
Journal of the Renin-Angiotensin-
Aldosterone System
October-December 1 –9
© The Author(s) 2016
Reprints and permissions: 
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1470320316674875
jra.sagepub.com

Creative Commons Non Commercial CC-BY-NC: This article is distributed under the terms of the Creative Commons 
Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, 

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and  
Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Introduction

The sex difference in blood pressure (BP) has long  
been recognized between premenopausal women and age-
matched men.1 Before menopause, women have lower BP 
and are protected from most cardiovascular events com-
pared with age-matched men, and postmenopausal women 
are at increased risk of cardiovascular complications com-
pared with premenopausal women.2 The pathophysiologi-
cal mechanisms have been extensively explored, and 
increasing evidence has shown that sex hormones are one 
of the major contributors to the above phenomena.3 Among 
different mechanisms, the interaction between sex hor-
mones and the renin-angiotensin system (RAS) is shown to 
play important role in regulating cardiovascular function 
and BP.4,5 Angiotensin II is the main effector of RAS, and it 

regulates BP through its effect on the angiotensin II type-1 
receptor (AT1R) and angiotensin II type-2 receptor 
(AT2R).6,7 The AT1R promotes antinatriuresis, proliferation, 
inflammation, and vasoconstriction.8 AT2Rs are generally 
assumed to oppose AT1R-mediated responses, for example, 
by evoking vasorelaxation, natriuresis, antigrowth, and 
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anti-inflammatory effects.9 Increasing evidence has shown 
that the AT2R is a key player in lowering BP in females but 
not in males.10,11 This enhanced BP-lowering effect of the 
AT2R in females is attributed to increased expression of the 
AT2R in females compared to age-matched males. For 
example, higher AT2R levels are observed in the female 
brain,12 kidney,13 and liver14 compared to males. However, 
it is not known if there are differences in expression pattern 
of AT2Rs in the vasculature between the males and females. 
The vascular AT2Rs are key elements in homeostatic regu-
lation of the cardiovascular system. Therefore, elucidating 
the expression patterns of the AT2R in the vasculature 
would provide evidence for understanding the possible 
roles of AT2Rs in regulating BP.

Sex steroid hormones, particularly estrogens, are attrib-
uted to the greater BP lowering effect15,16 and enhanced tis-
sue expression of AT2R in females.17,18 However, estrogen 
is shown to exert a tissue-specific effect by regulating AT2R 
expression in the kidneys17,18 but not in lungs,19 urethra,20 
and blood vessels.17 On the other hand, whether androgens 
exert control on AT2R expression is unknown. Studies 
show that androgens can regulate RAS components.21,22 
Therefore, we hypothesized that testosterone (T) is involved 
in the control of AT2R expression in the vasculature. We 
investigated (a) whether there are sex differences in vascu-
lar AT2R expression, (b) if AT2R is influenced by alterations 
in androgen status in male and female rats, and (c) the 
underlying mechanism of AT2R regulation by androgens.

Materials and methods

Animals and institutional animal care and use 
committee (IACUC) approval

All experimental procedures were carried out in accord-
ance with the National Institutes of Health guidelines (NIH 
publication no. 85–23 (revised 1996)) with approval by  
the Animal Care and Use Committee at The University  
of Texas Medical Branch at Galveston. Three-month-old 
male and female Sprague-Dawley rats were purchased 
from Harlan Laboratories, Inc. (Houston, Texas, USA). 
Rats were housed in a temperature-controlled room (23°C), 
with a 12L:12D cycle, and with food and water available 
ad libitum. After one week acclimatization, male rats were 
divided into three groups: (a) intact, (b) castrated, and (c) 
castrated with testosterone replacement using subcutane-
ous implanted pellets (25 mg, 21 day release, Innovative 
Research of America, Sarasota, Florida, USA). Females 
were divided into four groups: (a) control, (b) treated with 
dihydrotestosterone (DHT) using pellets (2.5 mg, 21 day 
release), (c) DHT plus flutamide (100 mg, 21 day release), 
and (d) flutamide alone. DHT was used in females to over-
come its aromatization to estradiol. Castration was done  
by standard procedures as described in our previous  
studies.23,24 The doses of the pellets were chosen to mimic 
physiologic hormone levels as reported previously23–27 and 

were further confirmed by hormone assays. After the 
21-day treatment, BP was measured and then animals were 
euthanized by CO2 inhalation, and blood was collected for 
hormone assays. The thoracic aorta was isolated and either 
immediately frozen in liquid nitrogen for mRNA and pro-
tein analysis or used for ex vivo-signaling studies.

BP measurement

BP was measured using a computerized CODA system 
(Kent Scientific, Litchfield, Connecticut, USA) as in our 
previous studies.28 Briefly, rats were acclimatized for a 
week to the measurement procedures prior to testing. Rats 
were held in a preheated restrainer with the tail exposed, 
and both an occlusion cuff and a volume pressure-record-
ing cuff were placed close to the base of the tail. The cuff 
was then inflated and deflated automatically within 90 s. 
BP is measured during 30 consecutive, computer-auto-
mated inflation/deflation cycles of the balloon cuff (10 
preliminary measurements and 20 test measurements). 
Unlike other tail-cuff systems, CODA uses volume pres-
sure recording to measure both systolic and diastolic BP, 
which is then used by the software to calculate the mean 
BP. Data from the preliminary measurements are discarded 
and data from the test measurements are averaged. Signals 
were recorded and analyzed using Kent Scientific soft-
ware. To minimize stress-induced variations in BP, all 
measurements were taken by the same person in the same 
peaceful environment and at the same time of the day.

Hormone assays

T and DHT were measured using enzyme-linked immu-
nosorbent assay (ELISA) kits (T- Enzo Life Sciences, 
Farmingdale, New York, USA and DHT- BioVendor, 
Asheville, North Carolina, USA), as in our previous  
publications.26,29 The minimum detectable concentration 
of testosterone is 6 pg/ml and the intra- and interassay 
coefficients of variation for testosterone assay was lower 
than 5%. The minimum detectable concentration of DHT 
is 6 pg/ml and the intra- and inter-assay coefficients of 
variation for DHT assay were lower than 8%.

Protein extraction and western blotting

Aorta was homogenized in ice-cold radioimmunoprecipi-
tation assay (RIPA) buffer (Cell Signaling Technology, 
Danvers, Massachusetts, USA) containing a protease 
inhibitor tablet and phosphatase inhibitor cocktail-2 and -3 
(Sigma-Aldrich, St Louis, Missouri, USA). Tissue lysates 
were centrifuged (14000× g for 10 min at 4°C), and the 
protein content was measured using the bicinchoninic acid 
(BCA) protein assay kit (Pierce; Thermo Scientific, Grand 
Island, New York, USA). The supernatant was resus-
pended in neutral pH polyacrylamide gel electrophoresis 
(NuPAGE) lithium dodecyl sulfate sample buffer and 
reducing agent (Invitrogen; Thermo Scientific). Proteins 
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(30 µg) alongside Precision Plus Standard (Kaleidoscope; 
Bio-Rad, Hercules, California, USA) were resolved on 
4–12% gradient NuPAGE Bis-Tris gels (Invitrogen) at  
100 V for 2 h at room temperature and then transferred 
onto Immobilon-P membranes (Millipore, Billerica, 
Massachusetts, USA) at 100 V for 1 h. The membranes 
were blocked with 5% non-fat dry milk for 1 h and then 
incubated overnight at 4°C with primary antibodies. The 
primary antibodies were rabbit monoclonal AT2R (1:3000 
dilution; Abcam, Cambridge, Massachusetts, USA) and 
β-actin (1:5000 dilution; Cell Signaling Technology). After 
being washed, the membranes were incubated with sec-
ondary antibodies (anti-rabbit or -mouse conjugated with 
horseradish peroxidase) at 1:10000 dilutions and detected 
with the enhanced chemiluminescence (ECL) detection 
kits (Pierce; Thermo Scientific). Densitometric measure-
ment was done using ImageJ software.30 Results were 
expressed as ratios of the intensity of a specific band to 
that of β-actin.

Quantitative real-time polymerase chain 
reaction (PCR)

Total RNA was extracted using RNeasy mini kit (QIAGEN, 
Valencia, California, USA) according to manufacturer’s 
instructions. RNA concentration and integrity was 
determined using DS-11 spectrophotometer (DeNovix, 
Wilmington, Delaware, USA). One microgram of total 
RNA was reverse transcribed using iScript cDNA synthe-
sis kit (Bio-Rad). After dilution, cDNA corresponding to 
100 ng of RNA was amplified by quantitative real-time 
(qRT)-PCR using FAM (Invitrogen) as the fluorophore in 
a CFX96 real-time thermal cycler (Bio-Rad). PCR condi-
tions for TaqMan Gene Expression Assay were 2 min at 
50°C and 10 min at 95°C for one cycle, then 15 s at 95°C 
and 1 min at 60°C for 50 cycles. Results were calculated 
using the 2–∆∆CT method and expressed in fold change of 
the gene of interest in treated versus control samples. All 
reactions were performed in duplicate, and β-actin was 
used as an internal control. TaqMan assays were carried 
out in 10-µl volumes for real-time PCR at a final concen-
tration of 250 nM TaqMan probe and 900 nM of each 
primer. AT2R (Rn00560677_s1) and β-actin (Rn00667869_
m1) assays were obtained by Assay-on-Demand (Applied 
Biosystems; Thermo Scientific).

Ex vivo treatment to aorta

Aortas from female rats were dissected, taking care to 
avoid stretching or compression of the tissues, and placed 
into ice-cold phosphate-buffered saline (PBS), cleaned of 
adventitia, and cut into 3–4 rings of approximately 5 mm 
in length. The rings were placed into 2 ml of Dulbecco’s 
modified eagle’s medium (DMEM) (Gibco Laboratories; 
Thermo Scientific) supplemented with 100 ug/ml strepto-
mycin and 100 U/ml penicillin, 1% fetal calf serum 

(FCS),31 and incubated at 37°C in a humidified 5% CO2 
incubator. In some experiments, the endothelium was 
denuded by gently rubbing the lumen with human hair. 
The rings were stimulated with DHT at doses of 0, 0.1, 1, 
and 10 nmol/l for 24 h to examine the dose response of 
AT2R expression. To inhibit binding of DHT to its recep-
tor, hydroxyflutamide (1 µmol/l) was used. To inhibit 
DHT-induced extracellular signal-regulated kinases 
(ERK)1/2 mitogen activated protein (MAP) kinase, p38 
MAP kinase, or transforming growth factor (TGF)β 
activities, inhibitors to ERK1/2 (PD98059, 10 µmol/l and 
U0126, 10 µmol/l), p38 (SB203580, 10 µmol/l), and TGFβ 
(SB431542, 10 µmol/l) were used, respectively. Each 
experiment was repeated at least thrice throughout the 
study. All chemicals were purchased from Sigma-Aldrich 
(St Louis, Missouri, USA) unless otherwise noted.

Statistical analysis

All data are expressed as the mean±standard error of the 
mean (SEM). Statistical significance was determined with 
one-way analysis of variance followed by Bonferroni’s 
post-hoc test. Comparisons between the two groups were 
performed using Student t tests. Differences were consid-
ered statistically significant at a value of p<0.05. Statistical 
analysis was conducted using GraphPad Prism (GraphPad, 
San Diego, California, USA).

Results

BP and hormone measurements

BP was significantly decreased in castrated rats (111.10±5.2 
mm Hg; n=6; p<0.05) compared to intact controls 
(126.5±2.5 mm Hg; n=6) and testosterone supplementa-
tion restored BP to testis-intact controls (129.1±4.1 mm 
Hg; n=6). In the female rats DHT supplementation 
increased BP significantly (131.7±5.2; mm Hg; n=5; 
p<0.05) compared to controls (105.1±2.7; mm Hg; n=6).

Plasma testosterone levels were significantly decreased 
by castration (0.2±0.02 vs 1.4±0.07 ng/ml in intact; n=6 in 
each; p<0.05) and reinstated to intact levels by replace-
ment (1.5±0.17 ng/ml). In the females, DHT levels were 
higher in the DHT (186±37.6 pg/ml) and DHT plus fluta-
mide-treated group (179±25.3 pg/ml) compared to con-
trols (111±11.6 pg/ml; n=6 in each; p<0.05). Flutamide 
alone to females did not alter DHT levels (107±10.4 pg/
ml; n=6) compared to vehicle controls.

AT2R expression is lower in males than females

To determine whether AT2R expression in the aorta varied 
between the males and females, mRNA and protein levels 
of AT2R were determined with quantitative RT-PCR  
and Western blot analyses. Males had significantly lower 
AT2R mRNA (↓40%; Figure 1(a)) and protein (↓38%; 
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Figure 1(b)) expression in aorta compared to females (n=6 
in each group; p<0.05).

AT2R expression negatively relates to androgen 
levels in males and females

We next determined whether AT2R expression in the aorta 
correlated with an alteration in testosterone levels in males 
and females. In males, castration significantly elevated 
AT2R mRNA (↑52%) and protein (↑76%) expression 
(Figure 2(a), p<0.05, n=6) compared to intact controls. 
Testosterone replacement in castrated males restored AT2R 

mRNA and protein to levels comparable to that in intact 
males (Figure 2(a), p<0.05, n=6).

Increasing androgen levels by DHT administration to 
females significantly decreased AT2R mRNA (↓53%) and 
protein (↓27%) expression (Figure 2(b), p<0.05, n=6). 
Administration of flutamide, an androgen receptor blocker, 
significantly attenuated the decreased AT2R mRNA and 
protein in DHT-treated females (Figure 2(b), p<0.05, 
n=6). Flutamide by itself did not have any significant 
effect on AT2R expression (Figure 2(b), n=6). Thus, testos-
terone appears to downregulate AT2R expression in both 
males and females.

DHT downregulates AT2R transcription ex vivo

Since downregulation of AT2R by testosterone was appar-
ent, isolated aortas from female rats were used to study the 
mechanisms by which AT2R expression is regulated in 
response to DHT. As shown in Figure 3(a), DHT induced a 
dose-dependent downregulation of AT2R mRNA (p<0.05, 
n=6). Thus, testosterone directly downregulates AT2R at a 
transcriptional level.

DHT downregulates AT2R in the endothelium 
but not in vascular smooth muscle

Studies show that AT2R is expressed in both the endothe-
lium and vascular smooth muscle layer. To dissect whether 
the effect of DHT on AT2R expression occurs in the 
endothelium or vascular smooth muscle, we used endothe-
lium-intact and endothelium-denuded aorta from female 
rats. As shown in Figure 3(b), DHT did not alter AT2R 
expression in endothelium-denuded aorta but downregu-
lated AT2R mRNA in endothelium-intact aorta (p<0.05, 
n=3).

DHT downregulates AT2R transcription 
via androgen receptor-mediated ERK1/2-
dependent mechanisms

We further tested whether activation of the androgen 
receptor and the downstream signaling of ERK1/2, p38 
MAP kinases, and TGF-β are responsible for downregula-
tion of AT2R expression in response to DHT. Endothelium-
intact aortas from female rats were stimulated with DHT in 
the presence or absence of the androgen receptor antago-
nist and inhibitors to ERK1/2, p38, or TGF-β. As shown in 
Figure 4, addition of hydroxyflutamide prevented the 
reduction of AT2R expression in response to DHT (p<0.05, 
n=3). ERK1/2 inhibitor, but not p38 and TGF-β inhibitors, 
prevented a DHT-induced decrease in AT2R expression 
(Figure 5, p<0.05, n=4). Interestingly, p38 MAP kinase 
and TGF-β inhibitors by themselves decreased basal 
expression of AT2R, and DHT in presence of p38 MAP 

Figure 1. Angiotensin II type-2 receptor (AT2R) expression 
is lower in the aorta of male than in female rats. Expression 
of AT2R (a) mRNA and (b) protein was measured in aorta 
from three-month-old male and female rats. AT2R mRNA 
expression was measured by quantitative real-time polymerase 
chain reaction normalized relative to β-actin levels. AT2R 
protein expression was determined by Western blotting. 
Representative Western blots for AT2R and β-actin are shown 
at top; blot density obtained from densitometric scanning of 
AT2R normalized to β-actin is shown at bottom. Values are 
given as means±standard error of the mean (SEM) of six rats in 
each group. *p<0.05 vs female.
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Figure 2. Angiotensin II type-2 receptor (AT2R) expression in the aorta relates to androgen levels in male and female rats. AT2R 
mRNA (upper panel) and protein (lower panel) expression were assessed in aortas isolated from (a) male rats with testes intact, 
castrated, and castrated with testosterone replacement and (b) female rats treated with vehicle, dihydrotestosterone (DHT), DHT 
plus flutamide (antiandrogen), and flutamide alone. AT2R mRNA expression was measured by quantitative real-time polymerase 
chain reaction normalized relative to β-actin levels. AT2R protein expression was determined by Western blotting. Representative 
Western blots for AT2R and β-actin are shown at the top; blot density obtained from densitometric scanning of AT2R normalized 
to β-actin is shown at the bottom. Values are given as means±standard error of the mean (SEM) of six rats in each group. *p<0.05 
vs vehicle and DHT plus flutamide group. Cas: castration.

Figure 3. Dihydrotestosterone (DHT) downregulates endothelial angiotensin II type-2 receptor (AT2R) expression in isolated 
aorta. Endothelium-intact and -denuded aorta from female rats were treated with DHT for 24 h, and then AT2R mRNA was 
measured using quantitative real-time polymerase chain reaction. (a) DHT dose-dependently downregulated AT2R transcription in 
endothelium-intact aorta. (b) DHT (10 nmol/l) downregulated AT2R transcription only in endothelium-intact but not endothelium-
denuded aorta. Values were normalized relative to β-actin levels. Data represent the mean of four independent experiments. 
*p<0.05 vs vehicle control.
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kinase and TGF-β inhibitors further decreased AT2R 
expression (Figure 5, p<0.05, n=4).

Discussion

To our knowledge, this is the first study that relates andro-
gen status and vascular AT2R expression. Our main find-
ings are that (a) AT2R expression in the aorta is significantly 
lower in male compared to female rats; (b) vascular AT2R 

expression relates to androgen status with orchiectomy 
increasing and testosterone replacement restoring AT2R 
expression in males, but in the females, increasing DHT 
levels decreased AT2R expression, which was prevented 
by blockade of the androgen receptor; (c) DHT directly 
decreases AT2R expression at transcriptional level in the 
aorta by decreasing endothelial but not vascular smooth 
muscle AT2R levels; and (d) DHT downregulates AT2R 
via androgen receptor-mediated ERK1/2 MAP kinase-
dependent mechanisms.

Sex is linked to differences in cardiovascular morbidity 
and mortality.32,33 The RAS is an important regulatory sys-
tem that is involved in the long-term control of BP. 
Angiotensin II is the main effector, which mediates its 
effect through AT1R and AT2R, which are expressed in 
cardiovascular system and play an opposite role in BP reg-
ulation. AT1R promotes vasoconstriction,34,35 while AT2R 
promotes vasodilation.36,37 In the present study, we observed 
that AT2R expression is higher in females compared to 
males, consistent with the reports in the brain, kidney, and 
liver.12–14 However, in contrast, spontaneously hyperten-
sive rats (SHRs) showed no sex-dependent differences in 
AT2R expression in the aorta and mesenteric arteries.17 The 
reason for the apparent discrepancies between the above 
study and the present study is not entirely clear. SHRs are 
hypertensive rats induced by genetic modification and thus 
may involve different AT2R regulatory mechanisms than in 
normotensive animals.38,39 In line with increased vascular 
AT2R expression in females, studies show that AT2R-
mediated relaxation is greater in women than men.40 Further 
experimental studies in rats and mice also support this since 
C21 (a AT2R agonist) induced a greater increase in renal 
vasodilation in females than males.13,41 In addition, angio-
tensin II, at low-dose, reduced pressor response in females 
that was inhibited by the AT2R antagonist.10 These func-
tional reports together with our molecular finding of 
increased vascular AT2R expression in females suggest that 
AT2R may have an important role in contributing to gender 
differences in vascular tone and BP.

Sex hormones are shown to directly interact with  
the RAS.42–44 Estrogens are shown to downregulate the 
vasoconstrictive RAS components (i.e. angiotensin- 
converting-enzyme (ACE and AT1R)45,46 and upregulate 
the vasodilatory RAS components (i.e. AT2R and 
ACE2).18,47 On the other hand, testosterone is shown to 
upregulate the vasoconstrictive AT1R and ACE.22,48 This 
is the first study that shows that androgens downregulate 
vasodilatory AT2R, as observed by the finding that both 
mRNA and protein expressions of AT2R in aorta are sig-
nificantly upregulated by orchiectomy and restored by tes-
tosterone replacement. In addition, increasing androgen 
levels in females decreased AT2R expression, and antian-
drogen treatment completely normalized AT2R to control 
levels. Interestingly, the changes in AT2R expression is 
inversely related to the BP changes observed in these male 
and female rats. These findings indicate that androgens 

Figure 4. Dihydrotestosterone (DHT)-mediated 
downregulation of angiotensin II type-2 receptor (AT2R) 
transcription is blocked by androgen receptor antagonist. 
Aortic rings from female rats were treated with DHT (10 
nmol/l) in the presence or absence of hydroxyflutamide (1 
µmol/l) for 24 h and AT2R mRNA expression was analyzed 
using quantitative real-time polymerase chain reaction. Data 
represent the mean of three independent experiments. *p<0.05 
vs vehicle control.

Figure 5. Dihydrotestosterone (DHT) mediates 
downregulation of angiotensin II type-2 receptor (AT2R) 
transcription through ERK-mediated pathways. Aortic rings 
from female rats were treated for 24 h with DHT (10 nmol/l) 
in the presence or absence of inhibitors to ERK1/2 (U0126, 10 
μmol/l and PD98059, 10 μmol/l), p38 (SB203580, 10 μmol/l), 
and TGFβ (SB431542, 10 μmol/l). AT2R mRNA expression was 
analyzed using quantitative real-time polymerase chain reaction 
and normalized to β–actin. Data represent the mean of four 
independent experiments. *p<0.05 vs vehicle control, #p<0.05 
vs DHT in the absence of any inhibitors. Veh: vehicle.
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exert a negative modulatory effect on AT2R expression not 
only in males but also in females, and may play a role in 
influencing BP. These findings are clinically relevant since 
evidence indicates that androgen levels are higher in young 
women with conditions, such as polycystic ovary syn-
drome (PCOS), women after menopause,49 and African 
American women50,51, and the frequency of hypertension 
is greater in these populations.52–54 It remains to be deter-
mined if the vascular AT2R expression is altered in these 
population.

More importantly, we showed that DHT was able to 
downregulate AT2R ex vivo in aorta. These findings sug-
gest that DHT directly induces a downregulation of AT2R 
transcription independent of any endogenous factors. 
Because blockade of androgen receptors abolished DHT-
induced downregulation of AT2R, we suggest that the 
effects of testosterone are mediated through androgen 
receptors. In the present study, a DHT-induced decrease in 
AT2R transcription is observed in endothelium-intact ves-
sels. No significant difference in DHT-induced AT2R tran-
scription was observed in endothelium-denuded vessels. 
These findings indicate that testosterone induces reduction 
in AT2R transcription, primarily in the endothelium rather 
than in vascular smooth muscle. Although AT2R is 
expressed in both the vascular smooth muscle and endothe-
lium,55,56 the reason why androgens specifically decrease 
endothelial AT2R is unclear at this time. It would have 
been ideal to examine if testosterone directly regulates 
AT2R expression in cultured endothelial cells but this is 
problematic because endothelial cells rapidly loose AT2R 
expression when put in culture,39 thus preventing a study 
of AT2R expression in cultured endothelial cells.

We next examined the mechanisms by which androgens 
can downregulate AT2R transcription. Androgens are 
known to activate p38 and ERK1/2 MAP kinase and TGF-
β pathways in the vasculature.57–59 The finding that p38 
MAP kinase and TGF-β inhibitors by themselves reduced 
AT2R transcription suggests that basal p38 and TGF-β 
activities may be important to maintain AT2R expression 
in unstimulated cells. The inability of p38 MAP kinase and 
TGF-β inhibitors to prevent a DHT-induced decrease in 
AT2R transcription suggests the presence of other intracel-
lular mechanisms. Our observation that reduced AT2R 
expression in response to testosterone was abolished by 
blocking ERK1/2 suggests that androgen-induced down-
regulation of AT2R transcription is mediated via the 
ERK1/2 MAP kinase pathways. Further studies that exam-
ine the mechanism by which ERK1/2 MAP kinase down-
regulates AT2R transcription are warranted. Although this 
study used aorta, which not only functions as a channel 
delivering blood to the tissues but also as an important 
modulator of the entire cardiovascular system by buffering 
the intermittent pulsatile output from the heart,60 further 
studies are necessary to examine AT2R expression and 
regulation in resistance vessels which play an important 
role in BP control.

Conclusions

Sex differences in vascular AT2R expression is observed 
with lower levels in males than females. Testosterone 
downregulates AT2R expression levels in aorta, in vivo and 
ex vivo. The androgen receptor-mediated ERK1/2 MAP 
kinase-signaling pathway may be a key mechanism by 
which testosterone downregulates AT2R expression, impli-
cating androgens’ contributing role to gender differences 
in vascular AT2R expression.
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