
Comparison of Capture Hi-C
Analytical Pipelines
Dina Aljogol1, I. Richard Thompson2, Cameron S. Osborne3 and Borbala Mifsud1,4*

1College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar, 2Qatar Biomedical Research Institute, Hamad
Bin Khalifa University, Doha, Qatar, 3Department of Medical and Molecular Genetics, King’s College London, London,
United Kingdom, 4William Harvey Research Institute, Queen Mary University of London, London, United Kingdom

It is now evident that DNA forms an organized nuclear architecture, which is essential to
maintain the structural and functional integrity of the genome. Chromatin organization can
be systematically studied due to the recent boom in chromosome conformation capture
technologies (e.g., 3C and its successors 4C, 5C and Hi-C), which is accompanied by the
development of computational pipelines to identify biologically meaningful chromatin
contacts in such data. However, not all tools are applicable to all experimental designs
and all structural features. Capture Hi-C (CHi-C) is a method that uses an intermediate
hybridization step to target and select predefined regions of interest in a Hi-C library,
thereby increasing effective sequencing depth for those regions. It allows researchers to
investigate fine chromatin structures at high resolution, for instance promoter-enhancer
loops, but it introduces additional biases with the capture step, and therefore requires
specialized pipelines. Here, we compare multiple analytical pipelines for CHi-C data
analysis. We consider the effect of retaining multi-mapping reads and compare the
efficiency of different statistical approaches in both identifying reproducible interactions
and determining biologically significant interactions. At restriction fragment level resolution,
the number of multi-mapping reads that could be rescued was negligible. The number of
identified interactions varied widely, depending on the analytical method, indicating large
differences in type I and type II error rates. The optimal pipeline depends on the project-
specific tolerance level of false positive and false negative chromatin contacts.
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1 INTRODUCTION

The DNA fiber within the nucleus is assembled into an organized, multi-level architecture. During
interphase, chromosomes occupy distinct territories that rarely interact (Cremer and Cremer 2010).
Chromatin is further partitioned into hubs of active and inactive compartments, determined by their
chromatin accessibility status, gene density and bound proteins (Rao et al., 2014). These compartments
are built from smaller topologically associated domains (TADs), which serve as regulatory units, enclosing
most chromatin loops within their boundaries (Dixon et al., 2012; Nora et al., 2012). Chromatin loops
facilitate the communication of distant genomic regions by bringing them into physical proximity,
including enhancers and their target promoters. Substantial evidence supports the importance of this
organization in maintaining genome integrity and driving key biological processes, such as transcription
(Osborne et al., 2004; Rao et al., 2014; Rhie et al., 2019; Akdemir et al., 2020; Cai et al., 2021). For instance,
3D genomic rearrangements allow genes to alternate between areas of active and repressed chromatin
environments to regulate the circadian rhythm (Furlan-Magaril et al., 2021).
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The 3D genome architecture can be investigated using either
imaging or chromosome conformation capture (3C)-based
methods. Imaging techniques are traditionally limited to
studying a handful of loci at a time, even though recent
developments in the field allow genome-scale studies (Su et al.,
2020). 3C-based methods, on the other hand, have been used to
study interactions genome-wide for more than a decade. 3C is a
proximity ligation-based method, which was developed by
Dekker et al. to study ‘one to one’ contacts using PCR
amplification for detection (Dekker et al., 2002). Subsequently,
several large-scale methods emerged, including the unbiased,
genome-wide method, Hi-C, which leverages high-throughput
sequencing to quantify all interactions simultaneously
(Lieberman-Aiden et al., 2009). While Hi-C can provide
information for all contacts, it requires deep sequencing to
confidently identify true genomic interactions at higher
resolution (Rao et al., 2014). To overcome this limitation and
to focus on regulatory loops, library enrichment strategies, such
as Capture Hi-C (CHi-C) (Mifsud et al., 2015) and Capture-C
(Davies et al., 2016), have been applied. CHi-C uses sequence-
specific RNA baits to further select regions of interest from a pool
of ligated Hi-C contacts prior to sequencing. It has been widely
used to capture promoter interactions with regulatory elements
(Furlan-Magaril et al., 2021; Jung et al., 2019) and it has also been
employed to assess disrupted genomic interactions of disease risk
loci (Baxter et al., 2018; Song et al., 2019).

A typical Hi-C data analysis workflow includes the
following steps: quality control and alignment of sequenced
reads (Servant et al., 2015; Wingett et al., 2015; Zheng et al.,
2019), optional binning of interactions, bias-correction (Imakaev
et al., 2012) and performing a statistical test to identify
valid (Mifsud et al., 2017) or functional interactions (Heinz
et al., 2010; Hwang et al., 2015; Durand et al., 2016; Ron et al.,
2017; Wolff et al., 2018; Kaul et al., 2020), which can be
interrogated in downstream analyses (Lajoie et al., 2015). For
each step, there is a growing selection of tools. While systematic
comparisons of Hi-C analytical pipelines exist (Forcato et al.,
2017; Pal et al., 2019), there is a lack of similar comparisons for
CHi-C data.

Data from CHi-C experiments requires specialized software
because CHi-C-specific biases, such as variable capture efficiency,
are not accounted for by most Hi-C analysis tools. Furthermore,
bait-bait interactions need to be treated separately from bait-
other interactions. Ligation fragments that are targeted by baits
on both ends have different capture probabilities compared to
those targeted only on a single end.

The main decision points for CHi-C data analysis are
choosing the method for alignment and filtering of the
sequenced read-pairs and choosing the method for
identifying interactions of interest. For alignment, most
methods will utilize read pairs, where both ends are aligned
uniquely to the genome, e.g., HiCUP and HiC-Pro (Servant
et al., 2015; Wingett et al., 2015). Zheng et al. proposed an
alternative method that rescues those multi-mapping read
pairs that can be unambiguously assigned to an interaction,
however, the benefit of this method for CHi-C has not been
assessed (Zheng et al., 2019). For identification of interactions

of interest, there are a number of distinct strategies. GOTHiC
aims to identify those interactions that are not experimental
artefacts, but represent real contacts in the nucleus. It does not
take genomic distance between the interacting fragments into
account and it does not infer biologically relevant interactions
(Mifsud et al., 2017). Although it was originally developed for
Hi-C data, its visibility correction method, which uses all reads
mapping to a fragment as the basis of correction, is applicable
to bait-other interactions of CHi-C data as well. In
combination with a random ligation sample, a modified
version of the algorithm can be applied to bait-bait
interactions, which uses a mixed additive/multiplicative
model for visibility correction (Mifsud et al., 2015). Other
methods aim to find functional interactions by assuming that
contacts, which occur more often in the nucleus than other
contacts spanning similar genomic distances, are biologically
relevant. CHiCAGO’s goal is to identify functional
interactions by pinpointing those that show higher contact
frequencies than would be expected by Brownian motion of the
chromatin. It also corrects for visibility of a fragment by
separating baits and other ends into groups of fragments
with similar coverage (Cairns et al., 2016). CHiCANE
calculates the significance of an interaction taking into
account both the genomic distance between two bins and
the “interactibility” of bait fragments. “Interactibility” is
defined as the number of trans reads a bait fragment has
(Holgersen et al., 2021). The above mentioned methods use
global background measures to identify real or functional
interactions, which do not take into account the local
chromatin environment of a given bait fragment. In
contrast, CHiCMaxima does not take into account the
global properties of the CHi-C data set, but treats the
contacts of each bait as a virtual 4C instead. It smoothes
the read count profile of the bait and uses local maxima to
find those fragments that form functional chromatin loops
(Zouari et al., 2019). Here, we compare the performance of
these various CHi-C data analysis pipelines in detecting
reproducible interactions that are of potential biological
relevance.

2 MATERIALS AND METHODS

2.1 CD34+ CHi-C
2.1.1. CD34+ Cell Collection, Purification and Fixation
CD34+ cells were collected from the femoral heads of healthy
donors who underwent total hip replacement surgery (in a
consented study approved by the London - Westminster
Research Ethics Committee - IRAS#220344). Bone marrow
was extracted and irrigated in Iscove Modified Dulbecco
Medium/10% Fetal calf serum. CD34+ cells were isolated from
the cell suspension using a Dynabeads CD34 Positive Isolation
Kit (Invitrogen cat# 11301D). PBS-EDTA washed cells were fixed
with 2% final concentration of formaldehyde for 10 min at room
temperature. After quenching the fixation with 0.125M final
concentration of glycine, CD34+ cells were purified using
CD34+ MicroBeads (Miltenyi) according to manufacturer’s
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instructions. A 1 ml aliquot was used to assess the CD34+ purity
by FACS and the purity was determined to be above 90%.

2.1.2. Promoter Capture Hi-C
Hi-C library generation was carried out as described previously
(Mifsud et al., 2015), with minor modifications. Briefly, after
overnight digestion with HindIII at 37°C, DNA ends were labelled
with biotin-14–dATP (Life Technologies) using a Klenow end-
filling reaction. In nucleus ligation was performed by ligating
together biotinylated DNA ends overnight using T4 DNA ligase
(Invitrogen). After phenol: chloroform/ethanol purification DNA
was quantified using Qubit, with a maximum of 40 μg taken
forward. DNA was sheared to a peak concentration of ∼ 400 bp,
using the manufacturer’s instructions (Covaris). Sheared DNA
was then end-repaired, polyadenylated, and double size selected
using AMPure XP beads to isolate DNA ranging from 250 to
550 bp in size. Ligation fragments marked by biotin were
immobilized using MyOne Streptavidin C1 DynaBeads
(Invitrogen) and ligated to paired-end adaptors (Illumina). Hi-
C libraries were then amplified using PE PCR 1.0 and PE PCR 2.0
primers (Illumina) with 6 PCR amplification cycles.

Promoter capture was carried out with SureSelect target
enrichment, using a custom-designed biotinylated RNA bait
library and custom paired-end blockers according to the
manufacturer’s instructions (Agilent Technologies). The 120-
mer baits were targeting both ends of HindIII restriction
fragments that overlap with Ensembl promoters of protein-
coding, noncoding, antisense, snRNA, miRNA and snoRNA
transcripts, had a 25–65% GC content, their sequence
contained no more than two consecutive Ns and were within
330 bp of the HindIII restriction fragment terminus. After library
enrichment, a post-capture PCR amplification step was carried
out using PE PCR 1.0 and PE PCR 2.0 primers with 4 PCR
amplification cycles. CHi-C libraries were sequenced on the
Illumina HiSeq 2000 platform for paired-end sequencing.

2.2 Tools and Datasets
Three replicates of GM12878 in solution ligation promoter
capture Hi-C and three replicates each of iPSC and iPSC-
derived cardiomyocyte in nucleus promoter capture Hi-C data
were downloaded from ArrayExpress (E-MTAB-2323 and
E-MTAB-6014, respectively) using fasterq-dump v2.9.6.
GRCh37 reference genome and chromosome sizes were
obtained from the UCSC genome browser.

H3K27ac, H3K4me1 and H3K4me3 peaks and DNase I
hypersensitivity sites (DHS; GM12878, H1) from the Roadmap
Epigenomics Consortium (2015), heart DHS from the ENCODE
project (Consortium 2012) and Nuclease accessible sites (NAS;
CD34+) from Gargiulo et al. (2009) were downloaded using the
AnnotationHub v2.22.1 R BioConductor package for GM12878
(record numbers “AH29709”, “AH29060”, “AH29061”, and
“AH30743”, respectively) and CD34+ cells (record numbers
“AH42424”, “AH42192”, “AH42194”, and “AH5085”,
respectively), H1 cells (record numbers “AH29891”,
“AH28878”, “AH28880”, and “AH29873”, respectively) and
left ventricle/heart (record numbers “AH30592”, “AH29554”,
“AH29555”, and “AH25530”, respectively). Significant

H3K27ac, H3K4me1, H3K4me3 and DHS peaks were defined
as q-value< 0.05.

HiCUP v0.7.2 (Wingett et al., 2015), mHiC (Zheng et al.,
2019), GOTHiC++ (based on (Mifsud et al., 2017), CHiCAGO
(Cairns et al., 2016), CHiCANE ((Holgersen et al., 2021) and
CHiCMaxima (Zouari et al., 2019) were downloaded from links
summarized in Figure 1A.

2.3 Read Alignment and Filtering
2.3.1 HiCUP
An in silico 1-based HindIII digest profile of the hg19 reference
genome was created using hicup_digester. This file represents all
possible HindIII fragments in the genome and was used to
identify CHi-C artifacts. HiCUP v0.7.2 was used with bowtie2
v2.4.2. (hg19) for the alignment step, and minimum and
maximum di-tag ranges were set to 150 and 800 for the
filtering step. All other parameters were kept as default. The
final BAM output was filtered to include only read pairs where
both ends have a mapping quality ≥10.

2.3.2 mHiC
mHiC was applied at four different resolutions: Restriction
fragment level (RF), 10 kb, 100 kb and 1 MB with the default
BWA aligner (v0.7.17-r1188). The 0-based HindIII digest profile
supplied by mHiC was used for mapping the reads to restriction
fragments. Parameters were adjusted to be consistent with the
parameters used for HiCUP. We used 150 for the minimum and
800 for the maximum di-tag length. The chimeric read length
threshold was adjusted to 20. The mapping quality threshold was
reduced to 10. The unique and multi-read valid pairs (those that
map to unique bins) were concatenated for further processing.
The final normalization steps of mHiC were omitted. Valid read
pairs were kept from the SAM output of step 2 and the SAM file
was converted to BAM using samtools v1.9. for GOTHiC,
CHiCAGO and CHiCANE input.

2.4 Identifying Significant Interactions
Significant chromatin contacts were identified at fragment
resolution using four different software. Three compare the
observed read counts for each interaction to a global
background and one identifies significant contacts based on
the local interaction profile (Figure 1B). Additionally, since
the GOTHiC algorithm does not aim to identify functional
interactions among those present in the nucleus, we defined
bait-specific q-value thresholds for the GOTHiC results. Bait-
specific q-value thresholds filter for interactions that are more
significant than the majority of contacts a given bait makes. These
are likely to represent functional loops.

2.4.1 CHiCAGO
CHiCAGO requires five input files: Rmaps represent all the
possible fragments in the genome. Baitmaps represent intervals
of fragments that were baited, as well as their bin ID relative to the
rmap, and gene names within each captured fragment. The
remaining three input files were created using chicagoTools
makeDesignFiles.py script with its default settings for HindIII.
For MboI-digested fragment we used binsize 1,500, minFragLen

Frontiers in Genetics | www.frontiersin.org January 2022 | Volume 13 | Article 7865013

Aljogol et al. Comparison of Capture Hi-C Pipelines

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


75, maxFragLen 12,000 and maxLBrownEst 97,500. We
converted BAM files to chinput format using chicagoTools
bam2chicago.sh. Lastly, runChicago.R was executed with the
same settings mentioned above. The significance threshold was
set to a score ≥5. We also tested ≥10 and ≥15.

2.4.2 CHiCANE
Interactions files were created using prepare. data () with the
default parameters and three input files: HiCUP/mHiC BAM
files, and the baitmaps and rmaps created previously. We then
executed chicane() using the interactions file as input.
Significance threshold was set to q-value < 0.05. We also
tested <0.01 and <0.001.

2.4.3 GOTHiC++
We executed gothic using the BAM files with default settings.
Significance threshold was set to q-value < 0.05. We also tested
<0.01 and <0.001. GOTHiC identifies interactions that are not
due to random ligation events. In order to identify which one of
the non-random interactions might be biologically relevant, we
defined a per bait q-value threshold based on the slope of the
cumulative significance [-log10 (q-value)] curve of the
interactions each bait made. Briefly, significance values of all
significant interactions of the bait were rounded and for each
value we calculated the number of interactions with equal or
higher significance. We took the derivative of this cumulative
curve to set the threshold for the bait to the significance level,
where the absolute slope is above 1.

2.4.4 CHiCMaxima
Interactions input files were created in the format specified in
CHiCMaxima. IDs were defined as their bin ID relative to the
rmap file. CHiCMaxima was used with default settings with a
window size of 20 and 100 for HindIII- and MboI-digested
samples, respectively. CHiCMaxima excludes genes with

insufficient coverage. Therefore, the output includes only valid
interactions.

2.5 Downstream Analyses
We assessed the reproducibility of significant interactions two-
fold. First, we overlapped the non-bait captured fragments for
each bait across all replicates, then we investigated those that
overlap with active chromatin. Interactions that were present in at
least two replicates were considered reproducible. We also
calculated the number of interactions, which pass a joint mean
q-value or score threshold in at least two replicates for each tool.

To assess whether significant interactions are of biological
relevance we calculated the proportion of identified promoter
interacting fragments that harbour active chromatin regions. We
overlapped the fragments, or the fragments extended on both
sides with either 2.5 kb or 20 kb, with H3K27ac, H3K4me1,
H3K4me3 and DNase I hypersensitivity sites using the
GenomicRanges v1.42.0 R package.

3 RESULTS

3.1 The Effect of Multi-Mapping Reads
We analysed eleven promoter capture Hi-C (PCHi-C) data sets.
Three replicates of the GM12878 cell line were in solution-
ligation PCHi-C data sets with 93 million to 188 million
sequenced read pairs. Two replicates prepared by in nucleus
ligation from CD34+ hematopoietic stem cells were sequenced
more deeply and had 359 million and 579 million read pairs.
Three replicates each of iPSC and iPSC-generated cardiomyocyte
in nucleus ligation PCHi-C libraries were sequenced at similar
depth with 368 million to 475 million reads (Figure 2A,
Supplementary Table S1). Raw sequencing reads were
mapped and filtered either by HiCUP, which only considers
uniquely mapping reads, or by mHiC, which rescues those

FIGURE 1 | Research summary. (A). CHi-C analytical tools used and their sources. (B). Strategy overview. HiCUP and mHiC were compared for their performance
in mapping read pairs and filtering experimental artefacts. GOTHiC, CHiCMaxima, CHiCAGO and CHiCANE were compared for their ability to identify reproducible,
biologically relevant interactions. Yellow boxes indicate the type of background model used by each tool. GOTHiC local filtering (LF) is an optional downstream filtering of
GOTHiC globally significant interactions based on the local interaction profile of each bait.
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multi-mapping reads that map to unique restriction fragments or
interaction bins, depending on the resolution. HiCUP returned a
slightly higher number of valid read-pairs than mHiC, which
difference became more prominent in the MboI-digested
samples. Each sample had 52–64% valid mapped read-pairs
using HiCUP and 45–62% using mHiC. The difference
remained the same when only those read-pairs were kept,
where both ends had a good mapping quality (MAPQ ≥10)
(Figure 2A, Supplementary Table S1.).

Zheng et al. showed that mHiC can rescue up to 20% of reads
in Hi-C samples (Zheng et al., 2019), but we did not observe
higher valid read counts when mapping these PCHi-C samples.
In order to explore whether the lack of improved valid read
proportion was due to the high, fragment-level resolution of
PCHi-C, we calculated the number of valid unique and rescued
multi-mapping reads at fragment level, 10 kb, 100 kb and 1 Mb
resolutions (Figures 2B,C, Supplementary Table S2). The
number of uniquely mapping reads decreased as the resolution
decreased, because a larger proportion of the read pairs fell on the
diagonal of the contact matrix, into a single bin, and those read

pairs were filtered out. The decrease was more pronounced for
deeper sequenced samples and for shorter fragments (Figure 2B).
The number of rescued multi-mapping read pairs was negligible
at restriction fragment level resolution; at most 32,239 read pairs
were rescued in the largest MboI-digested sample. This number
did increase with the use of larger bins, however, it did not exceed
1.9M reads at 1 Mb resolution, which was only 0.6–1.6% of the
uniquely mapping read pairs in the same samples (Figure 2C).

3.2 Reproducibility of Interactions
The numbers of identified significant interactions using HiCUP-
or mHiC-aligned and filtered reads were similar. In general, there
were up to 10% fewer interactions using mHiC-aligned reads
(Figure 3A, Supplementary Figure S1). There was a 2–500-fold
difference in the number of interactions identified by GOTHiC
and CHiCANE. CHiCMaxima identified slightly more
interactions than CHiCAGO and they both returned ∼
5–20 times as many interactions as CHiCANE (Figure 3A,
Supplementary Table S3A). These differences were also
apparent in the proportion of baited fragments with at least

FIGURE 2 | Valid read pairs. (A). Number of identified valid pairs using HiCUP and mHiC. Black bars indicate the total number of raw read pairs. Read pairs were
filtered to keep only those with a mapping quality (MAPQ) ≥10. BF: number of mapped read pairs before MAPQ filtering. AF: number of mapped reads after MAPQ
filtering. (B). Number of uniquely mapping read pairs using mHiC at different resolutions. (C). Number of rescued multi-mapping read pairs using mHiC at different
resolutions. RF: restriction fragment.
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one identified interaction, which was 99–99.9% and 79–82% with
GOTHiC and only 13–89% and 7–13% with CHiCANE for
HindIII- and MboI-digested samples, respectively (CHiCAGO:
71–78.9% and 45–52%, CHiCMaxima: 86–99.6% and 32–36%)
(Supplementary Table S4). The proportion of bait-bait
interactions was highest in CHiCAGO, in the local-filtered
GOTHiC and in CHiCMaxima for MboI-digested samples
(Figure 3A, Supplementary Figure S1). The number of
significant interactions in the 4-cutter-digested samples was
equivalent to or lower than the number in the GM12878
datasets by GOTHiC, CHiCMaxima and GOTHiC (LF),
despite the deeper sequencing of the iPSC and cardiomyocyte
samples. CHiCAGO identified a similar number of significant
interactions to those in the larger HindIII samples (Figure 3A,
Supplementary Figure S1).

Reproducibility of exact interactions across replicates ranged
from 4 to 8% using CHiCMaxima. It was 44–50% for GOTHiC
(41–57% after local filtering). CHiCAGO showed 16–20% and
CHiCANE interactions showed 22–32% reproducibility
(Figure 3B, Supplementary Table S5A). However, when
interactions between the exact fragments are not observed, it has
been noted that interactions with neighbouring fragments are
present in the replicates, therefore we calculated the
reproducibility of interactions by extending the non-baited

fragments with 2.5 kb or 20 kb on each side. This resulted in a
higher proportion of overlapping interactions in all tools, especially
for 4-cutter digested samples. The most prominent increase was
observed for GOTHiC, the proportion of reproducible interactions
increased to 61–71% with the 2.5 kb extension (Supplementary
Table S6A) and 70–83%%with the 20 kb extension (Supplementary
Table S7A). CHiCMaxima showed the lowest reproducibility after
extension as well (Figure 3B). In order to test whether the choice of
threshold affected our results, we also filtered at q-values < 0.01 and
0.001 for CHiCANE, GOTHiC and GOTHiC (LF), and at scores ≥
10 and 15 in CHiCAGO. CHiCMaxima does not have a scoring
system and returns only local peaks. Using the second threshold, the
number of significant interactions decreased by 11–22% in
GOTHiC, 85–96% in CHiCAGO, 41–50% in CHiCANE and
0.3–7% in GOTHiC (LF). Using the third threshold, the number
of identified interactions decreased by 28–34% in GOTHiC,
95–99.5% in CHiCAGO, 67–80% in CHiCANE and 0.5–13% in
GOTHiC (LF) (Supplementary Tables S3B,C). These had a
negligible effect on the reproducibility as the maximum increase
was 0–5% in GOTHiC, 1–13% in CHiCAGO, 0–5% in CHiCANE
and 0–4% in GOTHiC (LF) at the restriction fragment level
(Supplementary Tables S5B,C). The increase was lower when
extending for 2.5 kb (Supplementary Tables S6B,C) or 20 kb
(Supplementary Tables S7B,C).

FIGURE 3 | Reproducibility of HiCUP-preprocessed significant interactions. (A). Number of HiCUP-preprocessed significant interactions using GOTHiC (with and
without LF), CHiCAGO, CHiCANE and CHiCMaxima. (B). Bar plots represent the percentage of non-baited fragments that overlap in at least two replicates for each bait.
Overlaps were studied for exact fragment-level interactions and interactions where non-baited fragment-ends were extended by 2.5 kb or 20 kb.
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The reproducibility of potentially functional interactions,
where the non-baited fragments overlapped with DNaseI
hypersensitivity sites (DHS), H3K4me1, H3K4me3 or
H3K27ac peaks, was higher than it was for all identified
interactions using GOTHiC and its local-filtered
interaction list but was equal or lower using the other
methods (Supplementary Figure S2, Supplementary
Tables S8–S10).

All Hi-C-type data, including capture Hi-C, are known to be
prone to undersampling, therefore we tested the utility of using
a joint mean q-value (GOTHiC, CHiCAGO and CHiCANE)
and score (CHiCAGO) threshold for replicates. This resulted
in a 0–17% increase in the total number of unique interactions
identified across single replicates, the highest being in
CHiCAGO. It indicates that, especially in CHiCAGO, many
interactions that are significant in one replicate only, are near
the threshold in another replicate (Supplementary
Table S5D).

3.3 Interactions With Potential Biological
Function
Finally, we assessed whether the identified interactions are of
potential biological function, by overlapping the non-baited
fragments with DHS (open chromatin), H3K4me1 and
H3K27ac peaks (enhancer) and H3K4me3 (active promoter)
from the respective cell types. A larger proportion of
interactions overlapped with DHS peaks (13–64%) compared
to H3K27ac (5–39%), H3K4me1 (5–56%) and H3K4me3
(5–30%) peaks. GOTHiC interactions had the lowest
proportion of interactions overlapping with these features.
CHiCAGO- and CHiCMaxima-identified interactions had on
average a 1.6-fold higher proportion of functional interactions
than GOTHiC-identified interactions and 1.2-fold higher than
local filtered GOTHiC interactions. In general, CHiCANE
showed the highest percentage of interactions overlapping
active chromatin (Figures 4A,B). These differences are
diminished when the non-baited fragments are extended.
2.5 kb-extended CHiCMaxima interactions have a higher
proportion of functional interactions in 4-cutter digested
samples than CHiCANE, but lower in 6-cutter digested ones
(Supplementary Tables S11–S13).

Interactions made by the baited BCL2 promoter demonstrate
the above observations. Most methods identified a low number of
interactions for this promoter, while GOTHiC, even after local
filtering, found several interacting fragments. GOTHiC-identified
interactions also spanned further than those pinpointed by other
methods. CHiCANE interactions were the fewest and shortest.
The bottom tracks show DHS, H3K4me1 and H3K27ac profiles
in this region. Magenta highlights an interaction that was
identified in all methods, blue highlights peaks overlapped
with an interaction that was identified by all methods except
CHiCANE, while yellow highlights those in GOTHiC-only
interacting fragments (Figure 4C).

4 DISCUSSION

Recent advances in chromosome conformation capture
technologies have enabled us to systematically investigate the
spatial arrangement of chromatin within the nucleus. The
increasing number of experimental approaches were
accompanied by the development of computational pipelines
to analyze resulting data and ensure reproducibility of
research, but there is no standard method for the analysis of
CHi-C data.

Here, we compared two software for the alignment and
filtering of reads, HiCUP and mHiC. The former uses
uniquely mapping reads only, while the latter keeps those
multi-mapping reads that come from a single restriction
fragment or genomic bin. At restriction fragment
resolution the use of mHiC was not advantageous, in fact
HiCUP returned more valid read pairs. This difference might
have come from the different aligners used by the two
methods, as HiCUP uses Bowtie2, while mHiC uses BWA.
For this set of samples, we did not observe substantial benefit

FIGURE 4 | Biologically relevant interactions. Bubble heat maps
represent the proportion of interactions that overlap (A). DHS or (B).
H3K4me1 peaks. The size of the circle represents the log10 number of
promoter-other interactions identified by the different methods.
(C). A comparison between BCL2 promoter interactions in GM12878
cells within ± 1 Mb as reported by each method. Dashed lines
represent examples of interactions that are identified in all tools
(magenta), all tools except CHiCANE (blue), only in GOTHiC (yellow).
ENCODE ChIP-seq profiles for DHS, H3K4me1 and H3K27ac in
GM12878 cell lines are shown in the bottom tracks. DHS: DNase I
Hypersensitivity sites.
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from rescuing multi-mapping reads by mHiC at lower
resolutions either. However, it might be useful with
samples of lower sequencing quality as reads with
mismatches are more prone to be misaligned.

Next, we compared methods used for identification of real or
functional interactions. In addition to identifying interactions,
CHiCAGO and CHiCANE provide R code for functional
enrichment and visualization of the data and CHiCMaxima has
a graphical interface which facilitates its use for less experienced
users. These additional features might also influence the choice of
tool. Here we focused on the reproducibility and specificity of
regulatory interactions identified.

The most striking difference between these methods was the
number of interactions identified. GOTHiC, which identifies
those interactions that are not due to spurious ligation of DNA
ends, unsurprisingly returns a magnitude higher number of
interactions than the other methods, which define interactions
as those that are more enriched than their local environment or
than other interactions with similar genomic distance. When
we aim to find functional interactions and filter GOTHiC
results based on the local interaction profiles, there is about
0.1–0.69 of those interactions left, which is still much more
than what we found by any other method. It is likely that this
method has the highest false positive rate for functional
interactions, but examples showed that many regulatory
chromatin features are linked to promoters solely by
GOTHiC. CHiCANE is the strictest of all four methods
tested and a very high proportion of the interacting
fragments is overlapping active chromatin, but it is likely to
have a very high false negative rate, also indicated by the low
proportion of baits with at least a single interaction.
CHiCAGO and CHiCMaxima can be a good compromise
between false positive and false negative rates, as these
identify 4–18 times as many interactions as CHiCANE, and
the proportion of those significant interactions that overlap
with regulatory features is not much below CHiCANE’s.
Extending the interacting fragments with 2.5 kb or 20 kb on
each side, increased both reproducibility and the proportion of
regulatory interactions. However, the 20 kb-extension reduces
the resolution of CHi-C beyond the size of an average
regulatory element, which is not recommended for studying
promoter-enhancer interactions.

In summary, the choice of method should depend on the
tolerable level of false positive and false negative interactions, and
this systematic comparison will help researchers identify the
method best applicable to their projects.
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