Genetic relationship identification is also widely

used in a number of forensic applications, including criminal

investigations, identification of missing persons and victims of mass

disasters [5,6].

Methods applicable to the detection of close relationships have

been available for decades [1,7]. These methods typically rely on

either genome-wide estimates of identity-by-descent (IBD) [8] or

joint inference of IBD and relationships using sparse genetic

markers [9]. With approximately 1,000 highly polymorphic

markers, such methods are well powered to accurately identify

relationships as distant as 3rd-degree relatives [9], but these

methods do not benefit from further increases in marker density

[10]. With the introduction of single-nucleotide polymorphism

(SNP) microarrays, increased marker density enabled the accurate

detection of local IBD segments. Newer relationship estimation

methods take advantage of local IBD segment data to increase the

range of detectable relationships [10,11]. The relationship

estimation software that we previously developed, Estimation of

Recent Shared Ancestry (ERSA), has high power to detect

relationships as distant as 8th-degree relatives (e.g., 3rd cousins

once removed) from high-density SNP microarray data [10].

Whole-genome sequence (WGS) should represent the final step

in increasing marker density, and thus, improved relationship
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detection accuracy. However, with the current complexity of WGS,

which is based on high-throughput short-reads mapped to a legacy

reference genome, a number of technical challenges must be

overcome before potential improvements in relationship detection

accuracy can be realized. To assess these challenges, we analyzed

WGS data for 1490 distinct pairwise relationships from 258

individuals in 30 families (see Table 1). Our results highlight new

issues specific to relationship estimation from WGS data and

introduce new methods in ERSA 2.0 to mitigate these issues.

Results

To evaluate relationship-estimation accuracy on WGS data, we

first inferred IBD segments between each pair of individuals with

three different methods: Genetic Error-tolerant Regional Match-

ing with Linear-time Extension (GERMLINE), Beagle’s fastIBD,

and Inheritance State Consistency Analysis (ISCA) [12–14]. We

then applied ERSA separately to each of the three resulting IBD-

segment datasets. For our initial analysis of control genomes from

putatively unrelated individuals of European ancestry, we set the

chance of falsely detecting a relationship between unrelated

individuals to 0.1% (a= 0.001). With this threshold, we detected a

significant relationship of 9th-degree or closer using GERMLINE

in approximately 10% of all pairs of individuals. The estimated

level of cryptic relatedness was 10-fold higher than we previously

observed from high-density microarray data in this population

[10], and thus was a strong indication of an elevated false-positive

rate (Table 2). After further investigation, we identified several

regions of the genome that were detected to be IBD far more often

than would be expected by chance among pairs of controls (see

Materials and Methods). Table 3 shows 14 regions of the genome

greater than 5 cM with detected pairwise IBD identified in

GERMLINE that exceeds the expected pairwise IBD by at least 4-

fold between European controls. The regions of spurious IBD

were largely consistent between the three IBD methods and

among European, East Asian, and Mexican American populations

(Figures 1 and S7, Tables 3 and S2, S3), which is a strong

indication that the IBD segments in these regions are artifactual.

To account for these spurious IBD segments, we developed a

procedure within ERSA 2.0 to identify and mask regions of the

genome with excess IBD in controls (see Materials and Methods).

After applying this procedure, the rate of detected relationships

among the European controls decreased from 10% to 1% at

a= 0.001 using ERSA 2.0 and GERMLINE, which is the rate of

cryptic relationships that we previously observed in this population

[10]. In addition to region masking, we also implemented new

models in ERSA 2.0 that improve the accuracy of relationship

estimates for closely related individuals (see Materials and

Methods). Although fastIBD detected many of the same regions

as GERMLINE and ISCA, the rate of spurious IBD detection was

generally much lower (Table 1 and Figure 1). For this reason, the

rate of detected relationships among European controls was less

than 0.002 at a= 0.001 using ERSA 2.0 and fastIBD, even

without masking spurious IBD segments.

Figure 2 summarizes the ERSA 2.0 results from the 30

pedigrees (see also Table S1 and Figure S3). ERSA 2.0 detected

all 1st through 6th degree relationships and 55% of 9th through 11th

degree relationships in the 30 pedigrees. The performance of

ERSA was very similar across the three IBD detection methods,

with approximately a 5% difference in exact relationship

prediction accuracy.

Although the 30 pedigrees included 1490 documented pairwise

relationships, only 28 of these relationships were more distant than

6th degree. To evaluate performance of ERSA 2.0 and IBD

detection methods for more-distant relationships, we simulated

WGS data in 15-generation pedigrees (See Materials and

Methods; Figures S1). ERSA 2.0 performed well with all three

IBD detection methods (Figures 3, S5, and S10). For each method,

we observed greater than 95% power to detect relationships as

distant as 5th degree and greater than 50% power to identify

relationships as distant as 8th degree (a = 0.001). We also

performed IBD estimation using subsets of the data to represent

SNP microarray data (using the set of positions from the

Affymetrix 6.0 array) and whole-exome data. The increase in

marker density from SNP microarray data to WGS data resulted

in a 5% to 15% increase in power for distant relationships between

7th and 11th degree (Figure 3). Restricting markers to exonic

regions reduced power relative to WGS data, with a 10% to 60%

decrease in power for GERMLINE-ERSA and ISCA-ERSA and a

5% to 10% decrease in power for fastIBD-ERSA with 5th through

12th degree relationships (Figure 3). With exonic markers, we

observed a modest increase in the rate of detected relationships

among control populations of between 0.2 to 0.5% (Table 2).

However, for exonic markers in simulated families, the power to

detect distant relationships (10th–15th degree) increased by as

much as 5%. This increase in power is very likely to be an artifact

and is probably an indication that the increased difficulty of

detecting IBD data from exonic markers may lead to improperly

calibrated Type I error in ERSA 2.0 for some whole-exome

datasets.

To compare ERSA to an approach that does not rely on local

IBD segment estimates, we also estimated pairwise relationships

using RELPAIR, a method that jointly estimates IBD and

relationships using sparse marker data. RELPAIR’s performance

was similar to ERSA for 1st and 2nd degree relationships. Both

approaches accurately differentiate between parent-offspring and

full-sibling relationships in over 96% of comparisons. RELPAIR

had no ability to differentiate between 3rd through 5th degree

relationships and had low power to detect relationships more

distant than 5th degree (Figures S4 and S6), as previously reported

[10].

Discussion

Our results demonstrate that several regions of the genome

exhibit an excess of detected IBD with state-of-the-art WGS and

Author Summary

The determination of the relationship between a pair of
individuals is a fundamental application of genetics. The
most accurate methods for relationship estimation rely on
precise, localized estimates of genetic sharing between
individuals. Earlier methods have generated these esti-
mates from high-density genetic marker data. We per-
formed relationship estimation using whole-genome
sequence data for 1490 known pairwise relationships
among 258 individuals in 30 families along with 46
population samples as controls. Our results demonstrate
that complexities specific to whole-genome sequencing
result in regions of the genome that are prone to false-
positive estimates of genetic sharing. We provide a map of
these spurious IBD regions and introduce new methods,
implemented in the software package ERSA 2.0, to control
for spurious IBD. We show that ERSA 2.0 provides a 5% to
15% increase in relationship detection power for distant
relationships with whole-genome sequence data relative
to high-density genetic marker data.

Whole-Genome Relationship Estimation
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IBD detection methods. These suspect IBD regions were typically

characterized by an increase in departures from Hardy-Weinberg

Equilibrium and were often near centromeric regions. Gaps in the

recombination map and human reference assembly were also

overrepresented. For example, although the regions in Table 3

represent less than 5% of the human genome, they represent 13%

of the centromeric regions and 47% of the unmappable

heterochromatic regions of the genome (‘‘Gap’’ tracks in the

UCSC Genome Browser). Notably, the IBD regions were not

enriched for repetitive segments of the genome [15]. Because

many of the regions were identified using three distinct IBD

detection methods, the regions we identified with spurious IBD are

unlikely to be the result of IBD detection algorithm errors.

Although strong recent positive selection can produce this effect on

a population scale, positive selection is unlikely to explain this

result because the regions we identified were typically detected

among Europeans, East Asians, and Mexican Americans and were

far larger than any previous reported genomic signal of positive

selection in humans (Figure 1 and Table 3). In addition, we

observed very little overlap between the regions identified in Table 3

and a genome-wide search for genomic regions influenced by positive

selection based on signals of excess IBD (Table S4) [16]. The regions

identified using WGS data usually exhibited excess IBD in

Affymetrix high-density microarray data as well, although at lower

magnitudes and with smaller segment sizes (Table 3), suggesting that

the excess IBD is not simply due to artifacts specific to high-

throughput short-read resequencing. One potential explanation is

that errors in published genetic maps in these regions overestimate

the size of the IBD segments when measured by genetic distance.

This hypothesis is supported by the gaps in the published

recombination maps and relatively sparse high-density microarray

marker density in these regions. Gaps in the human reference

assembly may be another contributing factor, both directly due to the

absence of markers and indirectly as a general indicator of mapping

difficulty in flanking regions. The increased rate of deviations from

Hardy-Weinberg equilibrium could also provide a partial explana-

tion, given that erroneous heterozygote calls can result in false

inferences of IBD segments. Some of the regions we have identified

Table 1. Description of sequenced families.

Family number
Number of sequenced family
members Number of pairwise relationships

Most distant
relationships Inferred population

1 16 120 5 ASI

2 7 21 2 ASI

3 25 300 3 CEU

4 10 45 3 CEU

5 4 6 1 CEU

6 5 10 1 CEU

7 5 10 1 CEU

8 7 21 12 CEU

9 10 45 11 CEU

10 4 6 6 CEU

11 17 136 2 CEU

12 4 6 1 CEU

13 4 6 1 CEU

14 5 10 1 CEU

15 4 6 2 CEU

16 15 105 4 CEU

17 10 45 3 CEU

18 7 21 2 CEU

19 7 21 2 CEU

20 8 28 3 CEU

21 9 36 2 CEU

22 15 105 3 CEU

23 4 6 1 CEU

24 4 6 5 CEU

25 4 6 1 CEU

26 4 6 1 CEU

27 4 6 1 CEU

28 6 15 2 MXL

29 25 300 5 MXL

30 9 36 1 MXL

Total 258 1490

doi:10.1371/journal.pgen.1004144.t001
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may be the result of long-range haplotypes with limited recombina-

tion between haplotypes [17,18]. Of the 14 regions identified in

Table 3, seven overlapped with regions previously identified in

studies of long-range linkage disequilibrium (Tables S5, S6) [17,18].

One of these regions, at position 10.5 to 13.5 Mb on chromosome 8,

overlaps with a known inversion polymorphism that suppresses

recombination between haplotypes [19].

Our analysis focused on three complementary pairwise IBD

detection methods, GERMLINE, fastIBD, and ISCA (Figure 4).

GERMLINE accepts phased genotype data and employs a

haplotype hashing algorithm to reduce computation time [12].

Although GERMLINE is capable of analyzing unphased data, in

our experience IBD segment identification and subsequent

relationship estimation accuracy are both greatly reduced. Beagle

fastIBD employs a similar approach to GERMLINE, but obtains

multiple estimates of haplotype phase internally and evaluates

each of these haplotypes [13]. The rate of spurious IBD detection

in fastIBD was substantially lower than GERMLINE and ISCA,

and we did not observe an excess of detected relationships among

control populations with fastIBD and ERSA, even in the absence

of masking (Table 2). However, the power of ERSA 2.0 to detect

relationships was slightly reduced with fastIBD relative to the other

two methods (Figure 3). Both GERMLINE and fastIBD are well

optimized for large sample sizes, but neither distinguishes between

haploid-identical regions (IBD1) and diploid-identical regions

(IBD2). We originally described ISCA as a method for simultaneous

detection of all blocks of identity throughout a pedigree [20,21].

ISCA also performs well for detecting both IBD1 and IBD2

segments between pairs of individuals with an unknown relation-

ship. ISCA employs a Hidden Markov Model that identifies both

IBD1 and IBD2 segments [20]. Because ISCA is optimized for

whole-genome data, the algorithm suppresses noise from segments

of the genome that give rise to false positive IBD1 and IBD2 regions,

such as compressions, centromeres, hemizygous regions, CNVs,

reference gaps, and other irregularities [20]. Unlike GERMLINE

and fastIBD, ISCA does not require phased data or population

controls. However, because ISCA’s execution time scales linearly

with the number of individual pairs, it is slower than both

GERMLINE and fastIBD for large sample sizes.

All of the datasets we evaluated included complete documen-

tation of missing genotypes (i.e. no-calls). In our experience,

missing genotype data are essential to accurate IBD estimation.

Variant call data that does not report missing genotypes should not

be used for relationship estimation.

WGS data present new challenges for IBD detection and

relationship estimation. Using existing approaches, we observed a

major increase in the detection of spurious IBD segments and false-

positive relationships from WGS data of population controls. We

provide a map of spurious IBD regions in the human reference

sequence and present methods implemented in ERSA 2.0 that mask

Table 2. Predicted relationships for 595 individual pairs in three groups of population controls: 561 pairs from 34 European
controls (CEU), 28 pairs from 8 East Asian controls (ASI), and 6 pairs from 4 Mexican-American controls (MXL).

Predicted relationship
degree

GERMLINE, before
masking

GERMLINE, after
masking

ISCA, before
masking

ISCA, after
masking

fastIBD, before
masking

fastIBD, after
masking

All populations (595 pairs)

5 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

6 3 (0, 9) 0 (0, 1) 2 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

7 33 (0, 28) 0 (0, 0) 74 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

8 54 (0, 20) 2 (0, 0) 171 (0, 0) 2 (0, 0) 0 (0, 0) 0 (0, 0)

9 14 (1, 7) 5 (1, 0) 29 (2, 2) 1 (2, 2) 1 (0, 4) 0 (0, 3)

Unrelated 491 (594, 530) 588 (594, 594) 319 (593, 593) 592 (593, 593) 594 (595, 591) 595 (595, 592)

CEU only (561 pairs)

6 0 (0, 0) 0 (0, 0) 2 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

7 19 (0, 21) 0 (0, 0) 67 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

8 53 (0, 20) 2 (0, 0) 161 (0, 0) 2 (0, 0) 0 (0, 0) 0 (0, 0)

9 14 (1, 7) 5 (1, 0) 29 (2, 2) 1 (2, 2) 0 (0, 4) 0 (0, 3)

Unrelated 475 (560, 513) 554 (560, 561) 302 (559, 559) 558 (559, 559) 561 (561, 557) 561 (561, 558)

ASI only (28 pairs)

5 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

6 3 (0, 9) 0 (0, 1) 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

7 14 (0, 1) 0 (0, 0) 6 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

8 1 (0, 0) 0 (0, 0) 10 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

9 0 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0) 1 (0, 0) 0 (0, 0)

Unrelated 10 (28, 17) 28 (28, 27) 12 (28, 28) 28 (28, 28) 27 (28, 28) 28 (28, 28)

MXL only (6 pairs)

7 0 (0, 0) 0 (0, 0) 1 (0, 0) 0 (0, 0) 0 (0, 0) 0 (0, 0)

Unrelated 6 (6, 6) 6 (6, 6) 5 (6, 6) 6 (6, 6) 6 (0, 0) 6 (0, 0)

Numerical values in the table are results of WGS data, numerical values in parentheses are results of ‘‘SNP microarray’’ and ‘‘exon’’ data.
doi:10.1371/journal.pgen.1004144.t002
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these regions to accurately detect pairwise relationships from IBD

segment data. ERSA 2.0 also incorporates additional refinements to

improve relationship detection accuracy for

1st- and 2nd-degree relationships. When error-prone IBD regions are

masked, the relationship estimation methods in ERSA 2.0 perform

well for a variety of IBD detection methods, including GERMLINE,

fastIBD, and ISCA. Compared to high-density microarray data,

WGS data provide a 5% to 15% increase in relationship detection

power for 7th through 12th-degree rela-

tionships. Whole-exome data perform substantially worse than high-

density microarray data for this purpose. Our results demonstrate

that ERSA 2.0 can detect relationships as distant as 12th degree and

has high power to detect relationships as distant as 8th degree from

whole-genome sequence data.

Materials and Methods

Whole-Genome Sequence Data
We included 258 individuals from 30 families and 46 unrelated

individuals (34 Europeans, 4 Mexican-Americans, and 8 East

Asians) in this study. We evaluated population structure for each

unrelated individual and for one member of each family by

Figure 1. Regions where excess IBD is detected by three IBD methods among the control populations. Regions that give rise to excess
IBD inferences in GERMLINE (A–C), fastIBD (D–F), and ISCA (G–I) IBD. Black and red shading denotes degree of excess IBD detected (see legend).
doi:10.1371/journal.pgen.1004144.g001
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performing principal components analysis (PCA) that incorporated

HapMap population samples [22]. Of the 30 pedigrees, 25

clustered with Europeans, 3 with Mexican-Americans, and 2 with

East Asians (Figure S2). The 30 pedigrees include 1490

documented pairwise relationships (see Table 1). One of these

pedigrees was CEPH Pedigree #1463, which consists of genomes of

a seventeen-member, three-generation pedigree, with publically

available data (ftp://ftp2.completegenomics.com/Pedigree_1463/).

Complete Genomics performed all whole-genome sequencing.

Ethics Statement
With the exception of the publicly available CEPH Pedigree

#1463, all other pedigree datasets are protected by human

subjects protocols approved by the Western Institutional Review

Board. Procedures followed were in accordance with institutional

and national ethical standards of human experimentation. Proper

informed consent was obtained. During subject recruitment,

relationships were determined by interview and recorded.

Pedigree Simulations
We simulated non-founder whole-genome data from fifteen-

generation families (Figure S1), selecting founders randomly from

the unrelated individuals of European ancestry described above.

The whole genomes of two offspring were simulated in each

generation. Genotypes of non-founders were obtained by simu-

lating meiosis (recombination points were randomly selected based

on the recombination rate map in [23]) and de-novo mutation

with an expected rate of 1e-7. Sequencing errors were added to all

non-founder genomes with an error rate of 0.001 per polymorphic

site. There were 1035 pairs of individuals in each family,

containing 330 unrelated pairs, 75 first-degree relationships (60

parent-offspring and fifteen full sibling pairs), 84 second-degree

relationships, 78 third-degree relationships, 72 fourth-degree

relationships, and 66 fifth-degree relationships.

IBD Detection
We used ISCA to infer pairwise IBD1 and IBD2 segment

estimates from unphased SNV data. We used Beagle and fastIBD

to compute IBD estimates from unphased SNV data separately for

each population. Each population combined European, Mexican-

American, or East Asian control individuals with the pedigrees

that clustered with those populations in PCA (Figure S2). We

chose sequenced European genomes to serve as founders for each

of the simulated pedigrees. The simulated pedigree genomes were

phased with the European controls. Per the authors’ recommen-

dations, we ran fastIBD 10 times in each population and merged

all segments within one megabase that overlapped between any of

the 10 output files [13]; this additional step proved necessary for

accurate relationship estimation in ERSA (Note that in our

previous evaluation of fastIBD in ERSA we did not perform this

step [10]). For GERMLINE, we first applied the grouping criteria

above in three population analyses to phase each pedigree and

each of the three control populations using Beagle [24], and then

analyzed the phased data in GERMLINE.

We applied identical procedures for subsets of SNVs that lie

within protein-coding exon boundaries or are Affymetrix 6.0

markers (Figure 3). For GERMLINE, we pruned the WGS datasets

prior to phasing in Beagle. After generating IBD segments, we

evaluated GERMLINE and fastIBD in ERSA 2.0. We estimated

relationships for every pair of individuals within the pedigrees, using

the appropriate control population identified in Figure S2.

ERSA
ERSA models the distribution of IBD segments between two

individuals in a maximum likelihood framework. The null model

assumes that the size and number of IBD segments follow an

empirical distribution approximated from the control population.

Under the alternative model, some IBD segments may follow the

control population distribution, but one or more segments follow a

theoretical distribution derived according to a hypothesized recent

relationship. Let a equal the number of shared ancestors and d

equal the total number of meioses that separate the two individuals

for the proposed relationship. For each pair of individuals, ERSA

calculates the maximum likelihood for each possible relationship

to identify the most likely relationship for that pair. We use the chi-

square approximation to the maximum likelihood ratio to establish

confidence intervals and to test for significance. This test has two

degrees of freedom. One degree of freedom results from a

parameter describing the number of segments that are attributable

to hypothesized relationship for the pair of individuals (the

remaining segments are attributed to the population distribution).

Figure 2. Performance of relationship estimation in 30 sequenced families using (A) GERMLINE-ERSA2.0, (B) fastIBD-ERSA2.0, and
(C) ISCA-ERSA2.0. Area of the circles indicates the percentage of individual pairs whose estimated degrees of relationship are exactly the same as
reported relationship. FS: full sibling. PO: parent offspring. UN: unrelated individuals. All ERSA analyses employed IBD masking. Histograms represent
the number of pairs in each relationship category. Most of the pedigrees were ascertained on the basis of common, complex or rare, Mendelian
diseases. As we have previously reported, this ascertainment can produce a downward bias in distant relationship estimates [10], which may account
for the differences in relationship estimates between sequenced and simulated pedigrees for 10th through 12th degree relationships (see Figure S5).
doi:10.1371/journal.pgen.1004144.g002
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A second degree of freedom results from the parameters d and a,

which act approximately as a single parameter for most values of d.

For direct ancestor-descendant relationships, a = 0. In ERSA 1.0,

we assume that, for most relationships, the length l of an IBD

segment inherited from the proposed relationship is exponentially

distributed with mean equal to

E(l)&
100

d
, ð1Þ

in cM [25]. This approximation assumes that only recombination

can break up an IBD segment. Because IBD segments are also

broken at chromosomal boundaries,

E(l)~
100r

czdr
, ð2Þ

where c is the number of autosomes and r is the expected number

of recombination events per generation (r, = 35 in humans [23]).

As d increases, Eq. 2 approaches Eq. 1, and thus Eq. 1 is a close

approximation for distant relationships but is less accurate for close

relationships. ERSA 2.0 uses Eq. 2 when a is equal to 1 or 0,

resulting in an improvement in accuracy for closely related

individuals (Figure S8). Empirically, we observed that Eq. 2

slightly reduced relationship estimation accuracy when a is equal

to 2, perhaps due to minor biases in the estimated IBD lengths in

GERMLINE and ISCA. Thus, we continue to use Eq. 1 for

models where a is equal to 2. Both versions assume that the

number of IBD segments, n, is Poisson distributed with mean equal

to

E(n)~
a(rdzc)

2d{1
: ð3Þ

Modifications of these formulas for specific relationships are

described below. Hill and White have very recently employed

simulations to derive precise estimates for the joint distribution of

Figure 3. Power of relationship estimation for simulated pedigrees using different methods and markers. (A–C) Comparison of three
methods: GERMLINE-ERSA2.0, fastIBD-ERSA2.0, and ISCA-ERSA2.0. (A) ‘‘WGS’’ represents simulated whole-genome data, (B) ‘‘SNP microarray’’
represents Affymetrix 6.0 microarray data, and (C) ‘‘exon’’ represents whole-exome data. (D–F) Comparison of different marker set: ‘‘WGS’’, ‘‘SNP
microarray’’, and ‘‘exon’’. (D) GERMLINE-ERSA2.0, (E) fastIBD-ERSA2.0, and (F) ISCA-ERSA2.0.
doi:10.1371/journal.pgen.1004144.g003
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the number and length of shared segments for a wide range of

relationships [26]. These distributions are likely to provide further

improvement in relationship detection accuracy in the future.

Although related individuals may sometimes share short IBD

segments, such segments can be difficult to distinguish from more

distant IBD segments that would be shared by unrelated members

of the population. Thus, we typically set a minimum IBD segment

length, t, and ignore all segments smaller than this length. By

default, t is equal to 2.5. Whenever t is greater than 0, all formulas

are adjusted to condition on the probability that IBD segment

lengths are greater than or equal to t [10].

All ERSA results were with confidence level = 0.999 and

a = 0.001. Reported power estimates were the percentage of

related pairs that were correctly predicted to be related at

a = 0.001.

Genomic Region Masking
To mask genomic regions potentially prone to false-positive IBD,

we first evaluate the distribution of IBD segments in a control

population. Genomic regions are masked from the analysis if the

ratio of observed to expected total IBD segment length exceeds a

specified threshold, h. By default, h is equal to 4, but we observed

similar results for values of h between 2 and 6 (Figure S9). The total

IBD segment length equals the sum of all pairwise IBD segments

that overlap a genomic region, with the segments truncated at the

region boundaries. The expected total IBD segment length is

calculated under the assumption that pairwise IBD segments in the

population are distributed uniformly across the genome. Let m equal

the summed length of all masked genomic regions, in cM. We

subtract m/100 from r in all models to account for recombination

events that cannot be observed. For each IBD segment, the length of

the masked region is subtracted from the length of the IBD segment

if the IBD segment wholly contains the region and extends at least b

base pairs past the beginning and end of the region. By default, b is

equal to 1 Mb. All other IBD segments that cross a masked region

are truncated at the region boundary. Genomic region masking is

an optional parameter in ERSA 2.0 (mask_common_shared_re-

gions) that is inactive by default.

Parent-Offspring Relationships (a = 0, d = 1)
Because parents and offspring are IBD1 throughout the entire

genome, there is no stochasticity in the number and lengths of IBD

segments. Therefore, for both versions of ERSA, parent-offspring is

reported as the most likely relationship if the total IBD segment length

is at least z standard deviations above the expected total segment

length of a full-sibling relationship (0.75). By default, z is equal to 2.33.

Other Direct Ancestor-Descendant Relationships (a = 0,
d.1)

Other than parent-offspring, direct ancestor-descendant rela-

tionships (e.g. grandparent-grandchild) were not explicitly mod-

eled in ERSA 1.0. The primary difference in IBD segment

distribution between an ancestor-descendant relationship and a

relationship with a shared ancestor is that recombination events in

the first generation cannot be detected in a pairwise comparison

unless complete phase information is available. ERSA 2.0

accounts for this difference with the following equations:

E(lDa~0,dw1)~
100r

cz(d{1)r
, ð4Þ

and

E(nDa~0,dw1)~
a½r(d{1)zc�

2d{1
: ð5Þ

Full-Sibling Relationships (a = 2, d = 2)
Because GERMLINE and fastIBD do not differentiate between

IBD1 and IBD2, regions of IBD2 among full-siblings are merged

with their flanking IBD1 segments and are reported as a single,

larger IBD segment. Multiple IBD2 segments can be joined

together in this manner. Let k equal the number IBD1 segments

that have been bioinformatically merged. Conditioned on k and

ignoring chromosomal boundaries, l follows a gamma distribution

with shape parameter equal to k+1. ERSA 1.0 approximated the

Figure 4. Comparison of IBD inferred by GERMLINE, fastIBD, and ISCA. IBD between one simulated sibling pair was shown as an example
(chromosome 1). Blue segments indicate haploid-identity (IBD1) and red segments indicate diploid-identity (IBD2).
doi:10.1371/journal.pgen.1004144.g004
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distribution of l using the maximum likelihood estimate of k with a

single gamma distribution, which introduced an additional free

parameter in the sibling model relative to other relationship

models. To eliminate this free parameter, ERSA 2.0 assumes that l

is distributed according to a mixture of gammas by summing over

possible values of k. The likelihood of l is equal to:

L(lDa~2,d~2)~
X

k

1

2

� �k

|
lk{1e

{ dk
100

100
d

� �k
k{1ð Þ!

: ð6Þ

The expected number of IBD segments for full sibling

relationships in both versions is:

E(nDa~2,d~2)~
3

4
cz4r

3

4

1

4

� �� �
: ð7Þ

ERSA 2.0 now has the option of evaluating full-sibling models

using IBD2 segment data. ERSA assumes that all overlapping

IBD1 segments are merged into a single segment, and that each

IBD2 segment is reported separately as an additional overlapping

segment, which matches the output format that we generated from

ISCA. Conditioned on the total length of IBD1 segments, T, the

expected number of IBD2 segments under the null model is equal

to the unconditional number of expected IBD1 segments

multiplied by T/100r. The expected length of an IBD2 segment

under the null model follows the empirical distribution for IBD1

segments. Under the alternative model, the number of IBD2

segments, n2, is approximately Poisson distributed with mean

equal to

E(n2Da~2,d~2)~
rzc

2
, ð8Þ

and the expected length of an IBD2 segment is approximately

exponentially distributed with mean equal to 25 cM. The IBD2

option (‘use_ibd2_siblings’) was used for all ISCA analyses.

Avuncular Relationships (a = 2, d = 3)
All segments that are IBD2 between siblings must be IBD1 in an

avuncular relationship involving one sibling and the offspring of the

other sibling. For each such segment, an additional IBD1 segment

in the siblings may be inherited by the offspring with probability of

0.5 if the following two events occur: 1) a recombination event

occurs within the segment in the offspring (probability of

approximately 0.5) and 2) an IBD1 segment does not flank a

second IBD2 segment (probability of 0.5). All IBD1 segments in the

siblings that are not part of an IBD2 segment are broken into two

segments by recombination in the offspring with probability of

approximately 0.5, in which case one of the segments are shared,

and are otherwise are inherited in the offspring with probability 0.5.

This leads to the following expression:

E(nDa~2,d~3)~
9

8
E(n2Da~2,d~2)z

3

4

1

4
cz

1

8
r(d{1)

� �

~
3

4
cz4r

3

4

1

4

� �� �
:

ð9Þ

Thus, expected number of segments in an avuncular relation-

ship is equal to the expected number in a full-sibling relationship

(Eq. 7). This correction was implemented in ERSA 2.0 (ERSA 1.0

erroneously applied Eq 3 to avuncular models). Both versions

approximate the distribution of IBD segment lengths in an

avuncular relationship using Eq. 1 and assuming an exponential

distribution.

RELPAIR Analysis
We used RELPAIR to estimate relationships for all the pairs of

individuals to which we applied ERSA 2.0. From the whole-

genome data sets, we extracted 9999 well-spaced, relatively

independent biallelic SNP loci with minor allele frequency

.20%. Allele frequencies and linkage disequilibrium for all loci

were assessed in the 34 unrelated CEU individuals using PLINK

[27]. Linkage disequilibrium between loci was minimized by

pruning correlated SNP loci (PLINK –indep, variance inflation

factor up to 1.5 allowed, analysis conducted in windows of 400

SNPs, step size 10 SNPs.) Remaining closely-spaced SNP loci were

removed until the target of 9999 SNPs was reached.

Software
The relationship identification methods described above are

implemented in the software package ERSA 2.0, which is freely

available for academic use (www.hufflab.org). The software for

ISCA is available at http://familygenomics.systemsbiology.net/

software. The pedigree simulation programs are available in

http://caballero.github.io/FakeFamily/.

Supporting Information

Figure S1 A simulated 46-member, 15-generation pedigree. A

square represents a male and a circle represents a female. Green

symbols indicate founders that were sequenced by CGI, and

purple symbols indicate children whose genotypes were simulated.

(PDF)

Figure S2 Principal component analysis (PCA) of individuals

with whole-genome sequence data from this study. (A) Includes

European controls, (B) includes East Asian controls, and (C)

includes Mexican controls. Individuals labeled with ‘‘CG-’’ are

from the Complete Genomics Diversity panel. ‘‘Unrelated-

CEU(controls) are the 34 additional European individuals

sequenced in this study. The three red circles indicate the three

population groups used to match pedigrees and controls.

(PDF)

Figure S3 Performance of relationship estimation in 30

sequenced families without masking error prone IBD regions

using (A) GERMLINE-ERSA2.0, (B) fastIBD-ERSA2.0, and (C)

ISCA-ERSA2.0. Area of the circles indicates the percentage of

individual pairs whose estimated degrees of relationship are

exactly the same as real relationship. FS: full sibling. PO: parent

offspring. UN: unrelated individuals.

(PDF)

Figure S4 Relationship estimation power in 30 sequenced

families. Error bar indicates the 95% confidence level estimated

from the binomial distribution. For GERMLINE and ISCA,

ERSA 2.0 ‘‘not masked’’ power estimates are biased due to

inflated Type I error rates resulting from spurious IBD.

(PDF)

Figure S5 Performance of relationship estimation in simulated WGS

datasets (sequencing error rate = 0.001). (A) ‘‘GERMLINE-ERSA2.0’’

with masking background IBD. (B) ‘‘GERMLINE-ERSA2.0’’ without

masking background IBD. (C) ‘‘fastIBD -ERSA2.0’’ with masking
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background IBD. (D) ‘‘fastIBD-ERSA2.0’’ without masking

background IBD. (E) ‘‘ISCA-ERSA2.0’’ with masking background

IBD. (F) ‘‘ISCA-ERSA2.0’’ without masking background IBD.

(PDF)

Figure S6 Power of relationship estimation in simulated WGS

datasets (sequencing error rate = 0.001). GERMLINE, fastIBD

and ISCA were respectively run on WGS markers to infer IBD

segments, and then ERSA 2.0 was run to predict relationship

degree. RELPAIR was run using 9999 well-spaced, relatively

independent biallelic SNP loci (see Materials and Methods). For

GERMLINE and ISCA, ERSA 2.0 ‘‘not masked’’ power estimates

are biased due to inflated Type I error rates resulting from

spurious IBD.

(PDF)

Figure S7 Regions where excess IBD is detected by 34 CEU or

20 new CEU control genomes. (A)–(C) GERMLINE, fastIBD, and

ISCA results for 34 CEU genomes. (D)–(F) GERMLINE, fastIBD,

and ISCA results for 20 new CEU genomes.

(PDF)

Figure S8 Comparison between ERSA 1.0 and ERSA 2.0.

Exact prediction accuracy for (A) true pedigrees and (B) simulated

pedigrees. Power for detecting related pairs in (C) true pedigrees

and (D) simulated pedigrees.

(PDF)

Figure S9 Proportion of detected relationships among unrelated

controls at different masking cutoffs. The dash line indicates ERSA

2.0’s default cutoff (4). Results without masking are show on the right.

(PDF)

Figure S10 Comparison of ERSA 2.0 ’s performance for real

and simulated pedigrees. (A) Exact prediction accuracy. (B) Power.

They only show consistent relationship degree (1st–6th and 9th–

11th) in both datasets.

(PDF)

Table S1 Prediction accuracy and power of ERSA 2.0 with

masking on real families. Numerical values in the table are results

for WGS data, numerical values in parentheses are results for ‘‘SNP

microarray’’ and ‘‘exon’’ data. Three parameter setting of BEAGLE

4 preview version [28] were used: A) ibdlength = 0.5, IBD segments

are not merged; B) ibdlength = 0.5, run program 10 times

and merge all segments within two Mb; C) ibdwindow = 304,

ibdtrim = 228, overlap = 2281, ibdlength = 0.5, run program 10

times and merge all segments within two Mb.

(DOCX)

Table S2 Consistency in spurious IBD regions detected by each

method. We only considered spurious regions whose observed/

expected ratio is larger than 4 and genetic longer is longer than

1 MB. (Numerical values in parentheses are results for comparing

regions that are longer than 2 MB). Pairwise correlation between

two methods was calculated by ‘‘Jaccard similarity coefficient’’,

the ratio of overlapped region length to total region length. CEU

(A) refers to the 34 European control genomes described in the

main text. CEU (B) is an additional sample of 20 unrelated

Europeans.

(DOCX)

Table S3 Excess IBD regions in Table 3 and their observed/

expected ratio in the 34 European control genomes described in

the main text (A) and 20 additional unrelated Europeans (B).

(DOCX)

Table S4 Comparison regions identified in Table 3 with regions

influenced by positive selection [16].

(DOCX)

Table S5 Comparison regions identified in Table 3 with long-

range haplotypes reported by Gusev et. al. [17].

(DOCX)

Table S6 Comparison regions identified in Table 3 with long-

range haplotypes reported by Price et. al. [18].

(DOCX)
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