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Identification and validation 
of Alzheimer’s disease‑related 
metabolic brain pattern 
in biomarker confirmed Alzheimer’s 
dementia patients
Matej Perovnik1,2*, Petra Tomše3, Jan Jamšek3, Andreja Emeršič4, Chris Tang5, 
David Eidelberg5 & Maja Trošt1,2,3

Metabolic brain biomarkers have been incorporated in various diagnostic guidelines of 
neurodegenerative diseases, recently. To improve their diagnostic accuracy a biologically and 
clinically homogeneous sample is needed for their identification. Alzheimer’s disease-related pattern 
(ADRP) has been identified previously in cohorts of clinically diagnosed patients with dementia due 
to Alzheimer’s disease (AD), meaning that its diagnostic accuracy might have been reduced due to 
common clinical misdiagnosis. In our study, we aimed to identify ADRP in a cohort of AD patients with 
CSF confirmed diagnosis, validate it in large out-of-sample cohorts and explore its relationship with 
patients’ clinical status. For identification we analyzed 2-[18F]FDG PET brain scans of 20 AD patients 
and 20 normal controls (NCs). For validation, 2-[18F]FDG PET scans from 261 individuals with AD, 
behavioral variant of frontotemporal dementia, mild cognitive impairment and NC were analyzed. We 
identified an ADRP that is characterized by relatively reduced metabolic activity in temporoparietal 
cortices, posterior cingulate and precuneus which co-varied with relatively increased metabolic 
activity in the cerebellum. ADRP expression significantly differentiated AD from NC (AUC = 0.95) and 
other dementia types (AUC = 0.76–0.85) and its expression correlated with clinical measures of global 
cognition and neuropsychological indices in all cohorts.

Alzheimer’s disease is the most common cause of dementia, pathologically characterized by deposition of mis-
folded proteins, amyloid-β (Aβ) and tau, leading to neuronal dysfunction and neurodegeneration1. Recently, new 
research framework was introduced defining biomarker based diagnosis. Positivity in biomarkers of amyloid 
(A+) and tau (T+) was proposed for diagnosing individuals with biologically defined Alzheimer’s disease in a 
so called A/T/N classification scheme2.

2-[18F]fluoro-2-deoxy-d-glucose positron emission tomography (2-[18F]FDG PET) is a widely available non-
invasive brain imaging modality that provides in vivo information about synaptic activity3 and is a biomarker 
of neurodegeneration2. Neurodegeneration closely correlates with subject’s progressive cognitive disability in 
Alzheimer’s disease4. In clinical setting 2-[18F]FDG PET scans are commonly assessed visually5 assisted by 
semi-quantitative analyses6 and its use is recommended for diagnostic and differential diagnostic purposes in 
dementia syndromes7,8. Multivariate analysis approaches of 2-[18F]FDG PET scans, such as scaled subprofile 
model/principal component analysis (SSM/PCA), have been used in the past to derive specific disease-related 
patterns to improve diagnostic accuracy and provide insight into pathophysiology9–12. Multivariate approaches 
are in general advantageous over univariate models by being able to take into account interactions between 
voxels/brain regions and have been shown to have better sensitivity, specificity and reproducibility13.
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Alzheimer’s disease-related pattern (ADRP) has been identified previously in four different cohorts of patients 
with clinically diagnosed Alzheimer’s dementia (AD)12,14–16. However, clinical diagnosis is not in concordance 
with pathological findings in around 30% of AD cases17 and therefore clinically defined cohorts may be heteroge-
neous in their underlying cause of dementia18. Consequentially previously identified ADRPs may not be specific 
enough. Cerebrospinal fluid (CSF) biomarkers closely reflect Alzheimer’s pathology19–21.

The aims of this study were to (i) identify ADRP in a cohort of CSF biomarker-positive AD patients; (ii) to 
correlate the newly identified ADRP expression with patients’ clinical measures; (iii) to validate it on independent 
cohorts of patients with AD, behavioral variant of frontotemporal dementia (bvFTD) and on two mild cognitive 
impairment (MCI) cohorts, one due to Alzheimer’s disease and one due to other causes.

Methods
Participants.  301 subjects from three different cohorts were included in the study. To identify and internally 
validate ADRP, we included 63 patients who fulfilled diagnostic criteria for AD (amnestic presentation22), had 
Alzheimer (Alz) biomarker CSF profile, i.e. A+/T+/N+ or A+/T+/N−2,22 and underwent 2-[18F]FDG PET brain 
imaging. Additionally, we included 42 patients with MCI who had available CSF information and 2-[18F]FDG 
PET brain scans. Patients with MCI were cognitively tested by neuropsychologist, n = 19/4223, or by neurologist 
using MoCA test, n = 23/4224,25. We also included 15 patients with probable bvFTD with diagnosis confirmed at 
a follow-up visit at least 18 months after 2-[18F]FDG PET scanning26 and 41 normal controls (NCs) scanned with 
2-[18F]FDG PET for purposes of another research project27. We excluded patients with structural brain lesions 
(e.g. tumor, stroke) or systemic condition (e.g. hypothyroidism, B12 deficiency) that could cause or significantly 
contribute to cognitive impairment. All patients and NC from identification and internal validation cohorts 
underwent 2-[18F]FDG PET brain imaging between January 2010 and April 2019 at the University Medical 
Center Ljubljana (UMCL), Slovenia.

For external validation, we randomly selected 60 AD patients with Alz CSF profile and 60 NC with normal 
(A−/T−/N−) CSF profile from Alzheimer’s disease neuroimaging initiative (ADNI) database. Further, we also 
analyzed a previously described cohort of 10 patients with clinically diagnosed AD (AD-NS)28, and 10 age-
matched NC (NC-NS)12 from North Shore University Hospital, Manhasset, New York, USA.

ADRP identification group.  20 AD patients (AD1) and 20 age- and sex-matched NC subjects (NC1) were 
analyzed for the ADRP identification. AD patients were randomly chosen from UMCL AD dataset (n = 63). 
NC1 subjects were deemed cognitively normal either by neuropsychological evaluation, n = 13/2029, or by cog-
nitive screening with Mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA), 
n = 7/2024,30.

Internal validation groups.  To validate the newly-identified ADRP, we analyzed data from the remaining 43 AD 
patients with Alz CSF profile and additional 15 bvFTD patients, 42 patients with MCI (27 with Alz CSF profile 
and 15 with normal or non-Alz CSF profile), and 21 NC subjects (NC2). Patients underwent clinical neuro-
logical and neuropsychological examination, cognitive assessment using MMSE30 and MoCA24 tests, as well as 
structural (MRI or CT) and 2-[18F]FDG PET brain imaging.

External validation groups.  To externally validate ADRP, we analyzed data from ADNI database (60 AD and 60 
NC) and previously described cohort from North Shore University Hospital (10 AD and 10 NC)12.

The ADNI (https://​adni.​loni.​usc.​edu) was launched in 2003 as a public–private partnership, led by Principal 
Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI, PET, other 
biological markers, and clinical and neuropsychological assessment can be combined to measure the progression 
of MCI and early Alzheimer’s disease.

We selected an age homogenous group of 60 AD patients28 with Alz CSF profile31,32 and 60 NC with normal 
CSF profile, using an in-house script. First, we randomly picked the groups, then the script was used to randomly 
replace individuals until the standard deviation of age did not change after 10,000 iterations.

Neuropsychological assessment.  30 patients from UMCL AD dataset underwent detailed neuropsy-
chological assessment and data from 15 patients in whom testing was done within 1 year of 2-[18F]FDG PET 
imaging was analyzed. Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), which 
consists of tests of immediate (List Learning and Story Memory tests) and delayed (List Recall, List Recognition, 
Story Recall and Figure Recall tests) memory, visuospatial/construction (Figure Copy and Line Orientation), 
language (Picture Naming, Semantic Fluency) and attention (Digit Span and Coding) was used for neuropsy-
chological testing. Index score for each cognitive domain was calculated from raw results23.

Structural imaging.  We checked available T1 and T2-weighted MRI scans (13/20 from AD1, 29/43 from 
AD2, 13/27 from MCI Alz and 3/15 from MCI nonAlz). Cerebral atrophy and white matter hyperintensities 
were assessed using medial temporal lobe atrophy (MTA) classification scale33 and Fazekas scale34. Despite the 
limitation of missing MRI data, the goal of these analyses was to examine that the ADRP identification and 
validation groups did not differ in hippocampal atrophy and vascular burden at a group level. In patients with 
inaccessible MRI, we checked CT scans obtained with Siemens Biograph mCT PET/CT scanner for structural 
changes.

https://adni.loni.usc.edu
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Cerebrospinal fluid analysis.  Patients underwent lumbar puncture within 4  years of 2-[18F]FDG PET 
scanning. CSF samples were centrifuged, aliquoted and stored at −80 °C until biomarker analysis was performed 
at the Department of Neurology, UMCL. CSF Aβ42, phosphorylated tau (p-tau) and total tau protein (t-tau) 
were measured routinely, whereas Aβ40 was determined additionally in the CSF samples with ambiguous Aβ42 
result (650–815  pg/ml). Biomarker analyses were performed according to manufacturers’ instructions using 
Innotest (Fujirebio, Europe) immunoassays with intra-assay variability < 5%. Between-assay coefficients of vari-
ation for Aβ42, Aβ40, p-tau and t-tau were 5.8%, 8.3%, 4.4% and 8.2%, respectively, as determined by the longitu-
dinal quality control sample. Locally validated biomarker cut-off levels were used to define Alz CSF profile31 as: 
Aβ42 < 650 pg/ml or Aβ42/Aβ40 < 0.077 (A+), p-tau > 60 pg/ml (T+) and t-tau > 400 pg/ml (N+).

2‑[18F]FDG PET image acquisition.  2-[18F]FDG PET brain images of patients and NC in identification 
and internal validation groups were acquired at the Department of Nuclear Medicine, UMCL with Siemens 
Biograph mCT PET/CT scanner according to clinical diagnostic protocol5 as described previously27. Patients 
from ADNI cohort underwent imaging using different scanners at different sites as per study protocol, described 
in more detail at: https://​adni.​loni.​usc.​edu/​metho​ds/​pet-​analy​sis-​method/​pet-​analy​sis/. 2-[18F]FDG PET brain 
images of patients and NC from North Shore University Hospital were acquired with GE Advance tomograph at 
The Feinstein Institutes for Medical Research as described previously12.

Image pre‑processing.  2-[18F]FDG PET scans were pre-processed with SPM12 (Wellcome Trust Centre for 
Neuroimaging, Institute of Neurology, London, UK) running on Matlab R2019a (Mathworks Inc., Natick, MA) 
using an in-house pipeline. 2-[18F]FDG PET scans from NS were pre-processed with SPM5 running on Matlab 
6.0. First step was rigid registration of the scans to the template, which was followed by spatial normalization to 
the Montreal Neurological Institute standard space using a PET template and old normalization function. Lastly, 
the images were smoothed with isotropic 3D Gaussian kernel of 10 mm FWHM.

Image analysis.  For ADRP identification SSM/PCA (ScAnVP, Center for Neuroscience, Feinstein Institutes for 
Medical Research, NY, USA) was applied to 2-[18F]FDG PET scans of 20 AD1 and 20 NC1 subjects as described 
previously9,13. The number of 20 diseased and healthy have been shown optimal in previous studies15,35. Further 
analysis was limited to principal components (PCs) that each accounted for at least 5% of the total variance 
(VAF). Subject scores for these PCs were then entered into a series of logistic regression models, with group 
as dependent and subject scores as the independent variable. The model with the lowest Akaike Information 
Criterion score was selected as the ADRP. Estimated disease-related metabolic pattern was tested for reliability 
using bootstrap resampling with 1000 iterations36. Pattern stability was assessed also with threefold cross-vali-
dation procedure using the data from internal validation group (AD2 and NC2). For the calculation of pattern 
expression, i.e. subject score, in 2-[18F]FDG PET images from subjects not included in the identification cohort 
topographic profile rating (TPR) was used9. In TPR, logarithmically transformed and double centered subject 
vectors were multiplied by the ADRP. Raw scores were Z-transformed based on the mean pattern expression and 
standard deviation of subject scores in the NC1 group.

Statistical analysis.  Data distribution was tested for normality using Shapiro–Wilk test. Student’s inde-
pendent-sample t-test or one-way analysis of variance (ANOVA) with post hoc Tukey HSD test was used to 
examine differences in age, MMSE, MoCA, disease duration, MTA scores and Fazekas scores in the NC and 
patient groups. Fisher’s Exact Test for Count Data was used to examine differences in sex distribution. For the 
non-normally distributed data, the non-parametric tests (e.g. Wilcoxon-rank sum test, Spearman’s rank cor-
relation and Kruskal Wallis test with post hoc Dunn’s test) were additionally performed to examine whether the 
significant results and statistical inferences of the corresponding parametric tests were changed.

To examine differences between normalized ADRP subject scores in the pattern identification group (AD1 
and NC1), we used a robust exact Fisher-Pitman permutation test, which is data-dependent and free of assump-
tions of underlying distribution37. Correlations between ADRP expression and MMSE, MoCA, disease duration 
and neuropsychological scores were evaluated with Pearson correlation analysis. One-way ANOVA with post 
hoc Tukey HSD test was used to examine differences in ADRP expression in two internal dementia groups (AD2, 
FTD) and NC2 and between MCI Alz, MCI nonAlz and NC2 groups. We used Student’s independent-sample 
t-test to examine the differences in pattern expression scores between NC1 and NC2, between AD1 and AD2 
and when comparing AD1 and AD2 to MCI Alz groups and external dementia validation groups from ADNI 
and NS. We used pROC package to calculate area under the curve (AUC), specificity and sensitivity based on the 
optimal cut-point determined by Youden’s index for the internal validation group (AD2 vs NC2)38. All statistical 
analyses were performed in RStudio version 1.3.1093, R version 3.6.0 (R Foundation for Statistical Computing, 
Vienna, Austria) and results were considered significant at p < 0.05 (two-tailed).

Ethics approval and consent to participate.  The study was approved by Slovenian National Ethics 
Committee (0120-584/2019/5) and institutional review boards of collaborating institutions. All patients gave 
informed consent. The study was designed and conducted in accordance with the relevant guidelines and regula-
tions of the ethical principles for medical research involving human subjects.

https://adni.loni.usc.edu/methods/pet-analysis-method/pet-analysis/
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Results
Subjects’ demographic and clinical data and the results of visual assessment of structural imaging are presented 
in Table 1. Mean (± SD) duration between 2-[18F]FDG PET and lumbar puncture was 7.5 ± 10 months in UMCL 
and 0.5 ± 1 month ADNI dataset; and 11 ± 13 months between 2-[18F]FDG PET and structural imaging. MCI 
groups are presented in the Supplementary Material.

ADRP identification.  AD1 and NC1 participants did not differ in mean age (p = 0.44) or sex distribution 
(p = 0.09). AD1 had significantly lower MMSE scores than NC1, p < 0.001.

Four principal components: PC1 (28.7% VAF), PC2 (9.6% VAF), PC3 (6.7% VAF) and PC4 (5.4% VAF) 
were entered into a series of logistic regression models for further analysis. Model that incorporated PC1 alone 
was determined as the best to discriminate NC1 from AD1. The ADRP was characterized by relatively reduced 
metabolic activity in temporoparietal cortices, posterior cingulate, thalami and precuneus which co-varied 
with relatively increased metabolic activity in the cerebellum, Fig. 1a. Bootstrapping proved pattern stability at 
z =|1.96|, p < 0.05, Fig. 1b. Cross-validation procedure showed strong and significant correlations between the 
topography of the three patterns (see Supplementary Information). All subsequent analyses were done using 
ADRP obtained with data from AD1 and NC1 participants.

Pattern expression was significantly higher in AD1 (M = 5.9, SD = 2.5) compared to NC1 subjects (M = 0.0, 
SD = 1.0), Z = 5.3, p < 0.001, Fig. 2. ADRP subject scores strongly inversely correlated with MMSE scores in AD1 
group (r(18) =  − 0.88, p < 0.001), Fig. 3a, but not with disease duration (r(18) = 0.07, p = 0.78).

Internal ADRP validation.  There was a significant difference in age between the three validation groups 
(F(2, 76) = 9.7, p < 0.001) and no difference in sex distribution. Post hoc comparisons showed that mean age was 
significantly higher in AD2 compared to NC2 (p < 0.001), but no difference was found between AD2 and bvFTD 
(p = 0.16) or bvFTD and NC2 groups (p = 0.18).

There was a significant difference in ADRP expression between NC2, AD2 and FTD groups (F(2, 76) = 50, 
p < 0.001). Post hoc comparisons indicated that the mean subject score of AD2 group (M = 4.9, SD = 2.1) was sig-
nificantly higher compared to NC2 group (M =  −0.1, SD = 1.5), p < 0.001, also after adjustment for age difference 
(F(1, 61) = 73, p < 0.001). ADRP accurately differentiated between AD2 and NC2 (AUC = 0.98, specificity = 100%, 
sensitivity = 91%), Fig. 4. Mean ADRP expression was significantly higher in AD2 in comparison to bvFTD 
group (M = 3.1, SD = 1.4), p = 0.004. ADRP accurately differentiated between AD1 and bvFTD (AUC = 0.85, 
specificity = 100%, sensitivity = 60%) and between AD2 and bvFTD (AUC = 0.76, specificity = 100%, sensitiv-
ity = 53%), Fig. 5. The post hoc comparisons also revealed significantly higher ADRP expression in bvFTD than 
NC2 (p < 0.001), Fig. 2. There was no significant difference in ADRP expression between AD1 and AD2 groups 
(t(61) = 1.69, p = 0.10) nor between NC1 and NC2 groups (t(39) = 0.28, p = 0.82).

ADRP subject scores moderately inversely correlated with MMSE in AD2 group (r(37) =  −0.58, p < 0.001), 
Fig. 3a, but not with disease duration (r(32) =  −0.28, p = 0.11). ADRP expression inversely correlated also with 
RBANS total score (r(13) =  −0.60, p = 0.017), immediate memory Index score (r(13) =  −0.55, p = 0.034), visuos-
patial constructional Index score (r(13) =  −0.58, p = 0.025) and attention Index score (r(13) =  −0.57, p = 0.027), 

Table 1.   Demographic and clinical data in identification and validation groups. Data is presented as mean 
(SD). Positive Alzheimer (Alz) CSF was defined as A+/T+/N+ or A+/T+/N− (cut-offs: Aβ42 < 650 pg/ml 
or Aβ42/Aβ40 < 0.077, p-tau > 60 pg/ml, t-tau > 400 pg/ml) for identification and internal validation groups 
and as A+/T+/N+ or A+/T+/N− (cut-offs: Aβ42 < 880 pg/ml or Aβ42/Aβ40 < 0.077, p-tau > 21.8 pg/ml and 
t-tau > 245 pg/ml) for ADNI cohort. NC normal control, AD Alzheimer’s dementia, bvFTD behavioral variant 
of frontotemporal dementia, NS Northshore, ADNI Alzheimer’s Disease Neuroimaging Initiative, MMSE Mini 
Mental State Examination, MoCA Montreal Cognitive Assessment, MTA medial temporal lobe atrophy, CSF 
cerebrospinal fluid.

Identification Internal validation External validation

p valueNC1 AD1 NC2 AD2 bvFTD NC-ADNI AD-ADNI NC-NS AD-NS

N 20 20 21 43 15 60 60 10 10

Age (y) 68 (6.5) 72.6 (8.5) 62.6 (6.6) 73 (9) 68 (11.3) 75.0 (3.9) 76.4 (5.1) 73.4 (4.8) 74.5 (5.3)  < 0.001

Sex (m/f) 8/12 9/11 5/16 23/20 6/9 31/29 38/22 4/6 6/4 0.118

Disease duration (y) – 4 (2.7) – 3.3 (2)
(n = 34)

3.3 (1.3)
(n = 11) – 5.2 (2.9) – 3.8 (3.2)

(n = 8) 0.010

MMSE 28.7 (1.1) 18 (5.8) 29.4 (0.8)
(n = 12)

18 (4.8)
(n = 39)

19.8 (5.2)
(n = 13) 29.0 (1.2) 23.5 (2) – 23.9 (4.2)  < 0.001

MoCA 26.7 (2.2) 19.8 (2.5)
(n = 4)

27.6 (1.7)
(n = 13)

16.1 (5.3)
(n = 11)

14 (5.5)
(n = 4)

25.8 (2.2)
(n = 41)

17.0 (4.9)
(n = 31) – –  < 0.001

MTA score (left + right) – 3.8 (1.4)
(n = 13) / 3.4 (1.7)

(n = 27) – – – – – 0.371

Fazekas score – 1 (0.6)
(n = 13) / 0.9 (0.6)

(n = 29) – – – – – 0.629

Alz CSF (positive/total) 0/10 20/20 0/3 43/43 0/10 0/60 60/60 – –
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Figure 1.   Alzheimer’s disease-related pattern (ADRP) and maps of inverse coefficient of variation overlaid 
on T1-weighted magnetic resonance template images. (a) The ADRP was characterized by relatively reduced 
metabolic activity (color-coded green to blue) in temporoparietal cortices, thalami, posterior cingulate and 
precuneus which co-varied with relatively increased metabolic activity (color-coded red to yellow) in the 
cerebellum. (b) The topography of ADRP was reliable as estimated by a voxel-wise bootstrapping algorithm. The 
display represents the maps of inverse coefficient of variation thresholded at z =|1.96|, p < 0.05.

Figure 2.   Alzheimer’s disease-related pattern expression. Data are Z-scored based on the pattern expression 
in NC1 group. Means (SD) are presented to the right of individual data. NC1 normal control identification 
group, AD1 Alzheimer’s dementia identification group, NC2 NC validation group, AD2 AD validation group, 
bvFTD behavioral variant of frontotemporal dementia, ADNI Alzheimer’s Disease Neuroimaging Initiative, NS 
Northshore, ADRP Alzheimer’s disease-related pattern. *p < 0.01, **p < 0.001, ***p < 0.0001.
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Fig. 6. ADRP subject scores did not correlate with language Index score (r(13) =  −0.44, p = 0.105) or delayed 
memory Index score (r(13) =  −0.299, p = 0.278).

The mean pattern expression was significantly higher in both AD1 (M = 5.9, SD = 2.5) and AD2 (M = 4.9, 
SD = 2.1) compared to MCI Alz group (M = 1.9, SD = 1.8), t(45) = 6.4, p < 0.001 and t(68) = 6.0, p < 0.001, respec-
tively. ADRP expression differed significantly between NC2, MCI Alz and MCI nonAlz (F(2, 60) = 9.5, p < 0.001). 
It was significantly higher in MCI Alz (M = 1.9, SD = 1.8) compared to NC2 (M =  −0.1, SD = 1.5), p < 0.001 and 
also in comparison to MCI nonAlz (M = 0.6, SD = 1.6), p = 0.032. ADRP expression did not differ between MCI 
nonAlz and NC2 groups, p = 0.46, Fig. S1. However, we observed a significant difference in age between NC2 
(M = 62.6, SD = 6.6), MCI nonAlz (M = 67.8, SD = 5.9) and MCI Alz (M = 73.7, SD = 6.1) groups (F(2, 60) = 19, 
p < 0.001) and after adjustment for age difference ADRP expression was no longer significantly different between 
the three groups (F(2, 59) = 1.9, p = 0.16), for additional information please see Supplementary material.

External ADRP validation.  We validated ADRP on two additional cohorts of AD patients and NC, 
i.e. ADNI and NS. ADRP expression was significantly higher in AD-ADNI (M = 3.8, SD = 1.5) than in NC-
ADNI (M = 1.1, SD = 0.9) group, t(118) = 11.95, p < 0.001, Fig. 2 and it accurately differentiated between them 
(AUC = 0.95, specificity = 97%, sensitivity = 83%), Fig. 4. ADRP expression did not correlate with MMSE in AD-

Figure 3.   Correlation between MMSE and ADRP expression (a) and between MoCA and ADRP expression 
(b). Each dot represents an individual patient’s data and the lines and shaded areas correspond to the fit 
of a linear regression with 95% confidence intervals. (a) ADRP expression correlated with MMSE in AD1 
(r =  − 0.88), AD2 (r =  − 0.58) and AD-NS (r =  − 0.85), but not in AD-ADNI (r =  − 0.14) group. (b) ADRP 
expression correlated with MoCA in AD-ADNI (r =  − 0.60) group. AD1 Alzheimer’s dementia identification 
group, AD2 Alzheimer’s dementia validation group, ADNI Alzheimer’s Disease Neuroimaging Initiative, NS 
Northshore, ADRP Alzheimer’s disease-related pattern, MMSE Mini Mental State Examination, MoCA Montreal 
Cognitive Assessment.

Figure 4.   Receiver operating characteristic (ROC) curves for Alzheimer’s dementia (AD) and normal controls 
(NCs) on (a) the internal validation set, (b) external validation set from Alzheimer’s Disease Neuroimaging 
Initiative (ADNI) and (c) external validation set from Northshore (NS).
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ADNI group (r(58) =  −0.14, p = 0.28), Fig. 3a, but did so with MoCA score (r(29) =  −0.60, p < 0.001), Fig. 3b. 
ADRP expression did not correlate with disease duration in AD-ADNI group (r(58) = 0.13, p = 0.32). ADRP 
expression was also significantly higher in AD-NS (M = 4.8, SD = 2.7) compared to NC-NS (M = 1.4, SD = 0.6) 
group, t(18) = 3.87, p = 0.001, Fig. 2 and it accurately differentiated between AD-NS and NC-NS (AUC = 0.95, 
specificity = 90%, sensitivity = 80%), Fig. 4. ADRP expression strongly inversely correlated with MMSE in AD-NS 
group (r(8) =  −0.85, p = 0.002), Fig. 3a, but not with disease duration (r(6) =  −0.36, p = 0.39).

Discussion
In this study we newly identified an Alzheimer’s disease-related pattern—ADRP, a metabolic biomarker of AD. 
The ADRP is characterized by relatively reduced metabolic activity in temporoparietal cortices, posterior cin-
gulate, thalami and precuneus which co-varied with relatively increased metabolic activity in the cerebellum. 
Cortical regions, associated with ADRP, have been shown previously to be involved in AD pathology. Although 
our understanding of the synergy between amyloid, tau and neurodegeneration remains incomplete39 we know 
that amyloid pathology begins in neocortical regions, i.e. temporal and parietal cortices and precuneus which 
are also part of ADRP, and later spreads to cingulate cortex and subcortical regions40. In numerous regions with 
amyloid deposits, reduction in brain metabolism has been observed41. Tau pathology on the other hand starts 
in transentorhinal cortex and affects other cortical areas only in later stages42. Its close correlation with hypo-
metabolic brain changes is well known43. Imaging studies using either metabolic connectivity approaches or 
resting-state functional MRI have identified changes in similar cortical regions as comprised in ADRP44,45. While 
amyloid and tau depositions are seen in the cerebellum only in later stages40,46, increased metabolic activity in cer-
ebellum, has been observed before in AD patients12,14,16. Cerebellum has extensive anatomical connections with 
the neocortex47, therefore its compensatory mechanism in the context of underlying pathology was proposed48.

ADRPs have been identified before12,14,15, but never in biomarker confirmed AD patients. Using a biologi-
cally heterogeneous group may have caused a lower accuracy of this biomarker in out of sample validations, 
AUC = 0.85–0.9015,16 and is indeed lower than out of sample accuracy of AUC = 0.95 achieved in our study. The 
topography of newly identified ADRP does significantly, but moderately, correlate (r = 0.51, p < 0.0001) with 
previously identified ADRP12, which may be caused by lack of biomarker confirmed diagnoses of AD patients in 
previous study, but also other factors such as different scanners or the usage of different reconstruction algorithms 
may have had an effect on pattern topography49.

We validated ADRP in two ways; statistically (i.e. bootstrapping and with threefold cross validation) and by 
analyzing three additional independent AD patients’ datasets. The pattern was stable on bootstrapping and we 
observed high correlations between PC1 of the three patterns. Further, we have shown that ADRP expression 
is significantly higher in AD patients compared to NC in various independent cohorts, which differentiates AD 
from NC with high specificity (90–100%) and sensitivity (80–91%). We paid attention to the possible effect of 
age on ADRP expression. Although AD patients were older than NC in the internal validation dataset, ADRP 
expression stayed significantly higher in AD patients after adjustment for age. Furthermore, ADRP expression 
did not correlate with age in any of the AD groups (data not shown). In addition, while the majority of our data 
were normally distributed, few variables in several groups (e.g., ADRP expression in the AD2 group) turned 
out to be non-normally distributed (p > 0.05, Shapiro–Wilk tests). Nonetheless, further analyses with equivalent 

Figure 5.   Receiver operating characteristic (ROC) curves for Alzheimer’s dementia (AD) and behavioral 
variant frontotemporal dementia (bvFTD) for (a) AD identification group (AD1) and (b) internal AD validation 
group (AD2).
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non-parametric tests confirmed the significant results and statistical inferences of the parametric tests reported 
in our study.

An important measure of pattern’s clinical relevance is its correlation with subjects’ cognitive disability. ADRP 
expression scores correlated well with cognitive impairment in all AD groups. We observed moderate to high 
correlations of ADRP expression with MMSE in the identification and validation AD datasets, but not in AD 
cohort from ADNI database in which ADRP expression correlated with MoCA score. We believe that this may 
be a consequence of rather mild dementia in ADNI cohort with an average MMSE score of 23.5 (± 2). MoCA 
scores had a bigger range as this test is more sensitive to subtle cognitive changes50. Previous studies on ADRP 
also reported negative correlations between MMSE and ADRP expression12,14.

We observed a non-significant correlation of ADRP with disease duration in all AD groups. We believe that 
lack of correlation between ADRP expression and disease duration, which one would anticipate to be present, 
may be due to the insidious disease onset and difficulty of patients and caregivers in defining disease onset. 
Furthermore, ADRP is a biomarker of neurodegeneration, which starts when patients are still asymptomatic41. 
Previous studies did not report on this correlation. Furthermore, we did not observe any correlation between 
disease duration and measurements of global cognition (r values between −0.1 and 0.37, all p > 0.37).

A subset of our patients underwent a thorough neuropsychological evaluation. In these patients ADRP expres-
sion correlated significantly with indices of several cognitive domains. Negative correlations were observed with 

Figure 6.   Correlations between Alzheimer’s disease-related pattern expression and neuropsychological tests in 
internal validation Alzheimer’s dementia cohort. Each dot represents an individual patient’s data and the lines 
and shaded areas correspond to the fit of a linear regression with 95% confidence intervals. (a) ADRP expression 
correlated with RBANS Total score (r =  −0.60), (b) Immediate Memory Index (r =  −0.55), (c) Visuospatial 
Constructional Index (r =  − 0.58) and (d) Attention Index (r =  −0.57). ADRP Alzheimer’s disease-related pattern, 
RBANS Repeatable Battery for the Assessment of Neuropsychological Status.
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immediate memory, visuospatial constructional and attention indices which is in line with previous studies12,14. 
Both Mattis et al.12 and Teune et al.14 observed moderate correlations between ADRP expression and worse per-
formance on tests of memory. We observed a negative correlation with immediate memory index, but not with 
delayed memory index. Absent correlation between ADRP expression and delayed memory index can be caused 
by the floor effect, since the majority of our patients scored below first percentile. ADRP expression did how-
ever correlate with tests of delayed memory in ADNI cohort where no floor effect was observed (r(30) =  −0.54, 
p = 0.001). Teune et al.14 also observed negative correlations with tests of attention, which is in line with our 
findings. They observed numerically similar correlations with test of visuospatial construction (r =  −0.55) to our 
study (r =  −0.58), although, in contrast to our finding, it did not reach statistical significance, which might be 
due to their smaller sample size (n = 11 vs. n = 15). While Mattis et al.12 observed a negative correlation with tests 
of executive function and Teune et al.14 observed non-significant correlations, the RBANS test battery, used in 
our study, does not contain executive function test and this correlation could not be tested in internal validation 
cohort. However, a significant, moderate correlation between higher ADRP expression and worse performance 
on Trailmaking test B was seen in ADNI cohort (r(34) = 0.51, p = 0.001). Both aforementioned studies observed 
significant correlations between ADRP expression and tests of language, which was not significant in our sample. 
This may be either due to our sample size (n = 15) or a variable cognitive presentation observed in AD patients, 
particularly in language domain51. Further studies, focusing on neuropsychological correlations, could offer 
additional insight into clinical correlations of ADRP.

Our results suggest that ADRP can be useful in differentiating between dementia syndromes. The pattern 
expression differentiated AD from bvFTD with high specificity, but limited sensitivity. Expression of ADRP has 
been previously studied in other neurodegenerative dementias. It was found that in comparison to NC, ADRP 
expression is higher in patients with dementia with Lewy bodies, Parkinson’s disease dementia and bvFTD16. 
Similarly, we found a higher-than-normal expression of ADRP in a cohort of bvFTD patients, which may be 
due to overlapping areas of neurodegeneration in these two diseases. FTD-related pattern is characterized by 
hypometabolic regions that are also a part of ADRP (i.e. inferior frontal, superior temporal and thalamus)52.

To check the performance of ADRP in earliest stages of Alzheimer’s related cognitive impairment we analyzed 
two groups of MCI patients: one due to Alzheimer’s disease and one due to other causes. The expression of ADRP 
was significantly elevated in the first compared to the latter. This trend (p = 0.05) remains after adjustment for 
age difference (see Supplementary Material for additional information).

Limitations of our study are mostly related to its retrospective design, which enabled us to analyze a large 
number of scans. The time difference between lumbar puncture and 2-[18F]FDG PET imaging varied between 
patients. We analyzed only patients with a maximum of 4 years (M = 2 months) time difference, based on previous 
reports on longitudinal stability of Alz CSF biomarkers at 4 years from the baseline53,54. Patients from different 
cohorts/centers were assessed by similar but not same protocols, therefore some studied subgroups are small. 
Furthermore, using data obtained on different scanners at different institutions could introduce unwanted data 
variability, which, if anything, would reduce the discriminative power of ADRP. The PET images have not been 
corrected for partial volume effect (PVE), which if done properly might improve ADRP performance by miti-
gating the regional atrophic effects. However, such analysis was beyond the scope of the current paper and the 
effect of PVE correction remains to be determined in future research.

Conclusions
In our study we identified ADRP in a cohort of biomarker defined AD patients which was not done before. The 
precise, possibly pathologically confirmed diagnosis of the identification cohort is of utmost importance par-
ticularly when deriving a biomarker. We confirmed in this study that ADRP is a robust metabolic biomarker of 
AD which closely correlates with patients’ cognitive impairment. It could serve as a supportive diagnostic tool 
to clinicians and as a measure of specific AD-related neurodegeneration for research purposes. Its greater utility 
may be achieved in conjunction with specific metabolic biomarkers of other neurodegenerative dementias and 
by the application of novel analytical tools.

Data availability
The datasets generated during and analyzed during the current study are available from the corresponding 
author on reasonable request and signing a data-sharing agreement. The dataset used from ADNI repository is 
available at: https://​adni.​loni.​usc.​edu.
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