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Abstract

Background: Multiple imputation is a recommended method to handle missing data. For significance testing after
multiple imputation, Rubin’s Rules (RR) are easily applied to pool parameter estimates. In a logistic regression
model, to consider whether a categorical covariate with more than two levels significantly contributes to the
model, different methods are available. For example pooling chi-square tests with multiple degrees of freedom,
pooling likelihood ratio test statistics, and pooling based on the covariance matrix of the regression model. These
methods are more complex than RR and are not available in all mainstream statistical software packages. In
addition, they do not always obtain optimal power levels. We argue that the median of the p-values from the
overall significance tests from the analyses on the imputed datasets can be used as an alternative pooling rule
for categorical variables. The aim of the current study is to compare different methods to test a categorical variable
for significance after multiple imputation on applicability and power.

Methods: In a large simulation study, we demonstrated the control of the type I error and power levels of different
pooling methods for categorical variables.

Results: This simulation study showed that for non-significant categorical covariates the type I error is controlled
and the statistical power of the median pooling rule was at least equal to current multiple parameter tests. An
empirical data example showed similar results.

Conclusions: It can therefore be concluded that using the median of the p-values from the imputed data analyses
is an attractive and easy to use alternative method for significance testing of categorical variables.
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Background
Logistic regression modelling is a frequently applied
method in epidemiological and medical studies. Although
researchers try to avoid it, missing data occurs in all kinds
of different study designs, and inevitably, also when logis-
tic regression modelling is used. There are many different
methods available to handle incomplete data [1, 2]. The
most recommended method is multiple imputation (MI).

MI is currently implemented in almost all statistical
software packages and therefore within reach of many
researchers. Hence, it will likely be applied more often. MI
generates multiple imputed datasets, where after complete
data analysis can be applied to each imputed dataset.
Finally, parameter estimates can be combined using
Rubin’s Rules (RR) [3].
For logistic regression modelling in combination with

MI, the pooled regression coefficients and standard errors
can easily be obtained by using RR. The pooled coefficient
is derived by averaging the regression coefficient estimates
from each complete data analysis result across the im-
puted datasets. The standard error is obtained by pooling
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the between imputation variance and the within imput-
ation variance which account for sampling and imputation
uncertainty, respectively. The pooled standard error is
used to calculate 95% confidence intervals. For dichotom-
ous and continuous covariates in a logistic regression
model after MI, RR can easily be applied in combination
with a single Wald statistic to obtain a p-value for signifi-
cance [4].
To consider whether a categorical variable with more

than two levels as a whole significantly contributes to the
model, the methods to derive a pooled p-value are less
straightforward. One method that can be used is to com-
bine multiple chi-square values that result from a multiple
parameter Wald or likelihood ratio test in each imputed
dataset [5]. Alternatively, the pooled multivariate sampling
variances of the regression model can be used to conduct
a test that resamples a multivariate Wald statistic [6].
Meng and Rubin proposed another method in which the
likelihood ratio test statistics are combined to provide a
pooled p-value [7]. Unfortunately, none of these pooling
methods are available in mainstream statistical packages.
Consequently, the application of these methods may be
complex for epidemiologists or other applied researchers,
especially the Meng and Rubin pooling method. Further-
more, earlier studies showed that these methods do not al-
ways obtain optimal power levels, which is important for
significance testing [7]. For that reason, it may be tempt-
ing for researchers to fall back on naïve methods, i.e., sin-
gle imputation procedures, which often result in incorrect
parameter estimates for statistical testing [2].
Van de Wiel et al. introduced the median of p-values

in a cross-validation setting for inferring differences in
prediction accuracies [8]. This setting is comparable to
MI, because prediction accuracy is first obtained from
separate (but related) generated versions of the data
and subsequently inferred from those stochastically
dependent data sets. This method showed proven con-
trol of the type I error rate and also good power results
in different simulated data situations. It may therefore
be a potential attractive method for significance testing
of categorical variables.
Until now, methods to derive a pooled p-value for

significance testing of categorical variables in logistic re-
gression models have never been compared for their
control of the type I error rate and power levels in differ-
ent epidemiological data situations. Therefore, the aim
of this study is to compare different pooling methods for
significance testing of categorical and also continuous
covariates in a logistic regression model after multiple
imputation. Specifically type I error control and power
after MI in a large simulation study will be evaluated.
Moreover the characteristics of the pooling methods are
further evaluated in an empirical dataset. In the Multiple
imputation section the procedure of multiple imputation

is more extensively described. In the Statistical hypoth-
esis testing of a variable after MI section the different
pooling methods for statistical testing after MI are dis-
cussed and in the Simulation section a simulation study
is described that compared the different methods for
pooling p-values of categorical variables. The methods
are applied to a clinical dataset in the Application
section.

Multiple imputation
Multiple imputation is an advanced method to handle
missing data, commonly performed in three phases:
imputation, complete data analysis and pooling. In the
imputation phase the missing values are replaced with m
sets of plausible values. These values are estimated from a
series of regression models to generate a posterior predict-
ive distribution of the missing values that is used to draw
the imputed values from. Each variable can be modeled
according to its own distribution, i.e., continuous variables
are modeled with linear regression and dichotomous vari-
ables with logistic regression. Imputations are generated
within several sequential iteration rounds or chains, re-
ferred to as Multivariate Imputation by Chained Equations
(MICE) [9, 10].
In the complete data analysis phase each imputed data-

set is analyzed separately. The analysis performed is the
same method that would have been applied had the data
been complete. Accordingly, the analysis phase results in
m sets of complete data results. The complete data ana-
lysis results from each imputed dataset will differ, because
the imputed datasets differ

Rubin’s rules (RR)
After the analyses the results are combined using pool-
ing by RR. For parameter estimates (e.g., regression coef-
ficients), the combined estimate θ

�
is the average of the

estimates from the imputed data analyses:

θ
� ¼

Pm
j¼1 θj

m

The standard errors of the parameter estimates are
combined by using the within-imputation variance and
the between-imputation variance [11]. The within im-
putation variance Var( θ

�
)within is the average variance

from the imputed data analyses:

Var θ
�ð Þwithin ¼

Pm
j¼1 Var θj

� �
m

The between imputation variance Var(θ
�
)between is the

sum of the squared deviation of the parameter estimate
of each imputed data analysis from the pooled parameter
estimate weighted by m-1:
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Var θ
�ð Þbetween ¼

Pm
j¼1 θj−θ

�� �2
m−1

The variance of the parameter estimates is then calcu-
lated by combining the within and between variance:

Var θ
�ð Þ ¼ Var θ

�ð Þwithinþ 1þ 1
m

� �
Var θ

�ð Þbetween

Statistical hypothesis testing of a variable after MI
For logistic regression analysis, statistical testing of covari-
ates after MI can be performed by different methods. The
methods to pool the statistical tests after MI will be elabo-
rated below with the focus on testing whether a categorical
variable as a whole significantly contributes to the model.

Univariate testing
For two-sided hypothesis testing of single regression coef-
ficients in a logistic regression model after MI the Wald
statistic W can be calculated as follows:

Wsingle ¼ θ
�
−θ0ð Þ2

Var θ
�ð Þ ;

where θ
�
and Var θ

�ð Þ are the pooled coefficient and corre-
sponding variance, respectively and θ0 is the value under
the null hypothesis. Wsingle follows a chi-square distribu-
tion with 1 degree of freedom. After MI, the Wald statistic
can be calculated from the RR pooled statistics, which
makes this an easy to apply method for continuous
variables.

Multivariate testing
For categorical variables in the logistic regression model
only the pooled statistics for each separate level of a cat-
egorical variable can be obtained by RR, not the overall
statistic. RR requires access to the variance-covariance
matrices. Accordingly, each category can be tested, but
the categorical variable as a whole cannot be tested
without adapting the method. The several different
multivariate pooling methods are discussed below. The
formulas for these methods can be found in detail in
Additional file 1.

Multiple parameter Wald test (CHI pooling)
One possibility is to pool the chi-square values from
the multiple parameter Wald or likelihood ratio tests
with multiple degrees of freedom (CHI pooling) [5].
The multiple parameter values are obtained after apply-
ing the test to each imputed datasets separately.

The pooled sampling variance (VAR pooling) method
Alternatively, a combination of the pooled parameter es-
timates and the pooled sampling variances can be used

to construct a test that resembles a multivariate Wald test
(VAR pooling) [12]. This test pools within and between
covariance matrices that are obtained in each imputed
dataset and finally corrects the total parameter covariance
matrix of the multivariate Wald test by including the aver-
age relative increase in variance to account for the missing
data [13].

Meng and Rubin pooling (MR pooling)
Meng and Rubin proposed a method to test overall cat-
egorical variables indirectly based on the likelihood ratio
test statistic (MR pooling) [7]. For each regression param-
eter, two nested models are fitted in each imputed dataset:
one restricted model where the parameter is not included
in the model and one full model where the parameter is
included. The pooled likelihood ratio tests are then com-
pared to obtain pooled p-values for each parameter. The
MR pooling method requires fitting multiple models for
each variable in the data, hence it is an indirect approach.
This can be a very time-consuming process.

The median P rule (MPR)
For the median P rule one simply uses the median p-
value of the significance tests conducted in each imputed
dataset (MPR pooling). Hence, it depends on p-values
only and not on the parameter estimates. The MPR was
developed in a cross-validation setting for comparing
predictive performances of two methods [8]. In that set-
ting, multiple splits of the same data set into training
and test sets render multiple dependent p-values. Vari-
ous bounds for the type I error when using thresholds
like median P < 0.05 were proven under a variety of
assumptions. One of these is the multivariate normal
null-distribution (MVN) for p-values that are trans-
formed to a standard normal scale: then, median P < α
implies a type I error smaller than α. In the imputation
setting, dependence between the multiple p-values is
caused by the fact that all imputed datasets share the
same observed data. Therefore, the dependency is likely
to be strong. In the remainder of the paper we will use
the significance rule median P < α, which we refer to as
“median P rule” (MPR). For a real dataset the underlying
MVN assumption cannot be checked, because we ob-
serve only one instance of the p-value vector. In simula-
tions, however, it can be checked using the asymptotic
χ2(p) distribution for the observed Mahalanobis distance
as computed from the p-values transformed to the
standard normal scale. Fig. A1 in Additional file 1 shows
the empirical distribution of Mahalanobis distance d to-
gether with the χ2(10) distribution for 10 imputations
(which allows reliable estimation of the inverse covari-
ance matrix, required for computing d). These are based
on 1000 simulations (see Simulation Section). Indeed,
we observe a good match between the two for both the
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imputed categorical and the imputed continuous vari-
able. Hence, we conclude that at least in this setting the
MVN assumption is reasonable.
The MPR was evaluated by using the p-values from

the likelihood ratio test for multiple parameters for
the categorical variables in the multivariable model.
In addition, we performed extensive simulations to
support the validity of the MPR (Simulation section)
and we supply a bootstrapping scheme that allows
anyone to check the appropriateness of this rule (and
the aforementioned alternatives) for a given data set
(Application section).

Simulation
Simulation design
To study the performance of the CHI, VAR, MR and MPR
pooling methods after multiple imputation we conducted
a simulation study. In this study, data was generated for
250 cases. The data contained one categorical variable
with four categories (Factor1) and four continuous vari-
ables (Covar1 – Covar4). The categorical variable was first
created as a continuous variable, and then categorized by
the quartiles of the variable. The categorical variable and
the four continuous variables were the covariates in a
model for a dichotomous outcome. The predictors were
related to the outcome by multiplying coefficient loadings
with the data matrix, and the resulting predictor matrix
was used to estimate the probability of the outcome using
a log-normal transformation of the linear predictor. The
categorical variable was coded in the matrix by three
dummy variables.
To create a variety of settings the data characteristics

were varied. The correlation between the variables was
varied between 0.2, 0.4, 0.6 and 0.8. Furthermore we var-
ied the relation of the variables with the outcome by
adjusting the coefficient values (betas). The betas for the
continuous variables were varied from 0 to 1 with steps
of 0.1. The betas of the dummy variables were varied by
drawing the coefficients from a normal distribution with
mean zero and a variance that also varied from 0 to 1
with steps of 0.1. Hence, for each correlation variation,
ten different coefficient situations were simulated for
1000 datasets. This resulted in 40 conditions with 1000
datasets in each of these conditions.
We created missing values in the categorical variable

(i.e., Factor1) and in the first continuous variable (i.e.,
Covar1). The percentage of missing values in both vari-
ables was set to either 25% or 40%. Accordingly, we cre-
ated 40 conditions with 25% missing data, and 40
conditions with 40% missing data. The missing data was
related to the other continuous variables in the data in
order to simulate a missing at random missing data situ-
ation [3]. Each dataset with missing data was then im-
puted by multiple imputation. The number of imputations

was set to 100. The data were analyzed using a generalized
linear model.

Comparing methods
We compared the performance of five methods to pool
the p-values of the variable tests. The first method that
was used is RR. For the continuous variables this method
is used by default in the MICE algorithm in R. However,
for the categorical dummy variables, this method will pro-
duce three pooled p-values in our study; one for each
dummy. So no overall p-value is obtained. The second
method is MR pooling, the third method the chi-square
test with multiple degrees of freedom (CHI pooling), the
fourth method the multivariate sampling variance method
(VAR pooling), and the fifth method the MPR, which
pooled the p-values from the overall likelihood ratio test
in each imputed dataset by taking the median.
For each of the simulated data conditions, the average

type I errors and powers of all pooling methods were
compared for the incomplete categorical variable and
the incomplete continuous variable. We compared the
results of the pooled p-values to the p-values from the
complete data. Those ‘full data’ p-values were obtained
by applying the generalized linear model to the simu-
lated data without missing values, followed by comput-
ing the average type I error and power over the 1000
simulated data sets per condition.
Note that it has been shown that for the purpose of

regression coefficient estimation, inclusion of the out-
come variable in the imputation model (i.e., outcome-
based imputation) is recommended [14]. However, for
hypothesis testing, outcome-based imputation may lead
to over-optimistic p-values, rendering the pooled test re-
sult as too liberal. In the simulation study we investi-
gated this aspect of the imputation model extensively by
comparing the performances of the pooling methods for
outcome-based imputation with the results when the
outcome was excluded from the imputation model.

Description of results
Table 1 presents the type I error for each pooling method
compared to the complete data type I error, which is
considered as the full data type I error, in the simulated
condition when the beta equaled zero and 25% missing
data. For all existing pooling methods outcome-based im-
putation was used, whereas for the MPR, results are pre-
sented both with inclusion (MPRin) and without (MPRout).
Table 1 shows that the type I errors for all existing pooling
methods, and also for the MPRout, were close to the target
in all simulation conditions. For the MPRin method the
type I error was sometimes too liberal. These findings are
confirmed in the situation where 40% of the data is miss-
ing (Additional file 2, Table B1).
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The power for each of the pooling methods was evalu-
ated for the categorical and continuous variable after
imputation of the missing data. Note that the standard
errors of the estimated type I error/power, denoted by p̂ ,

equal sd p̂ð Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ 1−pð Þ=1000p

, which equals 0.007 for
target type I error p̂ = 0.05 and which has its maximum
for p̂ =0.5, rendering 0.015. Given that these standard
errors are relatively small we have not displayed these in
the Figures. Results are presented separately for outcome-
based imputation and imputation where the outcome was
excluded from the imputation model. Lastly, we present a
summary result where the best strategy for each method
is depicted.

Outcome-based imputation
Figure 1 depicts the power for each pooling method after
outcome-based imputation for the condition of 25% miss-
ing data and a correlation of 0.4, for each simulated coeffi-
cient value (beta). Figure 1 shows that for the categorical
variable, the power for the CHI, MR and VAR pooling

methods was smaller than for the full data situation. The
power for the MPR was closer to the full data power. This
occurs for all beta values in all data conditions, however
as was concluded from Table 1, the type I error for MPR
was slightly inflated. For the continuous variable, the MPR
results in inflated power levels compared with the full data
and the other pooling methods up to a beta value of 0.3.
For beta values beyond 0.3 the power for MPR was larger
compared to the other methods and closer to the full data
power. The conditions with 40% missing data resulted in
larger differences between the MPR, CHI, MR, VAR and
RR pooling methods than in the 25% missing data
conditions (see Additional file 2 for a full overview of the
results).

Outcome excluded from imputation model
Figure 2 depicts the power for each pooling method with
the outcome excluded from the imputation model for the
condition of 25% missing data and a correlation of 0.4, for
each simulated coefficient value (beta). Figure 2 shows
that for the categorical variable, the power of the CHI,
MR and VAR pooling methods is smaller than that of both
the full data analysis as of the MPR method. This is also
the case for the continuous variable as well as for the situ-
ation with 40% missing data (see Additional file 2 for a full
overview of the results).

Summary: Outcome-based imputation except for MPR
Figure 3 displays the results of the power analysis when
for the RR, CHI, MR and the VAR pooling methods
outcome-based imputation was applied, as recommended,
and for the MPR when the outcome is excluded for im-
putation (MPRout). It is clear from these figures that the
power for the MPRout method for categorical variables is
higher than for all other pooling methods and closer to
the full data results at all beta values. Opposite results are
found for the continuous variables where RR, CHI, MR
and the VAR pooling methods show better power results.
The results for 40% missing data and correlations of 0.2,
0.6 and 0.8 confirm these findings with larger differences
in power levels between the MPRout and the other pooling
methods (see Additional file 2).

Application
To illustrate our methods we used an example dataset
adapted from a study about low back pain. The study
population consisted of 299 workers that were listed as
sick for a period of three weeks due to low back pain.
Three treatment groups, high-intensity back school,
low-intensity back schools and usual treatment by the
occupational physician, were compared in a random-
ized clinical trial. The results for the short-term effects
were published previously [15]. The primary outcome
was the difference in pain after three months, measured

Table 1 Type I error for each pooling method for simulated
data with beta equal to zero for 25% missing data in varying
correlations between the variables where Factor1 is categorical
and Covar1-Covar4 are continuous

Cor Full data RR MR CHI VAR MPRin MPRout

0.2 Factor 0.057 a 0.019 0.024 0.018 0.065 0.038

covar1 0.056 0.048 0.052 0.057 0.048 0.104 0.028

covar2 0.056 0.056 0.057 0.057 0.056 0.061 0.059

covar3 0.043 0.051 0.057 0.055 0.051 0.063 0.052

covar4 0.070 0.058 0.061 0.063 0.058 0.070 0.052

0.4 Factor 0.057 a 0.020 0.026 0.025 0.065 0.035

covar1 0.056 0.046 0.048 0.052 0.046 0.094 0.030

covar2 0.056 0.051 0.054 0.054 0.051 0.060 0.056

covar3 0.043 0.059 0.063 0.061 0.059 0.070 0.052

covar4 0.070 0.056 0.057 0.056 0.056 0.057 0.055

0.6 Factor 0.061 a 0.026 0.026 0.026 0.068 0.023

covar1 0.058 0.048 0.049 0.051 0.048 0.088 0.031

covar2 0.065 0.055 0.057 0.060 0.055 0.066 0.056

covar3 0.059 0.051 0.054 0.053 0.051 0.058 0.051

covar4 0.063 0.063 0.066 0.066 0.063 0.075 0.064

0.8 Factor 0.057 a 0.026 0.026 0.025 0.077 0.033

covar1 0.056 0.057 0.058 0.058 0.057 0.098 0.019

covar2 0.056 0.058 0.060 0.061 0.058 0.063 0.055

covar3 0.043 0.060 0.061 0.061 0.060 0.070 0.043

covar4 0.070 0.053 0.052 0.054 0.053 0.062 0.059
aFor the categorical variable the p-value could not be obtained by RR; Cor
correlation between variables; Full data complete data; RR Rubin’s Rules, MR
Meng and Rubin pooling, CHI chi-square test with multiple degrees of freedom,
VAR pooled sampling variance method, MPRin Median P Rule with the outcome
included in model, MPRout Median P Rule with the outcome excluded from model
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a

b

Fig. 1 Power for the condition where the percentage of missing data was 25% and the correlation between the variables was 0.4 and the
outcome was included in the imputation model. Note that for the continuous variable the lines for RR and VAR overlap. Full data = complete
data; MPR = median P rule; CHI = chi-square test with multiple degrees of freedom; MR = Meng and Rubin pooling; VAR = pooled sampling
variance method; RR = Rubin’s Rules
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a

b

Fig. 2 Power for the condition where the percentage of missing data was 25% and the correlation between the variables was 0.4 and the
outcome was excluded from the imputation model. Note that for the continuous variable the lines for RR and VAR overlap. Full data = complete
data; MPR = median P rule; CHI = chi-square test with multiple degrees of freedom; MR = Meng and Rubin pooling; VAR = pooled sampling
variance method; RR = Rubin’s Rules
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a

b

Fig. 3 Power for the condition where the percentage of missing data was 25% and the correlation between the variables was 0.4. Note that for
the continuous variable the lines for RR and VAR overlap. Full data = complete data; MPRout = median P rule with outcome excluded from
imputation model; CHI = chi-square test with multiple degrees of freedom; MR = Meng and Rubin pooling; VAR = pooled sampling variance
method; RR = Rubin’s Rules
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with a dichotomous variable indicating a difference of
at least three points. Possible continuous predictors for
the outcome were age, body mass index (BMI), pain at
baseline, physical functioning, disability, and kinesio-
phobia. Categorical predictors were treatment group
(three categories), gender (two categories), education
level (five categories), and some work-related physical
variables, which were daily exposure to sitting (four
categories), heavy lifting (four categories), and working
with vibration tools (four categories). The original data
contained missing values: 6% for BMI; 5.4% for pain at
baseline; 25.5% for physical functioning; 6% for kinesio-
phobia; 7.8% for educational level; 5.7% for sitting; 5.4%
for heavy lifting; and 10% for working with vibration
tools. We started with a complete data situation by im-
puting the missing values once for the purpose of this
illustration. This complete dataset was used as a true
reference and a multivariable logistic regression model
was fitted to this data. Model estimates including the
corresponding p-values for this complete dataset are
depicted in Table 2.
Missing values were generated in categorical and

continuous variables by the missing at random mech-
anism, so the probability for missing data was related
to other variables in the data, to create a realistic data
situation. About 25% of the cases had missing data on
BMI, education, heavy lifting, and physical function-
ing. This incomplete dataset was imputed 100 times
without including the outcome variable in the imput-
ation model for MPR pooling of categorical variables
(MPRout) and outcome-based imputation was used for
the other variables and the RR, MR, CHI and VAR
pooling methods. The variables without missing ob-
servations were included in the imputation model and
multivariate imputation by chained equations was
used to impute missing values. The same multivari-
able logistic regression model was fitted as for the
complete data analysis on each imputed dataset. Sub-
sequently, the p-values for each independent variable
were pooled according to the four compared methods:
RR, MR pooling, CHI pooling, VAR pooling and the
MPRout. Listwise deletion was also applied and pre-
sented as comparison, where only the cases with com-
pletely observed data are included in the analysis. The
resulting p-values are depicted in Table 3, along with
the complete reference data p-values (‘Full data’) in
the first column.
In this example we observe that the MPR performed

similar to the Meng and Rubin method, the chi-square
pooling with multiple degrees of freedom and pooled
sampling variance method. The smaller p-values were
often closer to the p-values from the complete data
analysis for the MPR than for MR, CHI and VAR. Fur-
thermore, multiple imputation improved the results in

particular for Group and Sitting when comparing the
pooled p-values to the p-values after listwise deletion.
We use this data example to show how one can verify

control of type I error and power for the various pooling
methods using a data-based simulation. We used the
estimated means and covariance matrix from our own
data example to generate 1000 bootstrap samples of the
covariates from a multivariate normal distribution. The
sample size from the original data was used for the boot-
strap samples (n = 299). Subsequently, we used the
pooled coefficient estimates after MI from the analysis
performed above to create the dichotomous outcome
variable. Note that to obtain the coefficient estimates we
used outcome-based imputation as recommended [14].
For simulating the outcome variable we only used the
coefficients that were significantly contributing to the
model by using the MPR p-values with a threshold of

Table 2 Model estimates of complete data analysis

Estimate SE Z p-value

Intercept −8.0215 2.4064 −3.3333 0.0008

Group 0.0516

Group (1)a 0.7535 0.3287 2.2927 0.0219

Group (2)a 0.5986 0.3338 1.7936 0.0729

Age −0.0007 0.0141 −0.0498 0.9602

Gender 0.4247 0.3525 1.2049 0.2282

BMI 0.0619 0.0352 1.7587 0.0786

Education 0.5108

Education (1)a −0.1501 0.4058 −0.3699 0.7114

Education (2)a −0.3208 0.4397 −0.7297 0.4656

Education (3)a −0.5997 0.6829 −0.8782 0.3798

Education (4)a −1.2694 0.8117 −1.5639 0.1179

Sitting 0.0195

Sitting (1)a 0.6305 0.3295 1.9134 0.0557

Sitting (2)a −0.3515 0.4795 −0.7329 0.4636

Sitting (3)a 1.0407 0.5286 1.9690 0.0489

Lifting 0.9830

Lifting (1)a 0.1441 0.3692 0.3903 0.6963

Lifting (2)a 0.0574 0.4127 0.1389 0.8894

Lifting (3)a 0.0990 0.4424 0.2238 0.8229

Vibration tools 0.0090

Vibration tools (1)a −0.5406 0.3717 −1.4543 0.1459

Vibration tools (2)a 0.0554 0.4165 0.1329 0.8942

Vibration tools (3)a −1.6335 0.5573 −2.9313 0.0034

Pain at baseline 0.3232 0.0836 3.8656 0.0001

Physical functioning 0.3220 0.1919 1.6778 0.0934

Disability −0.9110 0.3283 −2.7747 0.0055

Kinesiophobia 0.0299 0.0222 1.3524 0.1762
aThe numbers between brackets indicate the dummy variables; SE Standard Error
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P < 0.05. So the outcome was predicted by BMI, sitting,
vibration tools, pain at baseline and disability. Then
missing data were generated according to the pattern
that was used in the example above and MI was applied
with the different methods to pool the p-values.
Table 4 presents the probability for each variable to

obtain a significant result (P < 0.05). From the vari-
ables above the dashed line (that are present in the
model), we conclude that the power of MPR is larger
compared to RR, MR, CHI and VAR pooling. For
example, we observe that the power for the detection
of the association between the variable ‘Disability’ and
the outcome was about 21% higher for MPR than for
MR pooling. From the variables below the dashed line
(not present in the model) we observe that the type I
error of MPR is generally more on target than that of
the other methods, although MPR was for some vari-
ables slightly anti-conservative with a type I error
slightly over 0.05, which is not very problematic in

practice. These findings are in concordance with those
of our simulation study.

Discussion
Multiple imputation is a frequently used method when
covariate data is missing in prognostic models. In the
process of defining the prognostic model one is most
interested in the overall test to make a decision on the rele-
vance of the categorical variable as a whole for the model.
However, such a test is not easily applied in the case of MI
and asks for (complex) adjustments in the pooling process
or for switching between different software packages. If
these packages are not available by the researcher, the re-
searcher may fall back to simple but erroneously single im-
putation techniques. We showed in a simulation study that
the MPR is an easy-to-use method for statistical testing of
categorical variables in a multiple imputation context. The
performance of the MPR is tested in many different data
conditions and proved to be consistently satisfactory. In

Table 3 P-values from complete data analysis, pooling methods and listwise deletion

Full data RR MR CHI VAR MPRout Listwise

Group 0.0515 a 0.0498 0.0583 0.0643 0.0549 0.3234

Age 0.9602 0.9245 0.9283 0.8780 0.9244 0.8898 0.8245

Gender 0.2250 0.3040 0.2854 0.3017 0.3041 0.2862 0.8836

BMI 0.0764 0.0172 0.0222 0.0137 0.0173 0.0049 0.0103

Education 0.5108 a 0.7546 0.7235 0.7468 0.4579 0.6141

Sitting 0.0195 a 0.0396 0.0355 0.0498 0.0306 0.1196

Lifting 0.9830 a 0.9485 0.8755 0.9484 0.7605 0.9289

Vibration Tools 0.0090 a 0.0115 0.0130 0.0236 0.0109 0.0833

Pain baseline 0.0000 0.0001 0.0000 0.0000 0.0001 0.0000 0.0008

Physical Functioning 0.0913 0.0970 0.1095 0.0943 0.0970 0.0532 0.0608

Disability 0.0049 0.0032 0.0009 0.0027 0.0032 0.0022 0.0595

Kinesiophobia 0.1730 0.2115 0.2312 0.2084 0.2115 0.2018 0.0438
aFor the categorical variables the overall p-value could not be obtained by RR. Full data complete data, RR Rubin’s Rules, MR Meng and Rubin pooling, CHI chi-square test
with multiple degrees of freedom, VAR pooled sampling variance method; MPRout Median P Rule with the outcome excluded from model, Listwise analysis after
excluding cases with missings

Table 4 Probability (P) and standard deviation (SD) for rejection of the null-hypothesis, i.e. power for variables above dashed line
and type I error for variables below dashed line, from data based simulation

aFor the categorical variables the overall p-value could not be obtained by RR; RR Rubin’s Rules, MR Meng and Rubin pooling, CHI chi-square test with multiple degrees
of freedom, VAR pooled sampling variance method, MPRout Median P Rule with the outcome excluded from model
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particular, when compared to alternative methods which
are pooling the chi-square values with multiple degrees of
freedom, using the pooled sampling variances and the
method proposed by Meng and Rubin [7], the MPR per-
forms equally well and the resulting pooled p-value for the
categorical variable is often more on target than the pooled
p-values derived from the other methods.
To obtain a powerful significance test for continuous

and dichotomous variables with RR after MI, the MI
procedure has to include the outcome variable, as was also
indicated by Moons et al. [16]. For overall significance
testing of categorical variables by using the multiple
parameter Wald test (Chi Pooling), the pooled sampling
variance (VAR pooling) method and Meng and Rubin
pooling (MR pooling), we suggest following this recom-
mendation. It should be mentioned though that these re-
sults assume a correct imputation model, and establishing
robustness against misspecification of this model requires
further study. The imputation should be outcome-based
for continuous variables that are pooled with RR, or when
applying the more complex pooling methods (i.e., CHI
pooling, VAR pooling or MR pooling), because for these
methods the pooling parameters are estimates that are
pooled after which the result of the hypothesis test is ob-
tained. However, to obtain correct and powerful pooled p-
values for significance testing of categorical variable as a
whole with the MPR, the outcome should be omitted
from the imputation model. Note that omitting the out-
come for imputation may have a robustness advantage,
because such imputation does not assume a specific
model for the relation between outcome and covariates. In
MPR, the hypothesis test results are directly pooled; the
pooling parameters are the p-values. In this case, using
the outcome in the imputation model would lead to
over-optimistic hypothesis test results, as was shown in
the simulation. What are the practical consequences of
our results? We suggest the following guideline: If the
continuous variable(s) are most important: use one of
the available pooling after outcome-based imputation
methods. If the categorical variable(s) are of primary
interest: use MPR with outcome-excluded imputation.
In both cases, both procedures render valid results for
the other variables as well (in terms of type I error con-
trol), but may lack power. Hence, if p-values for the
other type of variables are just above 0.05, we recom-
mend applying the alternative procedure to gain power.
This comes at some computational cost, but, the MPR
rule is very easy to apply in any software package that
can perform MI and therefore time-saving in itself.
The usability of the pooling methods depends largely

on their availability in statistical software. Software pack-
ages vary in methodology to pool parameters after MI.
For example, In Stata and Mplus the multiple parameter
pooling method (CHI pooling) can be used [17, 18].

There is separate SAS add-on code available for CHI
pooling and a translated version was developed for R
[19]. In Mplus, SAS and R the Meng and Rubin test
(MR pooling) is available [20]. For R this procedure is
available in the MICE package [9, 20]. The pooled
sampling variance method is available in Mplus, SAS
and R. The strength of the MPR rule is that this rule can
easily be applied posterior to MI in any software pack-
age. This is a large advantage for the many researchers
that are most familiar with the use of statistical software
package SPSS. These researchers do not have to switch
to other software programs for the MI procedure in
order to pool p-values of categorical variables.
The parameters that are pooled with RR or in MR,

CHI, and VAR pooling follow a normal distribution. To
pool these parameters, the mean is used. The parameters
that are pooled with MPR are p-values, which do not
follow a normal distribution. For that reason, it is war-
ranted to pool using the median instead of the mean. As
described in the paper by Marshall et al. [4], for other
parameters, such as the proportion of variance explained
or discrimination indices, the median may be a good
summary estimator after MI. In future research, the ap-
plication of MPR can be explored in many other situa-
tions where there is not yet a widely available pooling
method at hand. Examples are non-parametric testing of
variables after MI such as the pooled p-values for spear-
man rho correlation coefficients. But also to pool p-values
from the F-tests of an analysis of variance (ANOVA). Van
Ginkel and Kroonenberg developed a method to pool the
F-tests of an ANOVA, but this procedure is rather compli-
cated and not available in all software packages [21]. Also
situations where likelihood ratio test statistics have to be
pooled, i.e. comparing multilevel models in multiply
imputed datasets, may benefit from the application of a
pooling procedure such as MPR.

Conclusions
In conclusion, the MPR is an attractive rule for statistical
inference of categorical variables with more than two levels
because it has at least equal power as the multi parameter
tests that are currently used but is much easier to apply in
any software package.

Additional files

Additional file 1: Formulas of the different multivariate pooling
methods. (DOCX 85 kb)

Additional file 2: Full overview of simulation results. (PDF 81 kb)
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