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ABSTRACT

Whole genome bisulphite sequencing (WGBS) per-
mits the genome-wide study of single molecule
methylation patterns. One of the key goals of mam-
malian cell-type identity studies, in both normal
differentiation and disease, is to locate differential
methylation patterns across the genome. We dis-
cuss the most desirable characteristics for DML (dif-
ferentially methylated locus) and DMR (differentially
methylated region) detection tools in a genome-wide
context and choose a set of statistical methods that
fully or partially satisfy these considerations to com-
pare for benchmarking. Our data simulation strategy
is both biologically informed––employing distribu-
tion parameters derived from large-scale consortium
datasets––and thorough. We report DML detection
ability with respect to coverage, group methylation
difference, sample size, variability and covariate size,
both marginally and jointly, and exhaustively with re-
spect to parameter combination. We also benchmark
these methods on FDR control and computational
time. We use this result to backend and introduce
an expanded version of DMRcate: an existing DMR
detection tool for microarray data that we have ex-
tended to now call DMRs from WGBS data. We com-
pare DMRcate to a set of alternative DMR callers us-
ing a similarly realistic simulation strategy. We find
DMRcate and RADmeth are the best predictors of
DMRs, and conclusively find DMRcate the fastest.

INTRODUCTION

DNA methylation is one of the first characterized epigenetic
control modifications in eukaryotic organisms (1,2), and the
investigation of this process is a central part of current bio-
logical and medical research (3–5). Single molecule DNA
methylation profiles can be obtained via clonal sequenc-
ing of bisuphite treated DNA (6,7) or whole genome bisul-
phite sequencing (WGBS) (8,9). Unmethylated cytosines
are converted to uracils in bisulphite treated DNA and sub-
sequently to thymines after PCR amplification, whereas
methylated cytosines are resistant to bisulphite treatment
and so remain as cytosine residues. Sequencing of bisul-
phite treated DNA has become a gold standard process in
determination of DNA methylation status in experimental
and clinical samples. In an experimental context, bisulphite-
treated DNA sequence reads are aligned to a reference
genome, and for each possible methylation site in that sam-
ple, two tallies are produced: a count of cytosines C indicat-
ing methylation at this site, and a count of thymines T indi-
cating bisulphite conversion of cytosine, hence no methyla-
tion at this site. Eukaryotic DNA methylation occurs pri-
marily at CpG sites, of which the human reference has
approximately 28 million. Therefore, a typical unabridged
whole genome bisulphite sequencing (WGBS) dataset, for
an experiment with n human samples, consists of a p × 2n
array of read counts, where p ≈ 2.8 × 107. The C + T total at
each CpG site for each sample is the total number of reads
aligning to that CpG site and is termed the coverage. If C +
T > 0, the ratio C

C+T is the observed methylation fraction.
Biological hypotheses motivate the need for inferences to

be derived from these data sets. The central phenomenon of
interest is differential methylation (DM), the counterpart
of, in gene expression experiments, differential expression
(DE). Most, if not all, hypotheses in the DE space are ap-
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plicable to DM. In simple experiments, DM is the difference
in methylation fraction between two experimental condi-
tions. More generally, DM is an association of methylation
fraction with an experimental factor. This may be a pair-
ing factor, such as when tumour methylation is compared
to matched non-cancerous tissue amongst a patient popula-
tion. Biological covariates such as age or sex may need to be
added to the statistical model as a corrective measure, or a
continuous response such as age or body mass index (BMI)
may itself be the variable of interest. More complex experi-
mental hypotheses, such as post-hoc contrasts between two
phenotypes where variation is estimated jointly from three
or more groups (10), and interaction effects between two
variables (such as the effect of a drug over a time period,
compared to a control group) may be required by the study.
We propose that a statistical DM detection tool must be
flexible enough to infer results from most, if not all these
different types of hypotheses, and this informs our choice
of tools for benchmarking for this study.

The spatial distribution of DM markers across the eu-
karyotic genome is not random amongst CpG sites. Rather,
differentially methylated loci (DMLs) tend to clump to-
gether in groups, giving the effect (such as when viewed in a
genome browser) of a contiguous differentially methylated
region, or DMR (11). Certain domains of the reference se-
quence may be categorized into CpG islands and shores
by density-based segmentation (12), but these domains do
not constitute a precise functional unit like, for example,
an exon. Transcriptional units such as exons are explicitly
defined at nucleotide resolution by precise molecular prop-
erties. In the case of DMRs, no such delimiters exist, and
hence they must be defined in addition to modelling the dif-
ferential signal. One option may be pre-defining regions of
interest of the genome to test for DM (13), but this intro-
duces a selection bias and hence the results of these anal-
yses are not controlled for false discovery rate (FDR) at a
genome-wide level. Indeed (and this extends to disciplines
other than genomics), any method that uses a priori defined
regions, or generates a subset of candidate regions prior to
inference, is liable to incur a selection bias due to testing hy-
potheses suggested by the data (14,15). Another option is to
exhaustively bin read counts into equally sized tiles across
the genome, similar to methods that interrogate other epi-
genetic marks such as ChIP-Seq and ATAC-Seq (16). How-
ever, a bias is incurred when computing the binwise differ-
ence of CpG methylation, due to varying numbers and den-
sities of CpG sites within each bin (17).

Ideally, the coordinates of a DMR ought to be called de
novo from the data at hand, with appropriate FDR controls
that are unaffected by pre-screening or other selection bi-
ases. Hence the DMR calling process necessitates the ap-
plication of a heuristic that accounts for both spatial (hor-
izontal) effects, and the actual (vertical) effect of DM. It is
for these reasons that, in this study, we conceptualize the
CpG site, indexed by a reference genome and represented
by sums of methylated and unmethylated reads across both
forward and reverse strands, as the fundamental and im-
mutable genomic entity on which DM is evaluated. Subse-
quently, it follows that a DMR is a composite genomic en-
tity that is both bookended by, and summarizes the DM
signal across, its constituent CpG sites. We use this princi-

ple to guide all simulation and validation methods described
henceforth.

The set of available software tools for calling DM is too
vast to be described here. Instead, we recommend a number
of recent reviews (18–20) of DM calling from WGBS as a
good summary of the breadth of available approaches. Two
of these (19,20) also perform validation of a selection of
tools based on a beta-binomial distribution. Beta-binomial
is a popular method for representation and simulation of
WGBS data, in that (i) like methylation fraction, the beta
component is defined on the [0, 1] interval, (ii) the tendency
towards the extremes of this interval can be modelled by
the shape parameters � and �, and (iii) the binomial rep-
resents discrete methylated and unmethylated read counts.
For these reasons, we generate our simulated data under
beta-binomial assumptions. However, we do not restrict our
suite of methods for benchmarking to those that explic-
itly assume a beta-binomial distribution of reads, since its
compound nature means that C and T can be represented
as separate, marginal negative-binomial or Poisson distri-
butions with different parameters (21,22). Practically, this
means that the DM hypothesis can then be represented as
an interaction effect between a binary C/T response and the
coefficient of interest. It is this observation that motivates
our implementation of DMRcate for WGBS data.

In their taxonomy of DM finding methods, both Shafi
et al. (18) and Huh et al. (20) not only explicitly catego-
rize methods by their assumption of beta-binomial data,
but also their ability to model WGBS data with covari-
ates. These allow for more complicated study designs and
hypotheses, as mentioned previously. In terms of method
benchmarking, once we restrict the set of DMR callers to
those that both call DMR coordinates de novo and incorpo-
rate covariates and generalized modelling into their routine,
there remain only a small handful.

In eukaryotes, the methylation state of a genomic locus is
both cell-type dependent (23) and defined by the genomic
sequence context, regulatory and genic features and chro-
matin state (4,24). However, in each round of replication
there is a small degree of maintenance infidelity, leading to a
degree of intracellular methylation variability within a suc-
cession of CpG sites (25,26), hence it is difficult to define
a ‘gold standard’ reference methylome. For the purposes
of benchmarking, assuming the methylation fraction of a
single locus as ‘fixed’, let alone an entire genome, is a con-
tentious move. Thus, we have taken an empirical approach
to characterizing the typical human methylome, based on
a large set of consortium-generated data. Though WGBS
data simulations are available (21) we decided in favour of
implementing our own simulation out of a desire for finer
control over specification of � and �. In contrast to other
WGBS simulation strategies in the current literature, ours is
potentially more realistic in that the parameters are derived
from 206 complete human methylomes generated from the
BLUEPRINT project (27) as part of the International Hu-
man Epigenome Consortium (IHEC). We estimate beta-
binomial shape parameters individually for over 26 million
CpG sites that have uniquely mapped reference coordinates
in GRCh38.p12, creating a library encompassing both pop-
ulation (vertical) and CpG-to-CpG (horizontal) variation
of methylation. We then use this library to simulate CpG
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methylation in order to benchmark both DML and DMR
callers. In comparison, Wreczycka et al. (19) use fixed values
of � and � for their beta-binomially simulated data. Huh
et al. (20) derive their simulations from biological data but
model the proportion of methylated reads from genome-
wide methylation fraction means using only a binomial dis-
tribution, which does not incorporate the variation between
CpGs and across populations as does the beta-binomial. We
considered incorporating a local correlation structure into
our simulation, as some DMR finders (28,29) explicitly ac-
count for this and it has been established to occur in real
data (8). However, we decided against this, as for this study
we are interested in the effect or coefficient of methylation
with respect to a given hypothesis, rather than looking for
hidden correlation structures. DMR lengths, however, are
informative of correlation and as such we model them based
on correlation structure in the BLUEPRINT data.

We also take the opportunity to introduce an expanded
version of DMRcate (30), now optimized for DMR call-
ing from both WGBS and Illumina array data and bench-
marked against three competing methods (RADmeth (31),
dmrseq (29) and DSS (32)). DMRcate’s basic approach for
array-based data is that of modelling, via limma (33), logit-
transformed methylation fractions and then kernel smooth-
ing the resulting moderated t-statistics, with a final step
of defining DMRs from an appropriate CpG-level FDR
threshold. We find such a strategy is equally applicable,
under model specification with an interaction effect, to
marginal distributions of log2-transformed methylated and
unmethylated WGBS read counts, normalized to total li-
brary size (C + T), and thus we choose this as our favoured
implementation.

MATERIALS AND METHODS

Consistent with our stated concept of DMRs as being an ag-
gregated effect of the differential signal from adjacent CpG
sites, we first conducted a benchmarking study of avail-
able tools for calling differentially methylated CpGs/loci
(DMLs), without reference to their genomic coordinates.
We assessed five strategies that meet our stated criteria (see
Introduction) to call DMLs under general experimental de-
sign (i.e. including a covariate): (i) DSS-general (32), (ii)
RADmeth (31), (iii) edgeR (specific to the implementation
in Chen et al. (2017) (22)), (iv) beta-binomial regression as
implemented in the VGAM R package and (v) limma (33)
after transformation via voom (34).

A novel application of limma using an interaction effect

The initial step of DMRcate for WGBS is to call DMLs by
leveraging various capabilities of the limma package. Our
approach closely follows the modelling strategy outlined by
Chen et al. (22), except that voom-fitted log2-transformed
counts are used instead of integer counts. In a regular RNA-
Seq or microarray experiment there is one measurement for
each sample at each genomic location �. In WGBS data,
however, we have two measurements: the read counts C�

and T�. One option might be to reduce this pair of values
to a single value such as logit( Cθ

Cθ+Tθ
) so that, again, the data

is reduced to a single measurement for each sample at each

location. Following the approach of Chen et al. (22) how-
ever, we analyze the complete per-location data (C�, T�) as
a pair of transformed counts. In this analysis, the library
sizes for each sample are used as a GLM offset––that is, a
covariate with a fixed (not estimated) coefficient. The inter-
cept term represents overall methylation at the site, and for
each covariate, the main effect represents the dependence of
the overall methylation level at this location on the covari-
ate, while the interaction between the C and T counts repre-
sents differential methylation. Then empirical Bayes shrink-
age can be applied as per usual (35) and per-CpG moderated
t-statistics and p-values are generated.

Assessing DML detection from WGBS data via simulation

Benchmarking candidate DML callers requires a data set
with a distribution of bisulphite read counts whose param-
eters are known, which necessitates some degree of simu-
lation. However, we also would ideally like the simulated
dataset to closely resemble a set of human methylomes,
containing variation appreciably similar to observed data
amongst both the DMLs and background CpG sites. Find-
ing a set of parameters that describe the diversity of pop-
ulation distributions of single CpG sites is not trivial. For
example, the classic conception of bimodal distribution of
methylation fractions across the genome is one of ‘camel
humps’, where two peaks tend towards 0 and 1 respectively,
but on close inspection of human WGBS data this dis-
tribution is asymmetrical, showing a longer, gentler ramp
towards the methylated peak than the unmethylated peak
(Figure 1 A). Furthermore, this is a global overview of the
entire methylome and represents a mixed distribution of
multiple methylcytosine loci in each molecule or single cell
profile. When this mixture is broken down into single CpG-
sites across a population, these peaks are almost always
unimodal, tending towards 0 or 1. Rather than arbitrar-
ily selecting parameters to approximate these distributions,
we have instead estimated them using public data com-
prising 206 human samples curated by the BLUEPRINT
Epigenome Consortium (27) that have undergone WGBS
with a mean coverage between 10x and 100x. These sam-
ples comprise 47 different cell types from 5 different tissue
sources, both healthy and diseased (Supplementary Table
S1). We assumed a beta-binomial distribution of WGBS
reads for each individual CpG site, and estimated beta pa-
rameters � and � from these 206 samples using the VGAM
R package. The beta component of the distribution is de-
scribed by two shape parameters � and �, with mean μ =

α
α+β

and variance V = αβ

(α+β)2(α+β+1) . Binned distributions of
estimates for � and � for given methylation fraction means
can be seen in Figure 1 B.

Part of our benchmarking involves testing how the can-
didate methods respond to different degrees of methylation
dispersion. To simplify this concept, we parameterized the
beta distribution using � and τ = 1

α+β
, rather than � and

�. For a given methylation fraction �, α = μ

τ
, β = 1−μ

τ
and

the variance is V = μ(1−μ)
1+ 1

τ

. We can then recover � and � by

� , given �. The advantage of this reparameterization is that
� now acts as a proxy for variance, and we can then simu-
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Figure 1. (A) Distribution of methylation fraction means of 26 883 210 CpG sites with uniquely mapped reference coordinates over 206 samples from the
BLUEPRINT Epigenome Consortium. (B) Median estimates of �, � and � + � for 99 non-overlapping bins over the methylation fraction domain for these
206 samples, 0.005 each side of 0.01, 0.02, ..., 0.99. (C) Distribution of BLUEPRINT CpG site variances αβ

(α+β)2(α+β+1)
when reparameterized by τ = 1

α+β
,

for varying values of � . (D) Simulating DMR lengths informed by local correlation of methylation. Above: Density scatterplot of CpG methylation
correlation between all methylcytosine pairs within 2kb of each other on chromosome 2, for all 206 BLUEPRINT samples. Methylation fractions are
arcsine transformed. Dotted line is a cubic smoothed spline across the domain. Below: Distribution of simulated DMR lengths (in nucleotides) over the
same domain.
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late the dispersion of WGBS read counts from a CpG site
for multiple values of � . We can also visualize the overall
dispersion trend for the BLUEPRINT Epigenome dataset
(Figure 1C), noting that the most variable CpG sites are
those with hemimethylated means, and that variance drops
away towards the extreme ends of the beta distribution.

To simulate WGBS read counts for CpG sites, we im-
plemented a generative R function (Appendix A) with five
variables influencing the resulting dataset. The five variables
consisted of (i) coverage, Poisson distributed around the
mean specified; (ii) absolute methylation shift between treat-
ment and control groups in the methylation fraction space;
(iii) sample size denoting number of treatment/control
pairs, as one would for, say, a matched tumour/normal
comparison; (iv) τ and (v) covariate size, implemented as a
random patient effect in specified standard deviations from
the methylation fraction mean in the logit space. For each
instantiation of this function, 100 000 CpG sites were sim-
ulated over a paired study design, with C and T reads gen-
erated for both control and treatment arms of each sample.
One thousand of these loci (1%) were then earmarked to
be differentially methylated. Means for the control group
were generated by randomly sampling from the full set of
estimated BLUEPRINT means (Figure 1 A). This allowed
a heterogeneity of � and � combinations while assessing
performance at a given fixed methylation fraction shift, say
0.2. User-specified deviations were applied to all CpGs and
groups for the covariate, and then to the flagged DMLs from
the treatment group for the methylation shift. The shift was
added to the control mean � if � ≤ 0.5, and subtracted if
� > 0.5. Values for � and � were generated from the result-
ing means and given value of � via lookup from the binned
values in Figure 1 B and C. Using these values, the speci-
fied coverage count C + T was randomly split into C and
T reads using the rbetabinom.ab() function from the
VGAM R package.

We characterized both first- and second-order effects of
these five variables on the performance of the candidate
DML detection methods. A range of values was tested for
each: coverage ∈ {5×, 10×, 15×, 20×, 30×, 50×, 100×},
methylation shift ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.45}, sample
size ∈ {3, 5, 10, 15, 20}, � ∈ {0.01, 0.1, 0.5, 1} and covariate
size (in standard deviations) ∈ {0.1, 0.5, 1, 2}. An exhaustive
set of combinations was derived from each, resulting in 3360
simulated datasets. Each candidate method was applied to
each dataset, hypothesizing a difference in methylation be-
tween the matched treatment and control groups, with the
pairing covariate included. P-values were generated for each
of the 100 000 CpG sites, and receiver operating charac-
teristic (ROC) curves were drawn for each simulation. The
1000 DMLs were defined as condition positive, and sensi-
tivity and specificity were defined by the true positive and
false positive rates on these. CPU time was also recorded
for each candidate method, with all DML calls made on
an Intel Xeon E5-2680v3 mapped to a Xenon Radon Duo
R1881 cluster node, operating with 24GB RAM.

We also ran an adjunct set of simulations to test the per-
formance of the candidate methods as a function of methy-
lation level itself, based on the above strategy. Fixing cover-
age at 20x, methylation fraction shift at 0.2, sample size at
n = 5, � = 1 and covariate size at 1 s.d., we ran 99 extra simu-

lations of 100 000 CpG sites where the control group methy-
lation fraction mean � was fixed at 0.01, 0.02, . . . , 0.99. Like
previously, ROCs were drawn for each simulation.

Assessing DMR detection from WGBS data via simulation

We compared four different self-contained DMR callers
with the ability to both call DMRs de novo and model gener-
alized experimental hypotheses, as per the criteria outlined
in the Introduction: DMRcate (with the aforementioned
application of limma) (30), DSS (32), RADmeth (31) and
dmrseq (29). Of these, the first three conceptualize DMRs
as we outlined earlier: the result of an aggregative process
performed post hoc to generating per-CpG test statistics.
However, dmrseq calls DMRs in a more holistic fashion:
calling candidate regions earlier, incorporating correlative
information between CpG sites and generating significance
values based on comparison to a null via random permu-
tation. The latter two steps are heuristically sensible and so
dmrseq’s DMR definition strategy serves as a comparable
alternative to our conceptualization.

In order to benchmark tools most adept at DMR dis-
covery and definition, we again aimed to make the simu-
lated dataset as realistic as possible. Four main techniques
were adopted in approximating this realism: (i) the set of
coordinates that DMRs were called on is precisely the set
of GRCh38.p12 reference CpGs; (ii) The DMRs were con-
structed as sets of successive CpG sites with variable lengths
informed by the degree of local methylation correlation
within the BLUEPRINT data set; (iii) the non-DMR back-
ground CpG sites were taken from a highly homogeneous
subset of BLUEPRINT samples and (iv) the constituent
CpG sites within a specified DMR were generated by the
DML generative function (Appendix A).

All DMR calls were made across a simulated dataset
equal in size and CpG coordinate composition to a com-
plete human methylome in order to generate an accurate
approximation of real-world hypothesis testing and esti-
mates of CPU resource. DMR coordinates were generated
by seeding 3000 start positions at random CpG coordinates
in the genome and propagating their length (in successive
CpG sites) from that starting point along the forward strand
by a gamma distribution with shape=4 and rate=0.2. Prop-
agated loci that overlapped each other, extended past chro-
mosome ends or had a CpG density sparser than 1 per 100
nucleotides were removed prior to benchmarking. While
not exact, this resulted in a distribution of DMR lengths
resembling the spatial correlation observed over all CpGs
sites on chromosome 2 for the full BLUEPRINT WGBS
dataset (Figure 1D).

The experimental design for the simulated dataset fol-
lowed a 5 × 2 structure, where a significant treatment ef-
fect was hypothesized across 5 control/treatment pairs of
whole methylomes. Constituent CpGs within all DMRs
were generated with a methylation shift of 0.2, � = 1 and
a random patient effect of 1 s.d. in logit-space. The re-
maining non-DMR CpG count data was imported from
10 BLUEPRINT macrophage samples from venous blood
(Supplementary Table S2) with a grand mean coverage of
28× across the whole methylome, and these samples were
randomized with each data generation. To test the effect
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of coverage on DMR caller performance, we randomly de-
pleted the read coverage after initial simulation to means
of 5×, 10×, 15× and 20×, as well as retaining the original
non-depleted 28× coverage simulation.

All four DMR callers were run on each of these five sim-
ulations, and ROCs were drawn for each. Germane to our
concept of the CpG site as the fundamental unit of differ-
ential methylation, and to make the ROCs granular enough
to distinguish subtle differences, condition positives were
defined as CpGs constitutive of simulated DMR loci and
condition negatives as lying outside these loci, to which sen-
sitivity and specificity were defined as the true and false
positive rates on these. To make the ROCs as complete as
possible, parameters were passed to each DMR caller in or-
der to maximize the methylome range assigned a p-value
or score. This proved challenging for dmrseq, since mini-
mizing the cutoff parameter––a screening threshold de-
noting minimum methylation shift for candidate DMRs ap-
plied before significance testing takes place––detrimentally
influenced both performance and CPU time. Thus, in the
interests of fairness we benchmarked dmrseq for multiple
values of cutoff. Otherwise, all other default parameters
were used for each method, allowing for the paired design
specification. The respective tuning parameters used to gen-
erate multiple data points on each ROC were the fdr pa-
rameter in sequencing.annotate() for DMRcate; the
p.threshold parameter in callDMR() for DSS; the -p
flag in the dmrs routine for RADmeth and the per-DMR
q-value for dmrseq. For dmrseq in particular, the complete
list of DMRs returned was not enough to draw a complete
ROC, so the remainder was imputed linearly to (1, 1). All
DMR calls were performed on an Intel Xeon W-2155 Pro-
cessor with 256GB of RAM.

Functional enrichment of DMRs

In order to contextualize and validate the biology of DMRs
called by the four candidate DMR callers, we again used ex-
isting data from the WGBS BLUEPRINT dataset to make
comparisons between known cell types. To check whether
DMRs were able to characterize B cell biology, we used a
subset of three healthy germinal center B cell samples and
compared them to three healthy memory B cell samples
(Supplementary Table S3). For all four methods, DMRs
were thresholded by each routine to produce exactly 2000
DMRs each and were specified to contain a minimum of
five CpG sites. Otherwise, default arguments were used.
DMRs were then flagged for overlaps with any GeneHancer
Double Elite (36) region––a database of known gene regu-
latory elements with multiple verified sources. The list of
corresponding gene names for each overlapping enhancer
and/or promoter was then tested for gene set enrichment
from the Immunologic ontology from the Molecular Sig-
natures Database (MSigDB) v7.1 (37) using the RITAN
Bioconductor package. The background was defined as the
complete list of genes with known interactions and pro-
moter regions, and terms with a FDR q-value <0.05 were
called as significant.

To validate DMRcate DMRs against matched RNA-Seq
data, we used a different subset of BLUEPRINT samples,
since the B cell subset did not have the full complement of

matched transcriptome data. We compared WGBS of five
mantle cell lymphoma (MCL) samples to six chronic lym-
phocytic leukaemia (CLL) samples (Supplementary Table
S4). DMRs were called using DMRcate with default pa-
rameters and differentially expressed genes (DEGs) were
called between these same matched groups of samples using
the edgeR glmQLFit() and glmQLFTest() functions
(38) with FDR <0.05.

Implementation of DMRcate for WGBS

The implementation of DMRcate used for this study is
version ≥2.0.0, found on Bioconductor release ≥3.10
(https://bioconductor.org/packages/release/bioc/html/
DMRcate.html).

RESULTS

DML detection

Benchmarking of DML detection methods reveals that rel-
ative predictive performance (AUC) is dependent on the na-
ture of the simulated data, as specified by the five variables
we modified (see Methods). From the 3360 simulated data
sets generated from BLUEPRINT (see Methods), limma
performs best on 41% of simulations, DSS-general 27%,
RADmeth 15%, edgeR 15% and beta-binomial regression
2% (all rounded to nearest centile) as assessed by area un-
der curve (AUC) from the corresponding ROC (account-
ing for ties). The best performing strategies as a function of
simulated variable value can be viewed in Figure 2A–E. For
low coverage (<10×) DMLs, DSS-general is the clear best
method, but is overtaken above this value by limma, with
edgeR and RADmeth also improving their performance
(Figure 2 A). DSS-general is also competitive with limma
when the methylation shift is subtle (≤0.1), but limma again
becomes dominant when the shift between groups increases
(Figure 2 B). This dominance continues across the sample-
size domain (Figure 2C), with edgeR showing a relative
preference for sample sizes less than 10. Limma also shows a
clear superiority as variability (as measured by � , see Meth-
ods) increases, at the expense of all other methods (Fig-
ure 2D), and also as the covariate size increases (Figure
2E). Figure 2F shows the second-order joint effects of these
five variables, as well as the AUC of the winning strategy.
Limma is the clear best performer in the majority of joint
cases, with DSS-general superior at the extreme lower end
of both coverage and � , and both edgeR and RADmeth be-
coming competitive as the covariate size becomes negligi-
ble. Unsurprisingly, the degree of methylation shift has the
greatest effect on the predictive performance of the best per-
forming strategy, with both coverage and sample size con-
tinuing to increase effectiveness at their upper limits (100×
and n = 20 respectively). Intuitively, the predictive perfor-
mance increases as � gets smaller, which implies more neatly
separated beta distribution peaks. Surprisingly though, the
predictive performance (of limma, at least) shows a subtle
increase as the covariate size increases.

When predictive performance is plotted as a function of
the base methylation fraction of the control group (Figure
2G), limma again shows superior performance across most
of the domain, especially when the methylation fraction is

https://bioconductor.org/packages/release/bioc/html/DMRcate.html
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Figure 2. First-order effects of DML benchmarking, measured by percentage of simulations for which a given method incurs the maximum AUC (ties
distributed evenly and maximally, hence sums may exceed 100%) for (A) coverage, (B) absolute methylation shift in the beta space, (C) sample size, (D)
� and (E) covariate size. (F) Heatmap of second order joint effects of the variables in (A–E), and the AUC of the winning strategy for those joints. (G)
Benchmarking performance as a function of mean methylation fraction of control samples. Solid lines are cubic smoothed splines across the domain.

at more intermediate levels. Over the 99 simulations tested,
representing base methylation fraction from 0.01, 0.02, . . . ,
0.99, limma incurs the largest AUC in 91 cases, edgeR with
6 and DSS-general with 2.

FDR control

The degree to which each DML detection method controls
false discovery is seen in Figure 3. We chose a representative
simulated dataset (coverage = 20×, methylation shift = 0.2,
sample size = 3, � = 0.5, covariate size = 0.5 s.d.) from our
library of simulations derived from BLUEPRINT to show
the distribution of p-values generated by each DML detec-
tion method, for the CpG sites simulated as non-DM (99%).
Of all DML detection methods, limma gives the most uni-
form distribution of p-values for non-DM simulated CpG
sites. The Q–Q plot (Figure 3A) clearly shows the distri-
bution of sample quantiles for limma stays very close to
the diagonal at the extreme ends, with all other methods
straying from the diagonal to varying degrees: edgeR and
DSS-general moderately, RADmeth considerably and beta-
binomial regression egregiously. This result can also be seen
in the corresponding p-value histogram (Figure 3B), with
limma showing the most uniformity towards both 0 and 1.
This uniformity is consistent regardless of coverage (Sup-
plementary Figure 1A). Investigating further, we find that
beta-binomial regression is highly oversensitive under all

conditions, and that RADmeth is also susceptible to in-
creasing proportions of false positives as the coverage in-
creases (Figure 3C). A similar scenario appears when �
is increased (Figure 3D). Increasing the covariate size re-
sults in quite different responses for each method. Limma
and edgeR become more conservative in their FDR estima-
tion, tending towards false negatives, whereas RADmeth
increases its false positive rate, and DSS-general is highly
consistent across the domain (Figure 3E). Both methylation
shift and sample size have very little effect on FDR control
patterns (Supplementary Figure S1B and C). The adjunct
simulation assessing performance as a function of methy-
lation fraction shows also shows limma maintaining a low
and consistent FDR across the entire domain (Figure 3F),
in contrast to the other methods whose FDR is influenced
by the extremities of the domain to a far greater degree.

Computational time: DML calling

It is clear that limma outperforms other DML callers both
in terms of predictive performance and computational time.
Calculating P-values for 100 000 CpG sites, limma was
fastest for every single simulation, taking 10.39 s on av-
erage (Figure 4) in serial time. The next fastest was DSS-
general with 1 min 50 s, then edgeR with 12 min 28 s, beta-
binomial regression ≈7 h and RADmeth ≈11 h. The only
simulated variable with an appreciable effect on the CPU
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Figure 3. (A) Q–Q plot of P-values generated by five DML detection strategies for 99 000 non-DM CpG sites; (B) P-value histogram from the same set
of P-values (leftmost black bar truncated). Method-wise proportion of P-values <0.05 for non-DM CpGs by (C) coverage, (D) � and (E) covariate size
for the entire set of 3360 simulations. Dashed line at 0.05 represents significance at this level. (F) FDR of the five DML detection methods as a function of
mean methylation fraction of the control group. Solid lines are cubic smoothed splines across the domain.
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Figure 4. Serial CPU time taken by the five candidate DML callers for all 3360 simulations as a function of sample size.

Figure 5. (A) Predictive performance of various DMR callers on simulated WGBS data for various coverage values. (B) Serial CPU time (unless otherwise
specified) required by each caller for the non-depleted (28×) dataset.

time needed was sample size, whose increase penalized the
candidate methods at markedly different rates. CPU time
as a function of the other four variables can be viewed in
Supplementary Figure S2.

DMR detection

DMR caller benchmarking was performed on four strate-
gies described in the Methods section. For all coverage
values tested, DMRcate and RADmeth are the two best
predictive strategies, with <0.01 AUC difference between
them in each case (Figure 5 A). DSS and dmrseq fare less
well, with the screening threshold value cutoff having a
marked effect on dmrseq’s DMR detection ability. Despite
a simulated methylation shift of 0.2 for all DMRs, a pro-
gressive decrease of cutoff below this value seems to al-
low more DMRs to be called as true positive by dmrseq,
mitigating the need for large sections of the ROC to be im-
puted (Supplementary Figure S3A). A recapitulation of the
data in Figure 5A, grouped by method, can be viewed in
Supplementary Figure S3B.

As extra confirmation for the default settings of DMR-
cate, we also benchmarked various kernel sizes (controlled
by the value of parameter C in the call to dmrcate()) to
determine whether the optimal size for WGBS data differs
to that of Illumina arrays (30) on the same simulations. En-

couragingly, and perhaps surprisingly, we found that the de-
fault kernel size (500 bp = 1 s.d. of kernel support, i.e. C =
2 and � = 1000) is optimal (Supplementary Figure S3C and
S3D), suggesting that this width reflects a spatial correla-
tion of DNA methylation consistent with underlying biol-
ogy, rather than it necessarily being an artefact of the mea-
suring platform.

Computational time: DMR calling

We observed large differences in computational time be-
tween DMR callers from these simulations. The CPU time
for the non-depleted simulation is shown in Figure 5B. CPU
times are reported as the entire time taken for the set of rou-
tines needed to call DMRs from the CpG-wise input of C
and T counts; in other words the DML calling routine (if ap-
plicable) is included in the total time. Serial time is reported
except for dmrseq, where the recommended use of four CPU
cores was specified. DMRcate is clearly the fastest DMR
caller, with DMRs able to be called from a set of complete
human methylomes in serial under one hour. dmrseq’s per-
formance improves as cutoff increases, but as described
earlier this comes at the expense of predictive power. De-
spite RADmeth’s excellent predictive capability at calling
DMRs, they are called very slowly; this time is almost en-
tirely taken up by the DML calling step. This step can be
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easily parallelized, but the user would then need over 300
cores to match DMRcate’s serial CPU time.

Minimum required coverage

We observe a non-linear relationship between WGBS cover-
age and predictive performance for both DMLs and DMRs
(Figures 2F, 5A, Supplementary Figure S3B). Intuitively,
the minimum coverage needed to detect DM depends on
the size of the methylation shift, but for a subtle shift such
as 0.2, no plateau is observed. Gains are certainly made in-
creasing the coverage from the lower end of the domain, but
the relative increase in terms of DMR detection begins to
flatten above 15×. Counter-intuitively, the predictive per-
formance of dmrseq worsens as the coverage is increased,
which is likely the result of decreased specificity.

Functional enrichment of DMRs

The biological relevance of DMRs called by the four can-
didate DMR callers was validated by comparing germinal
center B cells to normal memory B cells using correspon-
dent BLUEPRINT samples (Supplementary Tables S3 and
S5). Genes activated by known regulatory regions overlap-
ping these DMRs are enriched for terms consonant with
the underlying biology. For example, the 2nd most signifi-
cant genome-wide DMR called by DMRcate is positioned
directly over the LMO2 promoter (Figure 6A), which is a
known germinal center marker (39). The target MSigDB
immunologic ontology terms GC VS MEMORY BCELL DN
and GC VS MEMORY BCELL UP were both called as signifi-
cant (FDR q-value <0.05) by all four candidate methods,
except GC VS MEMORY BCELL UP by RADmeth which
only marginally fell below significance. Dmrseq called both
these terms with the most significant q-value (Figure 6B).
However, dmrseq is also the outlier when the total number
of terms called is taken into account (Figure 6C), uniquely
calling 134 off-target terms as significantly enriched. This is
likely because dmrseq’s default settings generally call longer
DMRs, but more broadly this indicates a tradeoff between
sensitivity and specificity inherent in functional enrichment
tests.

Validation of DMRcate DMRs via matched RNA-Seq
samples was achieved by comparing mantle cell lymphoma
(MCL) to chronic lymphocytic leukaemia (CLL) using cor-
respondent BLUEPRINT samples (Supplementary Table
S4). A hallmark feature and driver mutation in MCL tu-
mour cells is a translocation event resulting in the over-
expression of CCND1 (40). DMRcate identified the top
DMR between MCL and CLL as the hypomethylation of
the CCND1 locus in MCL samples (Figure 6D, Supple-
mentary Table S6). Concurrently, CCND1 was confirmed
to be the most significantly upregulated gene for the same
comparison for matched RNA-Seq data (Figure 6E, Sup-
plementary Table S7). A possible explanation for this up-
regulation is that the translocation interferes with regular
epigenetic silencing of CCND1. We extended this hypoth-
esis to the full set of DMRs called, integrating the methy-
lation data with the gene expression data by plotting the
corresponding gene expression fold changes (connected via
DMR overlap with GeneHancer Double Elite regulatory

regions) against the methylation shift (Figure 6F). All dif-
ferentially expressed genes (FDR < 0.05) appear in the sec-
ond and fourth quadrants of this plot, indicating that DNA
methylation may play a pivotal role as a mediator of distin-
guishing transcriptional profiles for these two tumour types
via silencing of promoter and enhancer regions.

DISCUSSION

The superior predictive performance of DMR callers DM-
Rcate and RADmeth suggest that DMR detection is best
served by a two-step heuristic favoured by both methods:
first generate test statistics for individual CpG site data over
the entire corpus of measured CpGs, and then aggregate
these results to form DMRs with appropriate FDR con-
trols as a final step. This contrasts with methods such as
dmrseq and bumphunter (41) where the aggregation step is
performed further upstream, followed by significance test-
ing using permutation. However, the risk with upstream ag-
gregation and candidate locus definition is that it may act
as a functional localizer, thus incurring a selection bias or
‘double dipping’, since thresholding is applied to the candi-
date regions twice. This issue has been discussed at length
with regards to the detection of localized hotspots from
functional MRI studies (14,42). In the context of DM, the
CpG site is equivalent to a voxel and the DMR equivalent
to a cluster of voxels. The suggested remedy is, if possible, to
perform exhaustive inference over the complete domain be-
fore defining regions of interest (ROI), which is the strategy
implemented by DMRcate, RADmeth and DSS.

It follows that the performance of the DMR caller hinges
substantially on the predictive performance of the initial in-
ference, which has been demonstrated by our benchmarking
of DML callers. The superior performance of our novel ap-
plication of limma is likely down to three characteristics: (i)
the explicit normalization of WGBS counts to library size,
(ii) the lowess mean-variance fit via voom and (iii) empirical
Bayes variance shrinkage. By comparison, the edgeR imple-
mentation we have tested does not possess characteristic (ii),
although it is possible within alternative edgeR workflows
to estimate a non-parametric mean-variance trend analo-
gous to limma. RADmeth has no normalization step, and
only a common dispersion parameter coded into its beta-
binomial regression rather than a trended dispersion like
in edgeR and limma, both of which may explain its ten-
dency to give false positives under higher coverage scenar-
ios. DSS-general takes a different approach altogether, us-
ing an arcsine transformation of methylation fractions and
estimation of the dispersion parameter using Pearson’s � 2

under beta-binomial assumptions. This works well with re-
spect to FDR control and is superior to limma in the case
of low (<10×) coverage scenarios. It is for this reason that
we allow the user the option of using DSS-general as an
alternative to limma to generate per-CpG test statistics for
DMRcate. VGAM’s beta-binomial regression applies none
of the aforementioned strategies and likely suffers as a re-
sult.

The decreasing variance V of the beta-binomial the dis-
tribution as the mean � tends towards the methylation frac-
tion extremes of 0 and 1 (Figure 1C) influences the perfor-
mance of each DML caller. All methods improve their per-
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Figure 6. (A) A DMR (generated by the DMR.plot() function in DMRcate) hypomethylated in germinal center B cells compared to normal memory
B cells over the LMO2 promoter region. (B) Significance from functional enrichment tests from the four candidate DMR callers of target MSigDB
immunologic terms GC VS MEMORY BCELL UP and GC VS MEMORY BCELL DN when comparing germinal center B cells to normal memory B cells. (C)
Venn diagram describing overlap of significant (FDR q-value < 0.05) immunologic MSigDB immunologic terms. (D) A DMR hypomethylated in MCL
tumour cells compared to CLL tumour cells over the CCND1 locus. (E) Normalized gene expression values for CCND1 in these same samples. (F)
Integration of DMRs and gene expression values via overlapping GeneHancer Double Elite regulatory regions. DEGs are shown in red and in lieu of dots.
Dotted line is a cubic smoothed spline across the domain.

formance the closer � gets to 0 or 1 (Figure 2G), which
is unsurprising given the decrease in dispersion. Less ex-
pected is their handing of the FDR. False discoveries from
edgeR and beta-binomial regression are increased towards
these extremes, while they are decreased under RADmeth
and DSS-general. Only our novel application of limma ap-
pears to be invariant to �. The ramification of this is that
DMRcate, with this application of limma calling DMLs as
a primary step, is able to standardize the FDR across the
methylation domain without preferentially calling DMRs
towards or away from its extremes.

The aggregation strategies and FDR control are quite dif-
ferent for each DMR caller. DMRcate employs dynamic
thresholding where the total number of constituent CpGs
for all DMRs is indexed by the number of significant in-
dividual CpG sites at the specified FDR. This approach is
inherently conservative and prioritizes the minimization of
Type I errors but can be easily adjusted by relaxing the ini-
tial FDR at which significantly DM CpGs are called. DSS’
approach is relatively simple, merging proximal DMLs and
defining DMRs by providing a lower bound on the per-
centage of CpG sites that are DMLs. RADmeth’s aggre-

gation is more sophisticated in that it adjusts the per-CpG
P-values based on how they correlate with neighbours us-
ing a Stouffer–Liptak test, which is the approach of comb-
p (43). The result in this study squares with our previ-
ous benchmarking of comb-p against DMRcate (30) where
we found both methods had comparable predictive perfor-
mance. However, we still recommend using DMRcate over
RADmeth for a number of reasons. Firstly, the CPU re-
source required for RADmeth is over two orders of magni-
tude greater than DMRcate (Figure 5B). Secondly, RAD-
meth’s DMRs may be more permissively defined due to the
p-value inflation of the DML caller (Figure 3A, B and F).
Lastly, DMRcate is implemented in R and maintained on
Bioconductor, which allows seamless integration with other
genomic workflows, and contains additional functionality
such as visualization (Figure 6A and D).

In addition, DMRcate can model any factorial or non-
factorial design able to be parsed by limma. This gives it an
advantage over other DMR callers in that it can test more
complex experimental designs, such as those with post-hoc
contrasts and/or interaction effects. Table 1 describes the
ability of the DMR callers we have tested to perform in-
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Table 1. Factorial design capabilities of the four DMR callers tested

DMR caller experimental design capabilities

DMRcate DSS RADmeth dmrseq

Paired design � � � �
Covariates � � � �
Continuous response � � � �
Post-hoc contrasts � � ✗ ✗
Interaction effects � � � ✗

ference over various experimental setups. DMRcate, along
with DSS, is the most versatile for model specification. This,
combined with its superior predictive performance to DSS
and dmrseq, aforementioned advantages over RADmeth
while matching its predictive performance, and other as-
pects such as accessibility and DMR visualization, repre-
sents a major improvement on existing methodology.

In terms of answering the practical question of the mini-
mum amount of coverage needed to call DMRs, we do not
see an obvious plateau when absolute methylation shifts are
subtle (0.2). This is in line with previous work validating
the reproducibility of WGBS measurements as a function of
coverage (44). For detection of absolute differences >0.3, a
mean whole genome coverage of 15× is likely sufficient, and
above this depth detection gains tend to gradually diminish.

Our simulated dataset is unique in that it is begotten from
a systematic catalogue of sampled DNA methylation vari-
ation amongst human cells, with identical scale to the hu-
man genome and high granularity at CpG-level resolution.
This high level of evocation allows for a realistic appraisal
of tools for detecting DNA methylation. One limitation of
our approach is that the 206 BLUEPRINT samples used
are highly enriched for haematopoietic lineages, and so the
results herein may not be reproducible on tissues that differ
substantially from blood in their methylation profile. How-
ever, our suite of simulations is diversified as a result of vary-
ing � from our parameterization of the beta distribution,
whose extensions may bear similarities to other tissues.

CONCLUSION

The benchmarking and comparisons contained herein rep-
resent a desire to motivate discussion about how we de-
fine genomic phenomena. We have demonstrated that the
preferable strategy for defining DMRs is to construct them
by aggregating the differential signal from individual CpG
sites, leading to a conception of DMRs as a composite ge-
nomic entity rather than one that is self-contained and im-
mutable. It is with this in mind that we present DMRcate
as a flexible, accurate and accessible DMR caller, and our
benchmarking finds it at or exceeding competing best prac-
tice.
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The datasets analysed in this study are available in
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