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Abstract 

G protein-coupled receptors are involved in many biological processes, relaying the extracellular signal inside the 
cell. Signaling is regulated by the interactions between receptors and their ligands, it can be stimulated by agonists, 
or inhibited by antagonists or inverse agonists. The development of a new drug targeting a member of this fam-
ily requires to take into account the pharmacological profile of the designed ligands in order to elicit the desired 
response. The structure-based virtual screening of chemical libraries may prioritize a specific class of ligands by 
combining docking results and ligand binding information provided by crystallographic structures. The performance 
of the method depends on the relevance of the structural data, in particular the conformation of the targeted site, 
the binding mode of the reference ligand, and the approach used to compare the interactions formed by the docked 
ligand with those formed by the reference ligand in the crystallographic structure. Here, we propose a new method 
based on the conformational dynamics of a single protein–ligand reference complex to improve the biased selection 
of ligands with specific pharmacological properties in a structure-based virtual screening exercise. Interactions pat-
terns between a reference agonist and the receptor, here exemplified on the β2 adrenergic receptor, were extracted 
from molecular dynamics simulations of the agonist/receptor complex and encoded in graphs used to train a one-
class machine learning classifier. Different conditions were tested: low to high affinity agonists, varying simulation 
duration, considering or ignoring hydrophobic contacts, and tuning of the classifier parametrization. The best models 
applied to post-process raw data from retrospective virtual screening obtained by docking of test libraries effectively 
filtered out irrelevant poses, discarding inactive and non-agonist ligands while identifying agonists. Taken together, 
our results suggest that consistency of the binding mode during the simulation is a key to the success of the method.
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Introduction
G protein-coupled receptors (GPCRs) constitute the 
largest family of membrane proteins in humans. GPCRs 
mediate the cellular response to outside stimuli by initiat-
ing specific signaling transduction pathways [1]. As key 
player in many physiological processes, GPCRs have been 
largely exploited as drug targets [2]. The pharmacological 

profile of a GPCR ligand, whether endogenous or xenobi-
otic, is characterized according to the response it induces 
in cell [3]: agonist triggers signaling, unlike antagonist 
and inverse agonist (henceforth referred to as antago-
nist too, for simplicity). The computer-assisted discov-
ery of GPCR ligands for therapeutic purposes therefore 
requires the development of predictive models of the 
pharmacological profile. Machine learning well suits 
this purpose by extracting complex relationship from 
experimental data and classification algorithms are typi-
cally adapted to distinguish agonists from antagonists [4, 
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5]. However, their application is limited to well-studied 
protein targets with many known agonists and antago-
nists. Methods based on the three-dimensional struc-
ture of the protein–ligand complex can circumvent this 
limitation. Since the resolution of the first structure of a 
GPCR bound to an antagonist in 2007 [6] and coupled 
to G-protein in 2011 [7], the continuous elucidation of 
new protein–ligand structures has led to a golden age for 
structure based drug design projects [8–10]. The abun-
dant structural information also highlighted the GPCR’s 
structural plasticity. GPCRs adopt a wide spectrum of 
conformational states, ranging from inactive to active 
ones.

In the search for novel and original ligands of GPCRs, 
ligand/protein docking accounts for the most common 
tool for virtual screening of chemical libraries [11]. Dock-
ing predicts the binding mode and scores the solutions. 
The score can be interpreted in terms of ligand binding, 
but not ligand function.

While agonist ligands are known to have a higher bind-
ing affinity for the active state, and antagonists for the 
inactive state[12], the structures of the binding pocket in 
both states tend to be very similar [11]. Agonist ligands 
have thus been identified by virtual screening using an 
inactive state of the receptor [13–17] and antagonists 
using an active state [18]. The analysis of the binding 
mode, by comparison with reference crystallographic 
structures, better accounts for the pharmacophoric spec-
ificity of agonists and antagonists [12, 19]. For example 
Kooistra et  al. [12] investigated the use of experimental 
reference binding modes to functionally bias the screen-
ing against the β-adrenoreceptor family. Their retro-
spective analysis showed that it is possible to improve 
the retrieval of agonist or antagonist ligands from a test 
library containing active molecules and decoys by assess-
ing the similarity between the binding mode generated 
by docking with the crystallographic binding mode, 
here by the comparison of interaction fingerprints (IFP). 
By considering the enrichment factor at 1% false posi-
tive rate, a reference agonist IFP increased the propor-
tion of agonists among the true positives, and similarly, 
a reference antagonist IFP increased the proportion of 
antagonists. Despite the overall improvement different 
reference ligands, having different IFPs, yielded differ-
ent hit lists. Even the binding mode of the same ligand 
in multiple crystallographic structures can vary [12, 20]. 
The changes in binding mode can be explained by the 
inherent flexibility of GPCRs [3] or by different condi-
tions of crystallization (e.g., thermostabilizing mutations, 
coupled nanobodies) [21]. Selecting a reference structure 
containing the relevant interaction patterns plays a key 
role in virtual screening [12]. The best reference can be 
identified by retrospective virtual screening experiments, 

yet such approach requires data from known agonists, 
antagonists, and inactive molecules [22].

The β2 adrenergic receptor (ADRB2) has been the 
first receptor crystalized bound to a ligand and coupled 
to G-protein. At the time of writing the structure of the 
receptor has been elucidated by thirty-seven crystallo-
graphic structures. ADRB2 has been thoroughly studied 
due to the crucial role of both its agonist and antago-
nists in drug discovery. The receptor is present mostly in 
lung tissues, where its signaling regulates smooth muscle 
relaxation and bronchodilation. Agonists are used to treat 
respiratory disorders[23] such as asthma[24] and chronic 
obstructive pulmonary disease (COPD)[25]. Antagonists, 
more commonly known as β-blockers, are used to treat 
cardiovascular diseases by targeting the β1 adrenergic 
receptors in heart tissues. The action of β-blockers on 
ADRB2 is mostly linked to undesirable side-effects [26]. 
Thanks to the large amount of information regarding 
both its structure and pharmacology, ADRB2 has been 
used in computational works as a model system [12, 22].

Key interactions for GPCR activation are inferred from 
the analysis of experimental structures of the recep-
tor bound to different agonists, provided experimental 
structures are available for several agonist/GPCR com-
plexes [27].Considering a single agonist-GPCR struc-
ture, molecular dynamics (MD) calculations can evaluate 
intermolecular interactions, based on the principle that 
the key interactions are better conserved during simula-
tion [27, 28]. Here, we consider a single agonist-GPCR 
structure and propose to combine MD simulation and 
machine learning to bias the search towards agonist 
ligands by virtual screening of chemical libraries using 
docking. The proof of concept was performed on ADRB2, 
for which we constructed two suitable test sets: A library 
containing ADRB2-targeting drugs or clinical candidates 
with a well characterized pharmacological profile, and a 
library composed of virtual hits selected by docking into 
ADRB2 orthosteric site and validated/invalidated for 
agonist activity [29]. A one class support vector machine 
(OCSVM) [30] model was trained on the ADRB2-ago-
nist interactions extracted from a single MD trajectory 
and represented by graphs, allowing a binding mode 
definition based on interactions conservation. The clas-
sifier was used to filter ligand–ADRB2 docking generated 
poses. The ability of each classifier to distinguish between 
agonist and not agonist was determined considering the 
fraction of true agonists between the selected molecules 
(precision) and the fraction of true agonists selected from 
the test dataset (recall). The effect of simulation length, 
interaction types, combinations of multiple references, 
and training method were taken into consideration by 
training multiple classifiers, with different combinations 
of parameters. The results of the analysis can be used as 
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guidelines for the training of new models targeting differ-
ent GPCRs. The proposed methodology can be applied 
to find new agonists for targets with a limited number of 
known reference ligands.

Results and discussion
Introduction
GPCRs classically mediate responses to agonist binding 
by coupling to effector, typically a G-protein. The activa-
tion mechanism and the resulting signaling are intimately 
connected to the conformation of the receptor, which 
itself is stabilized or induced by the interactions formed 
with the agonist. The process is well characterized for 
ABDR2 activation by the endogenous agonists epineph-
rine and norepinephrine. For example, hydrogen bond-
ing to Ser207 has been proposed as key determinant of 
agonist binding [31]. In the present work, we consider 
the relationships between structure and function to be 
unknown and assess whether a machine learning model 
trained on the structural information of a single ligand 
is able to determine key agonist-related interactions, 
assuming that the patterns of interactions that are the 
most conserved during MD simulation of the receptor-
agonist complex are also the most relevant for signaling. 
The machine learning model is applied to assess the com-
patibility of the interaction patterns predicted by docking 
for any ligand of the receptor with the common defini-
tion determined from the training data on the reference 
agonist. A ligand evaluated positively thus potentially 
exhibits a mode of binding similar to that of the reference 
agonist and is supposed to trigger the same pharmaco-
logical response.

Model development
Reference agonists and MD simulations
Three different agonists were selected for generating the 
training sets from published or publicly available molecu-
lar dynamics simulations [32, 33]: Epinephrine, hydroxy-
benzyl isoproterenol (HBI) and BI167107 (Fig.  1A). 
Epinephrine is a low affinity agonist of ABDR2 [34]. As 
a member of the endogenous neurotransmitters of cat-
echolamine family, it contains the 1,2-dihydroxyben-
zene group (i.e., catechol) and a side-chain amine. The 
side-chain amine is part of a 2-aminoethanol group 
common to ADRB2 agonists. HBI is a high potency 

binder of ADRB2 [34]. It is a superstructure of epineph-
rine that features a phenol group at the end of the side-
chain. BI167107 is an ultra-high affinity binder of ADRB2 
[34]. Its structure shares with epinephrine and HBI the 
2-aminoethanol group, but not the catechol which is 
replaced by a different functional group, with one of the 
two hydroxyl groups replaced by a 3-morpholinone like 
moiety.

The crystallographic structures of ADBR2 suggest, for 
the three agonists, a strong anchoring of their 2-ami-
noethanol group by hydrogen bonding to residues in 
TM2 (Asp113) and TM7 (Asn312), as well as an interac-
tion between the hydroxyl of catechol, or its substitute 
in BI167107, with a serine of TM5 (Fig. 1A) [7, 34]. The 
interactions formed between epinephrine and ADRB2 
are not strictly conserved during the MD simulation 
(Fig.  1B and Additional file  1: Fig. S1). Moreover, new 
interactions are observed, including a hydrogen bond 
with Ser207. Binding mode variations are also marked 
in the HBI-ADRB2 MD trajectory, involving additional 
receptor residues in the interactions formed with the ago-
nist. While epinephrine-ADBR2 and HBI-ADRB2 MD 
trajectories both describe the active state of the receptor, 
the MD trajectory of BI167107-ADRB2 [33] simulates 
the transition of the receptor from the active state to the 
inactive state, and therefore was split to distinguish the 
binding of BI167107 to the active state (BI167107-A) and 
to the inactive state (BI167107-I), thus giving two sepa-
rated datasets. Importantly, hydrogen bonding to Ser207 
is lost in BI167107-I. The shift from the active to the inac-
tive state was observed despite the receptor being bound 
to BI167107, an agonist. The absence of an intracellular 
binding partner, which stabilizes the active state con-
formation, explains the transition[35]. The fully inactive 
state of the receptor was observed only after microsec-
onds of simulation, a longer timescale than the one used 
in the other selected simulations (Table  1). The study 
of BI167107 bound to both the active and inactive state 
of the receptor was used to investigate the differences 
between models built using structural information close 
and far from the active state crystallographic structure.

A total of four training sets were used in this work. The 
Table 1 characterises the MD trajectories with the num-
ber of simulations, the simulations length, and the sam-
pling frequency.

(See figure on next page.)
Fig. 1  A Structure of the three reference agonists showing the hydrogen bonds observed in the crystallographic structures. The ADRB2 residues 
are identified by their sequence number and by Ballesteros-Weinstein notation. B IFPs with hydrogen bonds formed between the agonist and 
ABDR2 in the trajectory and crystallographic structures. HBA indicates interactions with the protein acting as the hydrogen bond acceptor, HBD 
indicates interactions with the protein acting as the hydrogen bond donor. Crystallographic structure IFPs are indicated by their PDBID. C Average 
distribution of the interaction pseudo-atoms types during the MD trajectories. HB hydrogen bonds, ION ionic interactions, HYD hydrophobic 
contacts, ARO pi-pi interactions. The lighter-coloured and legend-coloured parts of HYD bars corresponds to the default (Hyd) and stricter (Newhyd) 
definition of hydrophobic contacts, respectively
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Fig. 1  (See legend on previous page.)
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Interaction graph
For each of the four reference trajectories (epinephrine, 
HBI, BI167107-A and BI167107-I), the following inter-
actions were detected between ADRB2 and the refer-
ence agonist using IChem [36]: Hydrogen bonds, ionic 
bonds, aromatic stacking and hydrophobic contacts. 
Each interaction is represented by a triplet of interac-
tions pseudo-atoms (IPA), one placed on each of the 
two atoms involved in the interaction (ligand IPA and 
protein IPA), and a third one in the middle point of the 
segment they define (centre IPA). More details about 
IChem detection and encoding of interactions are given 
in the "Materials and methods" section.

The average number of IPAs is shown on Fig. 1C. Aro-
matic interactions are rare in the four reference trajec-
tories. The other polar interactions, hydrogen and ionic 
bonds, represents together ca 13 (for epinephrine) to ca 
25 IPAs (for HBI) per interactions pattern. The number 
of IPAs corresponding to hydrophobic contacts is equal 
to or greater than the number of IPAs corresponding 
to polar interactions, except in the epinephrine trajec-
tory. Since the description of hydrophobic contacts 
does not rely on a consensual physical model, unlike 
that of polar interactions, we tested three conditions: 
the two IChem definitions of hydrophobic contacts and 
the exclusion of hydrophobic contacts. Hence, for each 
of the four reference trajectories, three sets of IPAs 
were considered: all interactions with default defini-
tion of hydrophobic contacts (Hyd), all interaction with 
stricter definition of hydrophobic contacts (Newhyd), 
and polar interactions only (Polar).

Interaction graphs (IGs) were generated from the 
detected interactions, with the IPAs representing the 
nodes. To include the largest number of topological 
information all nodes were connected to each other, 
forming a complete graph. The nodes were labelled 
according to the IChem interaction type and the rep-
resented position (protein, ligand, centre). The edges 
were described by a weighted adjacency matrix, the 
weights being equal to the Euclidean distances between 
the IPAs rounded to the nearest Å. The distance 
between two overlapping IPAs was set to 0.1, to estab-
lish an edge between the nodes.

Graph similarity assessment is a key problem in graph 
theory, which is why different types of graph kernels 
have been developed [37]. In this work graph similar-
ity was evaluated using the shortest path kernel [38]. 
Graphs similarity is based on the common occurrence in 
the graphs of identical shortest paths between two nodes 
with the same label. In practice, a graph was converted 
into a fingerprint containing the frequency of each short-
est path. Two fingerprints were compared by calculating 
the cosine similarity and the vector dot product, yielding 
a normalized and a non-normalized (NN) score, respec-
tively. Thus, for each of the three interaction definitions 
(Hyd, NewHyd and Polar), both normalized and non-
normalized similarity scores were calculated.

Model training
Each MD trajectory contains information on a single 
class. To process data from a single class it is necessary to 
use algorithms built to handle limited information. One 
class classification or outlier detection [39, 40] is a fam-
ily of semi-supervised classification algorithms whose 
focus is not to determine the boundary between two 
classes, but it is to learn a common definition describing 
the training instances. Such algorithms have already been 
proposed in ligand-based drug discovery [41], detection 
of druggable protein pockets [42], and in other fields 
of chemistry [43] characterized by a low availability of 
experimental data. Multiple outlier detection algorithms 
are available based on different well known machine 
learning models: OCSVM[30], isolation forest[44], 
k-nearest neighbours (KNN).

The OCSVM [30] algorithm was used to find a crite-
rion to define conditions for the inclusion of a new graph 
into the ensemble of interactions observed during the 
reference trajectory. OCSVM, like other support vector 
machine-based classification methods, defines a class 
using a support vector (SV). In the case of OCSVM the 
SV represents the hyperplane with the maximum dis-
tance from the origin in the transformed feature space.

Training the OCSVM algorithm requires the user to 
set the hyperparameter ν to a value between 0 and 1. 
Two key quantities correspond to ν: The upper bound 
for the fraction of training instances classified as outliers 

Table 1  MD simulations used for the training dataset. The simulation length refers to a single replica and not the entire trajectory

Reference trajectory Number of replicas Number of frames Simulation length (ns) Interval between 
writing structures 
(ns)

Epinephrine 3 2500 500 0.200

HBI 3 2500 500 0.200

BI167107-A 1 1944 350 0.180

BI167107-I 1 7500 1350 0.180
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during training, and the lower bound for the fraction of 
instances defining the SV. Since the effective tuning of 
the ν value is not possible in  the absence of an external 
dataset, we followed heuristic approaches focusing on 
removing outliers or estimating the percentage of outliers 
in the training set.

Outliers in the training set were identified using the 
average shortest path kernel similarity value to the KNN, 
with K corresponding to 3% of the total number of train-
ing instances [45]. The first approach called quick model 
selection 2 (QMS2) [46], removes from the training set 
both outliers and instances on the boundaries of the 
distribution. Since the new training set should contain 
only true inliers the fraction of classification errors dur-
ing training (ν) is set to a small value of 0.01. The second 
approach uses the median absolute deviation (MAD) to 
determine the number of outliers in the training set. The 
upper bound to the fraction of training errors is set to be 
equal to the number of instances with a distance from the 
median KNN similarity larger than three times the MAD 
divided by the total number of instances in the training 
set.

Models using normalized kernels were trained using 
both QMS2 and MAD, while the models based on NN 
scores were trained using QMS2 only. In short, for each 
of the four reference trajectories (epinephrine, HBI, 
BI167107-A and BI167107-I), nine models were con-
structed, combining three different sets of interactions 
(HYD or NEWHYD or POLAR) and three parametriza-
tions (QSM2 or MAD or NN).

Method validation
Introduction
The thirty-six trained OCSVM models were used to 
screen two small chemical libraries to evaluate their 
ability in recognizing agonist ligands. One library con-
tains known agonists and antagonists, while the second 
contains experimentally validated agonists and inactive 
molecules.

For each molecule in the libraries, the docking into 
the three crystallographic structures of ABDR2 issued 
ten poses each. The calculations were repeated for up 
to nine representative structures of the receptor agonist 
binding site. Site definition and clustering of epineph-
rine-ADRB2, HBI-ADRB2, and BI167017-ADRB trajec-
tories are detailed in Materials and Methods. Each model 
was used for post-processing only on the docking poses 
generated using a protein structure extracted from the 
respective training set. If the docking calculations gener-
ated at least one binding mode selected by an OCSVM 
model, then the molecule is classified as an agonist. 
Therefore, the performances discussed below apply to the 
entire virtual screening process, not only the classifiers.

Validation with agonist/antagonist dataset
The dataset contains 19 agonists and 17 antagonists 
extracted from the literature (Additional file 1:Table S1). 
All 36 molecules have been largely studied and their 
pharmacology is well known. The dataset was also 
curated to contain compounds with different chemical 
structures. A total of 24 different scaffolds are repre-
sented in the dataset, four scaffolds are shared by mul-
tiple compounds. Benzene is the only common scaffold 
between agonists and antagonists. All the molecules pre-
sent the 2-ethanolamine group, except the agonist dob-
utamine. The agonists all present a benzene ring with a 
functional group able to form hydrogen bonds, like the 
catechol group of epinephrine, except tulobuterol whose 
benzene ring is substituted with a chlorine atom.

The models performed differently depending on the 
definition of interactions, the normalization of the ker-
nel, and the trajectory used as reference (Fig.  2 and 
Additional file 1:Tables S3, S4). However, it is possible to 
observe some general trends: Models based on epineph-
rine are all inefficient, predicting most to all molecules as 
agonists. HBI-based models correctly identified most of 
the true agonists and misclassified a limited number of 
antagonists. Training with the BI167107-A dataset gener-
ated models with a high precision, but with a tendency to 
discard many true agonists. Including hydrophobic con-
tacts in the IGs was detrimental to NN models, causing 
all ligands to be classified as agonists. Likewise, the per-
formances of models based on HBI and BI167107 overall 
improved if only polar interactions were included in the 
IGs.

Fig. 2  Average performance of OCSVM models obtained on the 
agonist/antagonist dataset from docking using the representative 
structures
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The four best models for each reference trajectory are 
presented on Table 2. They were selected according to the 
average F1 measure calculated from docking poses using 
each representative structure, after discarding models 
which selected all ligands as agonists. For each model, the 
average performance over a set of representative confor-
mations, selected from the respective training set, gives 
an estimate of the classifier behaviour. The four best HBI-
based models retrieved three quarters or more of the 
agonists, while showing very few false positives. The best 
BI167107-based models discriminated between agonists 
and antagonists, provided they were trained from the 
portion of the trajectory simulating the active state of the 
receptor. BI167107-I-based models indeed incorrectly 
predicted many antagonists as agonists. The decrease 
of precision between models based on BI167107-A and 
BI167107-I is consistent with the vanishing of the key 
interaction with Ser207 upon deactivation of the receptor 
during the BI167107-ADRB2 simulation.

For epinephrine and HBI reference trajectories, the 
results were comparable whether the considered docking 
poses use the crystallographic structure or a representa-
tive structure, on average. Similar findings were made 
for BI167107-A models based on polar interactions. The 
BI167107-A models including hydrophobic contacts did 
not select any molecule. An inappropriate conformation 
of the hydrophobic sub-pockets was assumed based on 
the two following evidences: The hydrophobic contacts 

between BI167107 and ADBR2 in the crystallographic 
structure and during the MD simulation differ (Addi-
tional file 1: Fig. S1); the binding site underwent signifi-
cant structural changes during the simulation (Additional 
file 1: Fig. S2), with an average root mean squared devia-
tion (RMSD) from the initial crystallographic structure 
above 3Å while the average pairwise RMSD between the 
frames is below 2.5Å (Additional file 1: Fig. S3, S4). For 
the sake of comparison, the RMSD values for epineph-
rine-ADBR2 and HBI-ADBR2 complexes are below 2.5Å 
(Additional file 1: Fig. S5, S6).

Since the performance of a model depends on the 
receptor’s structure, we also considered ensemble dock-
ing, by merging the docking poses obtained using all 
representative structures of the reference trajectory 
(Table 2). Overall, using all the representative structures 
together produced F1-measures comparable to or bet-
ter than the average obtained by considering the repre-
sentative structures separately. Increasing the number of 
evaluated poses improved recall, yet often at the expense 
of precision. The best improvement concerns BI167107-
A high precision models, which showed a significant 
increase in recall (e.g. from 0.57 to 0.84 for the Polar-NN 
model) with no loss of precision (e.g., 1.00 for the Polar-
NN model). Models characterized by a looser definition 
of agonist binding mode, such as HBI-based models and 
to a lesser extent BI167107-I, tend to include a larger 
number of false positives.

Table 2  Performance of the best four models obtained for each reference trajectory on the agonist/antagonist dataset from docking 
data obtained using the representative structures or the crystallographic structure

Size refers to the fraction of molecules classified as agonists. Average refers to the mean of the values obtained for the representative structures considered 
individually. Ensemble refers to the value obtained by merging data from all representative structures. Models discarding all docking poses are indicated as –

Reference trajectory Model Average Crystallographic Ensemble

Precision Recall Size Precision Recall Size Precision Recall Size

Epinephrine Hyd–MAD 0.61 0.90 28/36 0.62 0.95 29/36 0.53 0.95 34/36

Hyd–QMS2 0.61 0.89 28/36 0.58 0.95 31/36 0.55 0.95 33/36

Newhyd–MAD 0.58 0.94 31/36 0.53 1.00 36/36 0.53 1.00 36/36

Newhyd–QMS2 0.60 0.94 30/36 0.54 1.00 35/36 0.53 1.00 36/36

HBI Polar–NN 0.87 0.82 18/36 0.94 0.79 16/36 0.73 1.00 26/36

Polar–MAD 0.81 0.86 20/36 1.00 0.74 14/36 0.68 1.00 28/36

Polar–QMS2 0.89 0.75 16/36 1.00 0.74 14/36 0.76 1.00 25/36

Newhyd–MAD 0.87 0.69 15/36 1.00 0.68 13/36 0.72 0.95 25/36

BI167107-A Polar–NN 1.00 0.57 11/36 1.00 0.89 17/36 1.00 0.84 16/36

Polar–MAD 1.00 0.40 8/36 1.00 0.26 5/36 1.00 0.74 14/36

Newhyd–QMS2 0.97 0.52 10/36 – 0.00 0/36 0.94 0.89 18/36

Newhyd–MAD 0.98 0.66 13/36 – 0.00 0/36 0.94 0.89 18/36

BI167107-I Polar–NN 0.78 0.95 23/36 0.79 1.00 24/36

Polar–QMS2 0.60 0.84 27/36 0.59 0.89 29/36

Polar–MAD 0.63 0.79 24/36 0.57 0.84 28/36

Newhyd–MAD 0.66 0.66 19/36 0.67 0.84 24/36
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Validation with agonist/inactive dataset
To test the ability of the OCSVM models in correctly 
identifying inactive molecules as non-agonist a dataset of 
experimentally validated true agonists and true inactive 

molecules was selected from the literature [29]. The 
library consists of ten agonists and 17 inactive molecules. 
All the 27 molecules are virtual hits of a structure-based 
screening of the ZINC12 library. They represent 17 dif-
ferent scaffolds, including 3 which are specific for ago-
nists and 14 are specific for inactive molecules. All active 
molecules and two inactive molecules contain the 2-ami-
noethanol group which is present in ADRB2 ligands and 
allows their anchoring to both TM3 and TM7. The ago-
nists share a second common characteristic: all but one 
contain a halogenated aromatic ring instead of the cat-
echol of epinephrine. The halogen atoms are assumed to 
interact with the subpocket formed by TM5, TM4, and 
TM3, for receptor activation upon agonist binding. With 
halogen interactions not being taken into account by 
IChem, the present dataset is highly challenging for the 
models. Overall, the performance of the models is worse 
on the agonist/inactive dataset than on the agonist/
antagonist dataset (Fig. 3 and Additional file 1: Tables S5, 
S6). Again, epinephrine-based models are not predictive, 
classifying all or nearly all molecules of the agonist/inac-
tive dataset as agonists.

The four best models for each reference trajectory are 
presented on Table 3. They were selected according to the 
average F1 measure calculated from docking poses using 
each representative structure, after discarding mod-
els which select all ligands as agonists. For each model, 
the average performance over a set of representative 

Fig. 3  Average performance of OCSVM models on the agonist/
inactive dataset from docking using the representative structures. 
Note that one Hyd and the three Polar models of BI167107-A are not 
visible since no molecules were predicted as active

Table 3  Performance of the four best models obtained for each reference trajectory on the active/inactive dataset from docking data 
obtained using the representative structures

Size refers to the fraction of molecules classified as agonists. Average refers to the mean of the values obtained for the representative structures considered 
individually. Ensemble refers to the value obtained by merging data from all representative structures

Reference trajectory Model Average Ensemble

Precision Recall Size Precision Recall Size

Epinephrine Polar–MAD 0.40 1.00 25/27 0.37 1.00 27/27

Hyd–QMS2 0.40 0.94 24/27 0.38 1.00 26/27

Polar–QMS2 0.40 1.00 25/27 0.37 1.00 27/27

Hyd–MAD 0.40 1.00 25/27

HBI Newhyd–QMS2 1.00 0.23 2/27 1.00 0.80 8/27

Newhyd–MAD 1.00 0.23 2/27 1.00 0.70 7/27

Hyd–NN 0.45 1.00 22/27 0.40 1.00 25/27

Newhyd–NN 0.40 1.00 25/27 0.38 1.00 26/27

BI167107-A Hyd–NN 0.56 0.72 13/27 0.56 1.00 18/27

Newhyd–NN 0.44 1.00 23/27 0.42 1.00 24/27

Newhyd–MAD 1.00 0.08 1/27 1.00 0.30 3/27

Newhyd–QMS2 1.00 0.05 1/27 1.00 0.20 2/27

BI167107-I Polar–NN 0.80 0.60 8/27 0.75 0.60 8/27

Newhyd–NN 0.58 0.70 12/27 0.62 0.80 13/27

Hyd–NN 0.58 0.70 12/27 0.62 0.80 13/27

Newhyd–MAD 0.79 0.55 7/27 0.78 0.70 9/27
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conformations, selected from the respective training set, 
gives an estimate of the classifier behaviour. The best 
HBI-based models retrieved on average a quarter of the 
agonists, yet they well classified the inactive molecules 
as non-agonists. The best BI16707-A models showed 
better recall, but at the expense of more false positives. 
For these two reference trajectories, models ignoring 
hydrophobic interactions missed even more agonists, 
likely due to the absence of any hydrogen bond to TM5 
(Ser203 and Ser207) as a consequence of replacing the 
aromatic hydrogen bond donor of the canonical ADRB2 
agonists with a halogen atom. However, these polar mod-
els successfully classified the inactive molecules as non-
agonists. The BI167107-I-based best models show the 
best statistics on the agonist/inactive dataset, although 
they performed worse than on the agonist/antagonist 
set. Since the BI167107-I training set structures do not 
include the hydrogen bond between the reference ago-
nist and ADRB2 Ser207, we can assume that the classi-
fier is less impacted by the unusual binding mode of the 
test agonists which likely involves a halogen-protein or 
fluorine-protein interaction. Taken together, the results 
suggest that polar interactions patterns allow the clas-
sification of non-agonists, yet that the interaction with 
serine residues in TM5, which constitute a key pharma-
cophore, must be correctly appreciated by the model to 
identify agonists.

As for the agonist/antagonist dataset the performance 
on the ensemble docking results was also considered. An 
important effect was observed for hydrophobic NN mod-
els, which under these conditions tend to select all mol-
ecules. By contrast, significant increase in recall with no 
loss in precision was observed for the best models based 
on HBI and BI167170-A. The better sampling of ligand 
bound conformations generated more poses containing 
hydrophobic contacts similar to the reference.

Importance of sampling in characterizing the binding 
mode
Introduction
As for all machine learning models the characteristics of 
the training dataset reflect on the quality of the predic-
tions. We questioned two aspects of binding mode sam-
pling: the length of the MD simulation and the relevance 
of combining information from multiple references. 
Their effect on the classifiers’ performances on the antag-
onist/agonist dataset is discussed below.

Molecular dynamics simulation length
We repeated the OCSVM training using only the first 
25%, 50%, and 75% of the frames of the MD simulations 
of epinephrine-ADRB2 and HBI-ABDR2 trajectories. 
These two trajectories were generated using the same 

experimental conditions. Both are formed by three dif-
ferent replicas, each one formed by 2500 frames, for a 
total of 7500 frames. Therefore, since they are the long-
est simulations and the only ones formed by more than 
a single replica, they were used to study the effect of the 
number of replicas and simulation length on the classi-
fiers’ performances.

The truncated simulation data was obtained by merg-
ing the selected frames in the three replicates. Apply-
ing the newly trained models on the agonist/antagonist 
dataset revealed that the number of selected molecules 
decreases as the MD simulation length is shortened, 
which is reflected by an increase in precision and a 
decrease in recall (Fig. 4 and Additional file 1: Tables S7, 
S8, S9, S10). The effect is much more marked if HBI is 
used as a reference, thus confirming that the epineph-
rine-ADRB2 trajectory does not highlight the interaction 
patterns that are crucial for the activation of the receptor.

Combination of multiple references
Although the proposed workflow was developed to use 
a single agonist as reference, the effect of merging mul-
tiple reference trajectories was investigated. We tested 
two combinations of datasets (Fig. 5 and Additional file 1: 
Tables S11, S12): All trajectories, BI167107-A and HBI. 
The models based on all the reference trajectories are 
characterized by a high recall and a relatively low preci-
sion. These poor performances are comparable to those 
obtained with the least relevant individual reference tra-
jectory (that of epinephrine), suggesting that the deter-
mined agonist definition is too broad to be useful. The 
inclusion of BI167107-A data alongside the HBI trajec-
tory increased the recall of the models including hydro-
phobic contacts. The overall effect of merging the two 
trajectories was however limited considering the perfor-
mances of all models. This result further suggests that 
agonist-ADRB2 interactions in HBI and BI167107-A tra-
jectories define a consistent binding mode.

Comparison with known methods
The comparison between the binding modes of a refer-
ence ligand with the docking poses has already shown to 
be an effective method to improve the performances of 
virtual screening. To evaluate the performances of the 
proposed model with the state of the art we performed 
a rescoring of the docking poses of the agonist/antago-
nist and agonist/inactive datasets using IFP similarity, 
GRIM, and structure-based 3D pharmacophores. Here, 
given the docking poses generated using an ADRB2 
structure extracted from a MD trajectory, the agonist 
binding mode observed in the selected frame was used 
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as a reference for the three methods to rescore the cor-
responding set of docking poses.

GRIM and OCSVM models are based on the same 
description of interactions. GRIM scores docking poses 
using an empirical function evaluating the maximum 

common subgraph between the reference IG and the 
docking pose’s IG. For GRIM four different score thresh-
olds have been proposed separating similar from dissimi-
lar binding modes: 0.59, 0.65 [36], 0.70, 1.00 [47]. None 
of the four thresholds yielded satisfying results overall, 
with only a small increase in precision over selecting all 
ligands as agonist (eg average precision around 0.60 at 
threshold 0.65 for HBI and BI167107), or an extremely 
low recall (eg average recall of 0.10 at threshold 1.00 for 
HBI and BI167107-A) on both the dataset containing 
agonists and antagonists (Table  4 and Additional file  1: 
Tables S13–S16), and the dataset containing agonists 
and true inactive molecules (Additional file  1: Tables 
S17–S20). The difficulty in identifying a suitable GRIM 
score threshold to distinguish agonists is valid regardless 
of the set of docking poses considered (average results 
using a single representative structure, results using all 
representative structures, and results using the crystallo-
graphic structure).

The different methods, GRIM, IFP, and pharmacophore 
search, were tested to determine the existence of a ligand 
independent threshold for classification. The optimal 
scoring value separating agonists and antagonists was 
determined for each ligand (Table 5 and Additional file 1: 
Table S21), as the threshold maximizing the F1 measure 
for the agonist class. All methods can be used to bias 
the screening towards agonists over antagonists, but no 
method specific score threshold can be identified from 
the results. The overall performances depend on the ref-
erence agonist rather than the method used for rescoring, 

Fig. 4  Average performance of the OCSVM models obtained for HBI, and epinephrine reference trajectories of variable length on the agonist/
antagonist dataset from docking using the representative structures. Symbols size is proportional to the simulation length, ranging from 125 ns 
(25%) to 500 ns (100%)

Fig. 5  Average performance on the agonist/antagonist dataset of 
OCSVM models obtained from docking using the representative 
structures from all merged reference trajectories or HBI and 
BI167107-A. For the sake of comparison are also shown the best 
models obtained for epinephrine, HBI, BI167107-A, and BI167107-I, as 
given in Table 2
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but even for the same reference agonist it is difficult 
to determine a specific threshold since each receptor 
structure used for docking was characterized by its own 
optimal threshold. In summary, the three methods well 
performed in prioritizing agonists, however it is not pos-
sible to clearly define the threshold separating agonists 
from antagonists a priori.

Conclusions
OCSVM models were developed from graphs encoding 
intermolecular interactions extracted from MD simula-
tions of three reference complexes, between ADBR2 and 
epinephrine, HBI, and BI167107. Models based on HBI 
performed well in identifying agonists of the antago-
nist/agonist test set (best model average precision: 0.87), 
and filtering out inactive molecules of the agonist/inac-
tive test set (best model average precision: 1.00). Fail-
ure in identifying agonists from the agonist/inactive test 
set was related to the substitution of hydrogen bond 
donor groups with chlorine and fluorine atoms. Similar 
results were obtained for BI167107-based models if they 
were trained from the portion of the MD trajectory that 
describes the active state of ADRB2. Performance dete-
riorated for models trained with the portion of the MD 
trajectory that describes the inactive state of ADRB2. 
Epinephrine-based models displayed low precision, 
tending to predict as agonists all molecules from both 
datasets. This poor performance was explained by an 
inappropriate sampling of the agonist binding mode, with 

Table 4  GRIM results on the agonists-antagonist dataset from docking data obtained using the representative structures or the 
crystallographic structure

The standard definition of hydrophobic contacts is applied. Thresholds discarding all docking poses are indicated as –.

Ligand Threshold Average Crystallographic Ensemble

Precision Recall Precision Recall Precision Recall

Epinephrine 0.59 0.55 0.97 0.53 1.00 0.53 1.00

0.65 0.70 0.62 0.63 1.00 0.56 1.00

0.70 0.84 0.30 0.86 1.00 0.63 0.89

1.00 – 0.00 – 0.00 – 0.00

HBI 0.59 0.53 1.00 0.53 1.00 0.53 1.00

0.65 0.60 0.99 0.59 1.00 0.53 1.00

0.70 0.67 0.98 0.68 1.00 0.53 1.00

1.00 1.00 0.10 – 0.00 1.00 0.37

BI167107 active 0.59 0.53 1.00 0.53 1.00 0.53 1.00

0.65 0.58 1.00 0.59 1.00 0.53 1.00

0.70 0.64 0.99 0.68 1.00 0.58 1.00

1.00 1.00 0.10 1.00 0.47 1.00 0.26

BI167107 inactive 0.59 0.53 1.00 0.53 1.00

0.65 0.61 0.94 0.58 1.00

0.70 0.69 0.84 0.70 1.00

1.00 1.00 0.02 1.00 0.05

Table 5  Optimal average scoring threshold for GRIM, IFP 
similarity, and 3D pharmacophore based on the agonist–
antagonist dataset

Ligand Model Threshold Precision Recall

Epinephrine GRIM 0.63 0.66 0.93

GRIM–Newhyd 0.63 0.66 0.90

IFP 0.38 0.64 0.93

IFP–Polar 0.48 0.65 0.94

FitValue 0.59 0.61 0.92

Pharmtype 1.43 0.60 0.92

HBI GRIM 0.76 0.82 0.91

GRIM–Newhyd 0.75 0.81 0.91

IFP 0.58 0.76 0.89

IFP–Polar 0.57 0.71 0.92

FitValue 2.00 0.87 0.80

Pharmtype 4.00 0.79 0.80

BI167107 active GRIM 0.82 0.91 0.92

GRIM–Newhyd 0.77 0.89 0.92

IFP 0.60 0.79 0.86

IFP–Polar 0.58 0.80 0.89

FitValue 2.16 0.93 0.84

Pharmtype 4.00 0.76 0.88

BI167107 inactive GRIM 0.73 0.75 0.95

GRIM–Newhyd 0.71 0.74 0.97

IFP 0.64 0.73 0.88

IFP–Polar 0.67 0.76 0.84

FitValue 1.52 0.74 0.93

Pharmtype 4.50 0.78 0.78
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epinephrine showing variable interactions patterns dur-
ing simulation, probably including unbinding initiation. 
The importance of agonist binding mode sampling was 
also revealed by the effect of the MD simulation length 
on the models’ performances. The OCSVM models were 
compared to established approaches for the post-pro-
cessing of virtual screening results that search for the 
reference binding mode in docking poses: matching of 
interactions graphs using GRIM, comparing interaction 
fingerprints using IFP, and searching for 3D pharmaco-
phores. All methods prioritized agonist ligands over inac-
tive molecules and antagonists, yet only OCSVM models 
have a built-in threshold separating the two classes. With 
the three other methods ranking molecules in the data-
set, a test set is required to properly define a scoring 
threshold, thus restraining their application to already 
well-studied GPCRs.

The proposed method can be applied to any GPCR 
provided that a three-dimensional structure is available 
between this GPCR and an agonist, and the correspond-
ing MD simulation correctly samples the binding mode. 
Basic guidelines on how to build an appropriate model 
are given on Fig. 6 and can be applied to other targets.

Materials and methods
Molecular dynamics simulations
The MD trajectories of ADRB2 bound to epineph-
rine and HBI were downloaded from GPCRmd [32]. 
The ADRB2-Epinephrine (ID 117) simulation is based 
on the PDBID:4LDO [34] crystallographic structure. 
The protein is embedded in a lipid bilayer formed by 

POPC, the system is solvated by an aqueous solution of 
Na + (158 mM) and Cl − (184 mM).

The ADRB2-HBI (ID 115) simulation is based on the 
PDBID:4LDL [34]crystallographic structure. The pro-
tein is embedded in a lipid bilayer formed by POPC, 
the system is solvated by an aqueous solution of 
Na + (156 mM) and Cl − (182 mM).

Both simulations were performed using ACEMD with 
GPUGRID, the used forcefield is CHARMM36m. Three 
replicas of 0.5 μs were performed for each system with 
a timestep of 4.0 fs and a gap between the saved frames 
of 0.2  ns. For each system a dataset of 7500 protein–
ligand structures is available.

The ADRB2-BI167107 simulation was performed 
by Dror et  al.[33] using as starting structure the 
PDBID:3P0G [48] crystallographic structure. The pro-
tein is embedded in a lipid bilayer formed by POPC; 
the system is solvated by an aqueous solution of NaCl 
(0.15 M). The simulation was performed on Anton, the 
used forcefield is CHARMM27.

The entire trajectory (trajectory number 11 in the 
original publication) represents 10  μs of simulation, 
with frames saved every 180 ps. The part of the trajec-
tory representing the active state receptor bound to the 
ligand corresponds to the first 350 ns of simulation. The 
part of trajectory used to represent the inactive state 
receptor begins after 3.60 μs of simulation and ends at 
4.95  μs. The active state receptor dataset corresponds 
to 1944 frames, while the inactive state receptor dataset 
corresponds to 7500 frames.

Fig. 6  Flowchart for model development
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Crystallographic structure preparation
The three reference crystallographic structures (PDBID: 
3P0G, 4LDO, 4LDL) were downloaded from the PDB 
online repository. The structures were protonated and 
converted to mol2 files using MOE 2020. Protonation 
state and tautomer state of the residues were selected 
to match the one observed in the corresponding MD 
simulations.

Binding mode analysis
The agonist-ADRB2 binding modes depicted on the top 
of Fig. 1 are a representation of the interactions detected 
using MOE 2020.

The binding of each ligand during the simulation, as 
shown on Fig.  1, was analysed by computing IFP using 
IChem. The average IFP over each trajectory was calcu-
lated. Interactions observed in at least 10% of the frames 
of a single simulation, or observed in the crystallographic 
structure, are shown in the IFP graphical representation.

Interaction detection
Protein–ligand interactions were computed using IChem 
v5.2.9 [36]. IChem differentiates interactions according to 
the following seven types: Hydrogen bonds with the pro-
tein acting as acceptor, hydrogen bond with the protein 
acting as donor, ionic interactions, separated depend-
ing on the charge of the protein and the ligand, aromatic 
stacking, grouping together edge-to-face and face-to-face 
interactions, hydrophobic contacts, and metal chelation. 
An interaction is detected between two atoms depending 
on their types and on topological constrains. Hydrogen 
bonds and aromatic stacking have both a distance and an 
angle constrain, while the remaining interaction depend 
only on the distance [36]. IChem presents two definitions 
of hydrophobic contacts, Hyd and Newhyd. The Hyd def-
inition considers hydrophobic contacts between all atoms 
with the correct atom types, while the Newhyd definition 
considers only atoms with the correct atom types and in 
a hydrophobic environment.

IChem requires as input mol2 files with precise charac-
teristics. The MD trajectory was converted in a series of 
pairs of mol2 files containing the protein and the ligand, 
removing lipids, water molecules, and ions. Such conver-
sion was performed using a Python script based on pytraj 
[49, 50] for mol2 file generation. The generated files 
were corrected by a Python script to be compatible with 
IChem: CHARMM atom types were converted to SYBYL 
atom types, and the bond order between atoms was 
determined based on the atom types. Interaction detec-
tion was performed using the default definition of hydro-
phobic contacts and a stricter definition (-Newhyd). The 
definition of aromatic interactions was changed increas-
ing the threshold distance to 5.0Å (−D_Ar 5.0).

Model building
Graph kernel
Graph similarity was evaluated using the shortest path 
kernel implemented in GraKel [51]. The shortest path 
kernel generates from the input graph the correspond-
ing shortest path graph. The shortest path graph is a 
fully connected graph, with edges labelled according to 
the length of the shortest path between two nodes in the 
original graph. The shortest path graph is encoded as a 
fingerprint. Each element of the fingerprint corresponds 
to a pair of node labels and the label of the edge connect-
ing them. The fingerprint contains the frequency of each 
path in the graph. There is no predefined fingerprint to 
describe the graphs, the fingerprint is learned from the 
training dataset to contain the observed paths. The fin-
gerprint is temporarily updated during kernel application 
on new graphs to include previously unseen paths. The 
update in the fingerprint is relevant only for normalized 
similarity score calculations (Fig. 7).

Model training
The Scikit-learn [52] implementation of the OCSVM 
algorithm was used for the classifier. The model was 
trained using two different heuristics: QMS2 and a MAD 
based method. For both methods the average KNN simi-
larity was calculated, with K corresponding to 3% of the 
number of instances in the dataset.

For QMS2 the KNN-similarity values were sorted 
in ascending order. A function was interpolated link-
ing the rank of each point to its similarity score. Outli-
ers are defined as points before the first major knee. For 
such points an increase in rank is associated with a rapid 
increase of KNN similarity. The knee was determined 
using the kneedle algorithm [53], selecting the first con-
cave point. Kneedle sensibility parameter was manually 
selected to identify the true global knee of the func-
tion. Points below the selected knee were discarded and 
ν = 0.01.

For training based on MAD, the median and MAD 
values were calculated using SciPy [54]. The fraction of 
outliers in the training set was determined as the fraction 
of points with a distance from the median greater than 3 
times MAD.

A Python script, available at https://​github.​com/​
LIT-​CCM-​lab/​OCSVM-​ADRB2, was developed for the 
training of the kernel and the determination of OCSVM 
parameters using both methods.

Evaluation metrics
The performances of the presented classification meth-
ods are evaluated according to their precision, recall, and 
F1 measure[39, 55].

Precision and recall are defined as:

https://github.com/LIT-CCM-lab/OCSVM-ADRB2
https://github.com/LIT-CCM-lab/OCSVM-ADRB2
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With TP (true positive) indicating agonist ligands cor-
rectly classified as agonist, FP (false positives) indicating 
antagonist or inactive molecules classified as agonist, and 
FN indicating agonist molecules not classified as agonist.

The classifier was trained to identify instances from a 
single class, the F1 score calculated on the positive class 
(agonist) was selected as a metric to evaluate the overall 
performance of the model.

The F1 measure is defined as:

Selection of representative conformations
Binding site definition
Two definitions of the receptor binding site have been 
used in this work, a system specific definition and a 
shared definition. The system specific binding site is 
obtained by selecting all non-hydrogen atoms at less than 
4.5Å from the non-hydrogen atoms of the ligand for at 
least 10% of the trajectory frames. The shared definition 
includes all residues containing at least one atom present 
in one of the four different system specific binding site 
definitions.

Precision =
TP

TP + FP

Recall =
TP

TP + FN

F1 = 2
Precision ∗ Recall

Precision+ Recall

Trajectory clustering
Similarity between receptor conformations was evalu-
ated using the RMSD of interacting atoms.

With N indicating the number of selected interacting 
atoms, Xi and Yi the coordinates of each atom i in the 
two compared structures.  The pairwise RMSD between 
structures in the same trajectory was computed, on 
atoms in the system specific binding site definition, using 
pytraj. The pairwise distances were represented by a his-
togram to determine the presence of a clusterable data 
structure[56].

Only the ADRB2-HBI trajectory presents multiple 
clearly distinct conformation of the binding site based 
on the RMSD. Agglomerative hierarchical clustering 
with average linkage was performed on the HBI-ADRB2 
dataset using the scikit-learn implementation of the 
algorithm. The optimal number of clusters was evalu-
ated considering different geometrical criteria, as already 
proposed by De Paris et al. [57]: Silhouette score, Dunn 
index, and Davies-Bouldin index. The optimal number of 
clusters was estimated at two, with a major cluster (6881 
elements) and a minor cluster (619 elements).

The remaining trajectories and the major cluster of 
the HBI-ADRB2 complex were clustered using the 
K-medoids algorithm [58], implemented in scikit-learn-
extra. The optimal number of clusters was estimated 
according to geometrical criteria: Silhouette score, Dunn 

RMSD =

√

∑

N

i
(Xi − Yi)

2

N

Fig. 7  Fingerprint generation and update for shortest path kernel similarity calculation
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index, and Davies-Bouldin index. From HBI-main-clus-
ter 9 clusters were obtained, 8 for epinephrine, 2 for 
BI167107-I, and 4 for BI167107-A. For each cluster the 
medoid, the member of the cluster with the lowest dis-
tance from all other members of the same cluster, was 
selected as the representative structures.

Comparison to the crystallographic structure
The RMSD between the starting crystal structure and the 
trajectory was evaluated using the shared definition of 
binding site. The RMSD was calculated using pytraj. The 
shared definition of binding site was used to have compa-
rable values between the trajectories.

Pairwise comparison of the trajectories
The pairwise RMSD of the representative structures and 
of the trajectories was calculated using the common defi-
nition of the binding site. For the comparison between 
the trajectories one every five saved frames was kept for 
analysis.

Agonist–antagonist validation set preparation
Initial ligand selection
The initial set of molecules was selected from the ADRB2 
(CHEMBL210) target page on ChEMBL [59], in the sec-
tion “Drugs and Clinical Candidates”, 33 agonists, 2 
partial agonists and 13 antagonists were retrieved. An 
additional literature search was performed to increase the 
number of antagonists in the dataset, with the inclusion 
of 7 new molecules, all explicitly described as ADRB2 
antagonist. Bupranolol, tertatolol, IPS339, spirendolol, 
ICI118551 were selected from an article comparing the 
electronic structure of β-receptor agonist and antago-
nist [60]. Compound CHEMBL355038 (15a) [61] and 
CHEMBL3228930 (4)[62] were retrieved from articles 
describing their synthesis. Ligands with “Mechanism of 
action” antagonist from GPCRdb [63] “Drugs target and 
Indications” targeting ADRB2 were selected. Only new 
entries with literature reference were considered. Three 
ligands (Alprenolol, Carteolol, Carvedilol) were added to 
the dataset. From the IUPHAR/BPS Guide to Pharma-
cology page on ADRB2 [64] four new antagonist ligands 
were added to the dataset (Butoxamine, CGP-12177, 
SR59230A, NIP). The initial dataset contains 29 agonists, 
27 antagonists, and 2 partial agonists.

Dataset cleaning
Duplicates corresponding to specific enantiomers of 
already present racemic ligands were discarded.

Three ligands with unknown structure were removed 
(LAS190792, AZD3199, GSK159802). The two ligands 
described as partial agonist (pindolol, celiprolol) were 

also discarded from the dataset. The number of heavy 
atoms of each ligand was calculated using RDKit[65]. 
Molecules with a significantly larger number of heavy 
atoms (Z-score > 1.5) were discarded to have a dataset of 
molecules with homogeneous size.

Morgan’s structural fingerprints were calculated for the 
remaining molecules with a radius of 2 and a fingerprint 
length of 2048 bits using RDKit. The pairwise Tanimoto 
distance (1 – Tanimoto similarity) was computed and 
used to perform agglomerative hierarchical clustering. A 
distance threshold of 0.5 was set for the clustering. From 
each cluster the molecule with the highest affinity for the 
target was selected. The highest affinity was determined 
by comparing results from assays performed in simi-
lar conditions. In case no comparable assay results were 
found, the best characterized molecule was selected.

The scaffold distribution between agonist and antago-
nists was evaluated by retrieving the Bemis-Murcko scaf-
folds with RDKit.

Ligand preparation
The ligands, represented as SMILES, were ionized using 
the FILTER program from OpenEye (Filter 2.5.1.4 Open-
Eye Scientific Software, Santa Fe, NM, USA). The ligands’ 
3D structures were generated using Corina 3.40 (Molec-
ular Networks GmbH, Nürnberg, Germany)[66]. The rc 
option was used to generate multiple ring conformation. 
For ligands presenting stereocenters all stereoisomers 
were generated.

Docking
Rigid protein ligand docking was performed using 
PLANTS v1.2, using the CHEMPLP scoring function and 
search speed 1 (highest accuracy) [67]. The cavity cen-
tre of each protein was identified as the centre of mass 
of the interacting atoms in the system specific definition 
of the binding site. The cavity radius was set to 12 Å for 
all structures. For each ligand stereoisomer 10 poses were 
saved.

Docking post processing
IFP
Interaction fingerprints were calculated using IChem. 
Comparison between fingerprints was performed using 
a Python script. Interaction similarity was defined as the 
Tanimoto similarity between the two binary IFPs.

GRIM
Protein–ligand interactions were detected using IChem, 
with both available definitions of hydrophobic contacts. 
For each docking pose the generated IPAs were saved in 
mol2 files. The definition of aromatic interactions was 
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changed increasing the threshold distance to 5.0 Å (-D_
Ar 5.0). The GRIM score between the docking IPAs and 
the reference IPAs was computed using IChem.

3D pharmacophore
Interaction 3D pharmacophores were generated auto-
matically using DiscoveryStudio (Dassault Systemes BIO-
VIA), the settings for generation were changed to include 
all the detected interactions between ligand and protein 
as pharmacophoric features.

The software citest was used for evaluation of the dock-
ing pose by comparing the alignment to the pharmco-
phoric query without performing fitting. Two different 
scores were used to evaluate the poses: FitScore, which 
is a sum of the fitting quality to each feature, and Pharm-
type, which measures the number of features of the query 
matched by the pose.

OCSVM evaluation
The IPA files generated from the MD trajectory were used 
to train the shortest path graph kernel and the OCSVM 
classification model. The docking poses IPAs were con-
verted to IGs. The node labels were extracted from the 
residue name of the IPAs. The adjacency matrix was cal-
culated as the pairwise Euclidean distances between the 
IPAs, approximated to the nearest Å. A distance of 0.1 
was set for overlapping IPAs. Polar IGs were generated 
from regular interaction files by removing hydrophobic 
IPAs. The similarity to the graphs in the training set was 
calculated using the trained shortest path graph kernel. 
The obtained Gram matrix is used by the OCSVM model 
to score the IGs. Negative scores indicate an outlier, while 
positive scores indicate an inlier. Inliers are considered as 
active molecules with the same pharmacological effect as 
the reference.
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