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Abstract

Offspring survival is generally more variable than adult survival and may limit population

growth. Although white-tailed deer neonate survival has been intensively investigated,

recent work has emphasized how specific cover types influence neonate survival at local

scales (single study area). These localized investigations have often led to inconsistences

within the literature. Developing specific hypotheses describing the relationships among

environmental, habitat, and landscape factors influencing white-tailed deer neonate survival

at regional scales may allow for detection of generalized patterns. Therefore, we developed

11 hypotheses representing the various effects of environmental (e.g., winter and spring

weather), habitat (e.g., hiding and escape cover types), and landscape factors (e.g., land-

scape configuration regardless of specific cover type available) on white-tailed deer neonate

survival up to one-month and from one- to three-months of age. At one-month, surviving

fawns experienced a warmer lowest recorded June temperature and more June precipita-

tion than those that perished. At three-months, patch connectance (percent of patches of

the corresponding patch type that are connected within a predefined distance) positively

influenced survival. Our results are consistent with white-tailed deer neonate ecology:

increased spring temperature and precipitation are likely associated with a flush of nutri-

tional resources available to the mother, promoting increased lactation efficiency and

neonate growth early in life. In contrast, reduced spring temperature with increased precipi-

tation place neonates at risk to hypothermia. Increased patch connectance likely reflects

increased escape cover available within a neonate’s home range after they are able to flee

from predators. If suitable escape cover is available on the landscape, then managers could

focus efforts towards manipulating landscape configuration (patch connectance) to promote

increased neonate survival while monitoring spring weather to assess potential influences

on current year survival.
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Introduction

Ungulate population dynamics are influenced by multiple factors including environmental

variables [1–3], density-dependent effects of forage resources [4–6], and predation [7,8].

Although adult survival rates are generally stable, juvenile survival may display more variability

and thus, potentially drive population dynamics [9,10]. Therefore, understanding how factors

influence juvenile survival is necessary to predict annual recruitment and its impact on popu-

lation size.

Assessing how various factors such as predation and local site habitat composition influ-

ence white-tailed deer (Odocoileus virginianus; hereafter, deer) neonate survival has been of

recent interest. Many studies have emphasized cause-specific neonate mortality [11–13] and

have found coyotes (Canis latrans) to be the primary predator; though, predator management

is often an ineffective prescription for improving population response [14, 15]. Other studies

also have assessed which local habitat characteristics are associated with neonate survival

across the range of white-tailed deer [12, 16–18]. Understanding which habitat characteristics

influence neonate survival is important as hiding and escape cover are generally limiting in

highly fragmented landscapes [19]. For example, in the Northern Great Plains, native prairie

and planted grasslands have been widely converted to row crop agriculture [20], and Groven-

burg et al. [21] showed that vegetation height in Conservation Reserve Program grasslands

positively influenced neonate deer survival. Unfortunately, most studies assessing these rela-

tionships are site specific and inconsistencies occur [11, 22, 23]. Nevertheless, the highly frag-

mented landscape of the Northern Great Plains results in patches of habitat that vary in size

and distribution. This landscape allows for a unique opportunity to test specific hypotheses

regarding the effect of environmental (e.g., winter and spring weather), habitat (e.g., hiding

and escape cover types), and landscape level factors (e.g., landscape configuration regardless of

specific cover type available) on deer neonate survival and to identify general patterns at a

regional scale.

Neonatal deer behaviour is heavily dependent upon age and may interact with landscape or

environmental variables. For example, newborns display various predator avoidance strategies

as they age, moving from a hider strategy (that incorporates fear bradycardia) early in life to a

flight response from predators later in life [24, 25]. Similarly, studies show that neonate sur-

vival also varies by age [11, 26, 27], indicating that extrinsic factors likely influence neonate

survival during the first weeks of life. Our objective was to assess how environmental, habitat,

and landscape factors influenced deer neonate survival up to one-month (28 days) and

between one- and three-months (90 days) of age using a long-term dataset collected from

three states that largely comprise the Northern Great Plains (Minnesota, South Dakota, and

North Dakota, USA).

We developed four general groups of hypotheses to examine how various ecological factors

affect fawn survival during early life: hiding and escape cover hypotheses, weather hypotheses,

a landscape configuration hypothesis, and a nutritional resource hypothesis. Our hiding and

escape cover hypotheses examined whether the amount of forested area, grasslands, pasture-

lands, and wetlands affected neonate survival [22]. We expected that neonate survival would

decrease with increasing forested cover and would increase with cover provided by grasslands,

pasturelands, and wetlands. Our weather hypotheses examined the influence of winter [28–30]

and spring weather [21, 31] and also examined if there was a potential lag effect of prior year

weather [28] on neonate survival. Winter weather may negatively affect maternal body condi-

tion, thus influencing her ability to successfully rear offspring. Therefore, we expected that

winter weather (represented by a deer winter severity index and also the independent effects of

lowest winter temperature and total winter snow accumulation) would negatively affect
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survival. Similarly, inclement spring weather (represented with the lowest June temperature

and total June precipitation) may negatively affect a neonate’s ability to thermoregulate and as

a result, decrease survival. However, effects of adverse spring weather may be counteracted if

proper habitat is available so we developed a thermal cover hypothesis to examine if the poten-

tially negative effects of low June temperatures and increased total June precipitation were alle-

viated with increased availability of grassland, pastureland, and wetland cover.

In addition to the type and amount of hiding and escape cover that influences neonate sur-

vival, the configuration of hiding and escape cover on the landscape can also affect neonate

survival [22]. We expected that neonate survival would increase with increasing patch density,

connectivity among patches, and complexity of the patch shape of hiding and escape cover.

Finally, row crop agriculture is prevalent in the Northern Great Plains region but is generally

unavailable early in the parturition season and can negatively affect neonate survival if its pres-

ence results in a decreased amount of other hiding and escape cover [32], though we would

expect that an increased amount of open water would positively affect maternal lactation effi-

ciency [33] thus positively affecting neonate survival.

Materials and methods

We assessed factors that influenced neonate deer survival from 10 counties comprising 8 study

sites across 3 states in the Northern Great Plains region from 2001 to 2015. We captured fawns

in Walsh, Grand Forks, Grant, and Dunn counties, North Dakota; Brookings, Edmunds, and

Perkins counties, South Dakota; and Lincoln, Pipestone, and Redwood counties, Minnesota

(Fig 1). All counties were located within 4 Level III Ecoregions [34, 35]: Lake Agassiz Plain

(Walsh and Grand Forks counties, North Dakota), Northwestern Great Plains (Grant and

Dunn counties, North Dakota and Perkins County, South Dakota), Northern Glaciated Plains

(Edmunds and Brookings counties, South Dakota and Lincoln County, Minnesota), and the

Western Corn Belt Plains (Pipestone and Redwood counties, Minnesota). State agencies

granted permission for publicly owned properties while we obtained permission from land-

owners to collect data from privately owned lands.

There was variation in weather variables and vegetation communities among study sites.

For example, thirty-year (1981–2010) mean annual precipitation ranged from 412 mm (Grant

County, North Dakota) to 729 mm (Redwood County, Minnesota), and thirty-year mean tem-

peratures ranged from a winter low of -15.1˚C (Grant County, North Dakota) to a summer

high of 30.3˚C (Perkins County, South Dakota [36]). Vegetation types were generally classified

as Northern Wheatgrass-Needlegrass Plains, Northern Mixed Grass Prairie, and the Tallgrass

Prairie [37]. As such, there was variation in the vegetation composition for each study area.

Specific vegetation types are described in [11, 38, 39].

We used reproductive female postpartum behaviour as an indicator of presence of neonates

[40–42], and we also used the aid of Vaginal Implant Transmitters (Advanced Telemetry Sys-

tems, Inc., Isanti, MN, USA) to assist in neonate capture [43]. We captured neonates by hand

or net after locating them. We wore latex gloves and stored all radio-collars and other equip-

ment in natural vegetation to minimize scent transfer. We fitted neonates with expandable

breakaway radio-collars (Advanced Telemetry Systems, Isanti, MN, USA or Telonics Inc.,

Mesa, AZ). We kept handling time under five minutes when possible to reduce capture-related

stress. Fawn capture methods were generally similar among study sites. For additional infor-

mation regarding capture methods see [11, 22, 39].

We monitored neonates daily for the first 30 days using a truck-mounted null-peak antenna

system [44], hand-held Yagi antennas (Advanced Telemetry Systems), aerial telemetry, and

omnidirectional whip antennas and used these same techniques to monitor neonates 2–3
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times per week thereafter. We investigated mortalities immediately after detecting a mortality

signal and transported carcasses to either the North Dakota Game and Fish Department Wild-

life Laboratory in Bismarck, North Dakota, USA or to the Animal Disease Research Diagnostic

Laboratory at South Dakota State University, South Dakota, USA depending on study site.

Ethics statement

We followed the American Society of Mammalogists guidelines for mammal care and use [45],

and the South Dakota State University Institutional Animal Care and Use Committee

approved all handling protocols (Approval numbers: 00-A038, 02-A037, 02-A043, 04-A009,

10-006E, 13-091A).

Fig 1. Study sites where we captured neonate white-tailed deer located in a.) Lincoln, b.) Pipestone, and c.)

Redwood counties, Minnesota; d.) Walsh, e.) Grand Forks, f.) Grant, and g.) Dunn counties North Dakota; h.)

Brookings, i.) Edmunds, and j.) Perkins counties, South Dakota from 2001 to 2015. Lincoln and Pipestone

counties, Minnesota were combined to create the Lincoln-Pipestone study area and Walsh and Grand Forks counties,

North Dakota were combined to create the Walsh-Grand Forks study area used for analyses.

https://doi.org/10.1371/journal.pone.0195247.g001
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We did not calculate home ranges for each fawn as we did not have relocation data avail-

able. Instead, we quantified habitat characteristics within a 352.3-m circular buffer around a

neonate’s capture location, which represented a 39-ha mean core (50%) home range for a one-

month old neonate [32]. For three-month old neonates, we quantified habitat characteristics

in a 669.7-m circular buffer around a neonate’s capture location, which represented a 140.9 ha

(95%) summer home range [32]. We quantified habitat characteristics within a larger area for

three-month old neonates to represent the increased area available to them once they began

following their mother at heel. We overlaid buffered areas with the 2011 National Land Cover

Database [46] and calculated habitat composition (% composition of each cover type in each

buffer) using ArcGIS 10.4.1 (ESRI, Inc., Redlands CA). We then reclassified land cover data

into 4 cover habitat categories (grassland/herbaceous, pastureland, wetland, and forest) and

two nutritional resource categories (cultivated crop and open water).

The relative influence of the configuration of specific habitat types on neonate survival var-

ies (e.g., [11, 22]). Our goal was to simply assess whether the amount of a specific habitat type

(e.g., percent grassland/herbaceous, percent wetland) or the general landscape configuration

of all habitat types found within a neonate’s home range influenced survival. Therefore, we did

not test how landscape configuration of specific habitat types (e.g., number of wetland patches)

may influence neonate survival; rather, we investigated how general landscape configuration,

regardless of available habitat (e.g., total number of patches of all habitat types), influenced sur-

vival. We assessed how patch density, connectance, and shape index influenced survival as

these variables represent the amount of escape cover available (patch density), connectivity of

escape cover (connectance), and shape complexity (shape index; [47]). Examining these vari-

ables better informed us as to whether general landscape configuration or the amount of spe-

cific habitat types available more affected neonatal survival.

We obtained specific weather data from the National Oceanic and Atmospheric Adminis-

tration website [48]. We used weather stations that were located closest to fawn capture loca-

tions when possible. However, full datasets were not always available from these weather

stations. If unavailable, we used the next closest weather station with fully available datasets.

We also calculated Deer Winter Severity Indices (DWSI, [49]) from 2000 to 2015. We awarded

one point each day the mean temperature was� -7˚C from November to April. The index

received an additional point for each day mean snow depth was� 350mm during this same

time period.

We developed 11 hypotheses that represent the effects of hiding and escape cover, weather,

landscape configuration, and nutritional resources on neonate survival (Tables 1 and 2). We

chose not to include intrinsic models (e.g., fawn body mass, fawn age, maternal body mass,

maternal age) because the variation in which neonates were caught would introduce bias into

the analysis [50]. Additionally, deriving specific survival rates would have been informative,

but although neonates were monitored on a weekly basis, we did not have weekly encounter

histories available for all neonates and thus, we only knew their ultimate fate. Therefore, we

assessed factors that influenced survival up to one- and from one- to three-months using a

logistic regression via the glm function in Program R (version 3.3.1; [51]). We adopted the

Information–Theoretic Approach, and after analyzing each model, ranked them according the

Akaike’s Information Criterion corrected for small sample size (AICc) and considered models

within 2 ΔAICc units as competing [52]. We derived AICc values, number of parameters, and

model weights using the AICc and Weights functions in the MuMIn package in Program R

[53]. We assessed correlation among explanatory variables using a Pearson’s correlation within

the cor.test function in Program R and included multiple variables in a single model when |r|

� 0.50. We considered variables important when their 95% Confidence Intervals (95% CIs)

Factors affecting white-tailed deer neonate survival in the Northern Great Plains
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excluded 0 [52, 54]. We also estimated ĉ as a measure of goodness of fit of our global models

[55]. We present means ± standard deviation.

Amount of hiding and escape cover in our analyses varied because of our wide geographic

range of study areas; magnitude among variables also varied (i.e., weather variables compared

to cover variables). Therefore, we scaled the amount of hiding and escape cover and landscape

variables by study site using the scale function in Program R with the mean centered on 0 and

standard deviation of ± 1. We attempted to scale variables by county of capture; however,

Table 2. Definition of variables used to explain one- and three-month neonate white-tailed deer survival in the

Northern Great Plains from 2001 to 2015.

Variable Name Variable Definition

Grassland Herbaceous Percent of fawn’s home range comprised of grassland herbaceous cover

Pasture Hay Percent of fawn’s home range comprised of pasture hay cover

Wetland Percent of fawn’s home range comprised of wetland cover

Forested Percent of fawn’s home range comprised of forested cover

Patch Density Number of patches per home range

Connectance Percent of patches connected within a predefined distance to each other

within a fawns home range

Patch Shape Index Ranges from 0 to 1; 0 represents a square patch and >0 represents deviations

from the square shape

DWSI Deer Winter Severity Index

Total Winter Snow Accumulation Total snow accumulated from November through April

Lowest Winter Temperature Lowest recorded temperature reported from November through April

Lowest June Temperature Lowest recorded temperature reported in June of current parturition season

Total Precipitation in June Total precipitation recorded in June of current parturition season

Lowest June Temperature from

Previous Year

Lowest recorded temperature reported in June of previous parturition

season

Percent Crop Cover Percent of fawn’s home range comprised of stand crops

Percent Open Water Percent of fawn’s home range comprised of open water

https://doi.org/10.1371/journal.pone.0195247.t002

Table 1. Names of hypotheses and variables included for each hypothesis used to explain one- and three-month

neonate white-tailed deer survival in the Northern Great Plains from 2001 to 2015.

Hypothesis Name Variables Included� Reference

(s)

Landscape patch density (+), connectivity (+), patch shape (+) [22]

Forested Cover forested (-) [22]

Grassland Cover grassland herbaceous (+), pastureland (+), wetland (+) [22]

Thermal Cover lowest June temperature (-), total June precipitation (-), grassland herbaceous

(+), pastureland (+), wetland (+)

[21, 22, 31]

Winter Severity

Index

DWSI (-) [28–30]

Winter Weather total winter snow accumulation (-), lowest winter temperature (-) [28–30]

Spring Weather lowest June temperature (-), total June precipitation (-) [21, 31]

Lag Effect lowest temperature from previous June (-), lowest winter temperature (-) [28]

Nutritional

Resources

crop cover (-), open water (+) [32]

Full all variables included .

Null intercept only .

�Predicted direction of effect included in parentheses

https://doi.org/10.1371/journal.pone.0195247.t001
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sample size precluded us from doing so for all counties. Therefore, we combined adjoining

counties within a single state to scale variables for counties with small sample sizes. We scaled

all weather variables across the dataset following the same procedure.

Results

We captured 370 neonates from 2001 to 2015. From our one-month analysis, we censored 39

neonates, comprising 3 dropped collars, 1 lost signal, and 35 due to missing data. From our

three-month analysis, we censored 105 neonates, comprising 20 dropped collars, 6 lost signals

or collar malfunctions, and 66 that did not survive past one-month of age. Overall, we

observed a high proportion of neonates surviving (one-month survival = 82%, one- to three-

month survival = 92%). However, we observed a wide range of summer survival among popu-

lations (0.35, [39]; 0.94, [22]). Variables used within our models were not correlated (|r|�

0.34). Mean distance to weather stations from neonate capture locations was 39.0 ± 24.4 km.

We observed two competing models that best described one-month survival (Table 3). Spring

weather was our top model, which accounted for a moderate amount of model weight (wi = 0.37).

This model included the effects of total June precipitation (β = 0.313, 95% CI = 0.029–0.601,

n = 331) and lowest June temperature (β = 0.334, 95% CI = 0.048–0.625, n = 331; Table 4). Our

thermal cover model seemed to be competing (ΔAICc = 0.11, wi = 0.35) with our top model. This

model included the effects of hiding and escape cover (percent grassland/herbaceous, wetland, and

pastureland cover), total June precipitation, and the lowest recorded June temperature. However,

95% CIs overlapped 0 for cover variables but excluded 0 for total June precipitation (β = 0.318, 95%

CI = 0.031–0.608, n = 331) and lowest June temperature (β = 0.302, 95% CI = 0.013–0.596, n = 331;

Table 4); therefore, we concluded that hiding and escape cover variables were uninformative [54]

and only interpret our spring weather model. McFadden’s R2 for our spring weather model was

0.02 and ĉ was 0.92 indicating overdispersion of the data did not occur [55]. All other models were

�3.32 ΔAICc units away from our top model.

Both lowest recorded temperature in June and total June precipitation positively influenced

one-month neonate survival. The mean lowest recorded temperature in June for surviving

neonates (x = 4.7 ± 1.8˚C, n = 268; Fig 2) was about 11% warmer than for neonates that per-

ished (x = 4.2 ± 1.7˚C, n = 63). For mean total June precipitation, surviving neonates (x =

111 ± 27 mm, n = 268; Fig 3) experienced about 7% more rainfall than neonates that perished

(x = 104 ± 28 mm, n = 63).

Table 3. Candidate set of ecological models describing one-month neonate white-tailed deer survival in the

Northern Great Plains from 2001 to 2015. Models within 2 ΔAICc are competing, wi indicates model weight, and K
indicates number of parameters calculated within a model.

Model AICc ΔAICc wi K
Spring Weather 320.13 0.00 0.37 3

Thermal Cover 320.24 0.11 0.35 6

Grassland Cover 323.36 3.22 0.07 4

Null 324.21 4.08 0.05 1

Winter Weather 324.28 4.15 0.05 3

Full 324.88 4.75 0.03 15

Lag Effect 325.29 5.16 0.03 3

Forested Cover 325.73 5.60 0.02 2

Winter Severity Index 325.74 5.61 0.02 2

Landscape 327.48 7.34 0.01 4

Nutritional Resources 327.56 7.42 0.01 3

https://doi.org/10.1371/journal.pone.0195247.t003
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We observed one top model describing survival from one- to three-months (Table 5). Our

top model was our landscape model (wi = 0.50), which included the influence of patch density,

connectance, and shape index, with 95% CIs excluding 0 for connectance (β = 0.450, 95%

CI = 0.079–0.843, n = 265; Table 6). McFadden’s R2 for our spring weather model was 0.06

and ĉ for our global model was 0.49 indicating overdispersion of the data did not occur [55].

All other models were� 2.44 ΔAICc units from the top model. Surviving neonates (x =

77.0 ± 13.3%, n = 245; Fig 4) were exposed to about 13% more connectance among patches

compared to neonates that perished (x = 68.1 ± 24.3%, n = 20).

Discussion

We acknowledge that our low R2 values indicate low predictive power for our top models,

though R2 values associated with logistic models should be interpreted with caution [56]. The

low predictive power of our top models may be related to the relatively high proportion of

fawns that survived to one-month (82%) and from one- to three-months of age (92%), which

likely reduced the amount of variation that could be explained in our models. Conversely,

there may have been little variability associated with our explanatory variables and/or our

explanatory variables may have served as a proxy for another unmeasured variable. Therefore,

although we obtained a large sample size (one-month survival = 331 neonates and three-

month survival = 265 neonates) with high spatial (10 counties spanning three states) and tem-

poral (15-years) replication, interpretation and use of our results for management purposes

should be done so with caution.

Our results support our spring weather hypothesis and suggest that two spring weather var-

iables most influence one-month neonate survival, though the direction of relationships dif-

fered from what we expected. We predicted that lowest June temperature and total June

precipitation would negatively influence one-month survival due to neonates being unable to

thermoregulate at a young age [21, 31]. However, we found positive relationships between low-

est June temperature and total June precipitation and one-month survival, indicating that sur-

vival increased with increasing temperature and precipitation during June. This positive effect

indicates that neonates experiencing warmer and wetter springs may be better able to thermo-

regulate compared those experiencing cooler and dryer springs. Alternatively, neonates may

be more affected by maternal care related to forage quality and quantity during spring months

than the inability to thermoregulate. For example, increased temperatures and precipitation

were related to increased plant quantity and quality [57, 58], which may indirectly influence

neonate survival through improved maternal lactation efficiency [59, 60]. Our results also sup-

port previous literature discussing the importance of available forage during maternal lactation

[61–63] and other research reporting increased neonate survival following increased rain

Table 4. Beta estimates and 95% Confidence Intervals (95% CIs) of variables used to estimate one-month neonate

white-tailed deer survival in the Northern Great Plains from 2001 to 2015. 95% CIs excluding 0 indicate variable

influenced survival.

Model Variable β 95% CI

Spring Weather Total June Precipitation 0.313 0.029–0.601

Lowest June Temperature 0.334 0.048–0.625

Thermal Cover Total June Precipitation 0.318 0.031–0.608

Lowest June Temperature 0.302 0.013–0.596

Percent Grassland Herbaceous Cover -0.232 -0.507–0.046

Percent Wetland Cover 0.199 -0.106–0.557

Percent Pastureland Cover 0.153 -0.140–0.467

https://doi.org/10.1371/journal.pone.0195247.t004
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Fig 2. The positive relationship between mean lowest recorded June temperature and one-month survival for neonate white-tailed deer captured from

Minnesota, South Dakota, and North Dakota, USA from 2001 to 2015.

https://doi.org/10.1371/journal.pone.0195247.g002
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events [4] and warmer temperatures [64] during spring. Spring weather may therefore be an

important factor for understanding neonatal deer survival, though small annual changes

Fig 3. The positive relationship between mean total recorded June precipitation and one-month survival for neonate white-tailed deer captured from Minnesota,

South Dakota, and North Dakota, USA from 2001 to 2015.

https://doi.org/10.1371/journal.pone.0195247.g003
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(� 11% difference in June temperature and precipitation between surviving neonates and

those that perished) likely do not greatly impact overall survival as 82% of neonates in our

study survived to one-month.

Our results describing neonate survival between one- and three-months supported our

landscape hypothesis with patch connectance being the only important variable in the model.

Our findings support Grovenburg et al. [65] who found that the probability of deer neonates

eluding predators decreased with increased distance to grassland and wetland patches (i.e.,

areas with less connectance). Landscape metrics also have been found to influence neonate

survival in other studies [22, 27, 66]. Grovenburg et al. [22] found that patch density of grass-

land and wetland cover types positively influenced neonate survival, while Rohm et al. [27]

reported that surviving neonates inhabited home ranges that contained few large and irregular

shaped forest patches. Gulsby et al. [66] also reported that coyote depredation on neonate

white-tailed deer decreased with increasing amount of edge found within neonate’s home

ranges. Increased escape cover and its proximity to a neonate increases probability of survival,

but again, the magnitude of its impact is likely not great considering the relatively high propor-

tion (92%) of fawns surviving from one- to three-months of age.

Lack of hiding and escape cover may potentially influence population dynamics for general-

ist species such as deer [19]. Our results show that general landscape configuration (connec-

tance) and not specific cover type (percent grassland/herbaceous, wetland, and pastureland)

influenced neonate survival; however, reported effects of hiding and escape cover on neonate

survival is inconsistent. For example, in northcentral South Dakota, USA, the percent of Con-

servation Reserve Program grasslands and wetlands found in a neonate’s home range posi-

tively influenced survival, while percent forested cover negatively influenced neonate survival

[32]. Also, percent forested cover positively influenced neonate survival in southern Illinois

Table 5. Candidate set of ecological models describing survival between one- and three-months for neonate

white-tailed deer in the Northern Great Plains from 2001 to 2015. wi indicates model weight, and K indicates num-

ber of parameters calculated within a model.

Model AICc ΔAICc wi K
Landscape 141.39 0.00 0.50 4

Null 143.83 2.44 0.15 1

Nutritional Resources 144.92 3.53 0.09 3

Winter Severity Index 145.73 4.35 0.06 2

Forested Cover 145.85 4.46 0.05 2

Grassland Cover 145.95 4.57 0.05 4

Lag Effect 146.83 5.45 0.03 3

Winter Weather 147.07 5.68 0.03 3

Spring Weather 147.26 5.88 0.03 3

Thermal Cover 149.53 8.14 0.01 6

Full 158.46 17.07 0.00 16

https://doi.org/10.1371/journal.pone.0195247.t005

Table 6. Beta estimates and 95% Confidence Intervals (95% CIs) of variables used to estimate survival between

one- and three-months for neonate white-tailed deer in the Northern Great Plains from 2001 to 2015. 95% CIs

excluding 0 indicate variable influenced survival.

Model Variable β 95% CI

Landscape Connectance 0.450 0.079–0.843

Patch Density 0.320 -0.154–0.813

Patch Shape 0.242 -0.211–0.716

https://doi.org/10.1371/journal.pone.0195247.t006
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[27]. However, percent wetland, cropland, grassland, and forested cover found in a neonate’s

home range did not influence survival in South Dakota, USA and Minnesota, USA [11], nor

Fig 4. The positive relationship between mean connectance and survival between one- and three-months for neonate white-tailed deer captured from Minnesota,

South Dakota, and North Dakota, USA from 2001 to 2015.

https://doi.org/10.1371/journal.pone.0195247.g004
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did percent herbaceous cover influence neonate survival in Pennsylvania, USA [17]. Our cover

habitat variables described the amount of hiding cover available to a neonate, not use, and

therefore, may only be coarsely related to neonate survival. Similarly, microhabitat characteris-

tics do not seem to better explain neonate survival, as Chitwood et al. [13] failed to detect any

influence of vegetation associated with bed site characteristics on fawn survival in North Caro-

lina, USA. Therefore, general landscape configuration in addition to the type and amount of

hiding and escape cover present could be assessed when studying factors that affect neonate

survival.

Our results did not support our winter weather hypotheses for one- and between one- and

three-month survival and were outperformed by the null model in both candidate sets. Winter

weather negatively influenced parturition date, birth mass, and litter size for Soay sheep (Ovis
aries; [67]), fall fawn recruitment of mule deer (O. hemionus; [28]), and negatively influenced

overwinter survival during an offspring’s first year of life (elk, Cervus elaphus, [29]; mule deer,

[30]). However, winter weather did not influence calf body mass (reindeer, Rangifer tarandus;
[68]) or neonate survival (white-tailed deer, [69]; elk, [7]). These discrepancies may be related

to an individual species breeding strategy. For example, although white-tailed deer display ten-

dencies of both a capital and income breeder (discussed in [70]), the greatest portion of fetal

development occurs in the third trimester, which generally coincides with spring green-up

[71, 72]. This delayed developmental strategy allows female white-tailed deer to avoid negative

effects of severe winters on their offspring’s development while in utero.

Our goal was not to assess cause-specific mortality of white-tailed deer neonates; yet, it is

important to note that coyotes are generally the leading cause of neonate mortality in this

region [11, 16, 22]. Our finding that increased patch connectance is positively related to neo-

nate survival between one- and three-months of age indicates that, within a neonate’s home

range, manipulating habitat already found on the landscape may have a negative effect on a

coyote’s search efficiency. However, increasing the amount of hiding and escape cover avail-

able through active habitat management to promote increased quantity and quality of individ-

ual bed sites did not improve fawn survival in the southeastern United States [13, 14] where

fawn survival is substantially lower (as low as 14%; [13]) than what we report for our study.

Nevertheless, active habitat management has other benefits such as increasing forage quantity

[73] which, in turn, may positively influence lactation efficiency [53, 54]. Future research in

the highly fragmented landscape in the Northern Great Plains could focus on addressing how

manipulating the landscape may disrupt a coyote’s search pattern, which may decrease their

effectiveness as a predator of neonatal deer.

Conclusions

White-tailed deer are a highly managed species in North America with a current emphasis

being placed on assessing factors influencing neonate recruitment [10, 13, 74]. Our results can

be used by managers in the Northern Great Plains to improve neonate hiding cover, though

managers must be realistic with their expectations regarding the magnitude of increased neo-

nate survival. Regardless, if suitable cover is available on the landscape, then managers could

focus efforts on manipulating landscape configuration rather than promoting specific cover

types. Managers may accomplish this by increasing the connectance (percent of patches of a

corresponding patch type) within 140.9 ha sections representing a neonate’s 95% core summer

home range. Doing so will increase the escape cover available to a neonate at a large scale.

Additionally, managers could monitor spring weather variables such as lowest recorded June

temperature and amount of June precipitation so those parameters can be incorporated into

population models allowing for more refined population estimates.
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