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Recent years have seen a dramatic increase in item response models for measuring

response styles on Likert-type items. These model-based approaches stand in contrast

to traditional sum-score-based methods where researchers count the number of times

that participants selected certain response options. The multidimensional nominal

response model (MNRM) offers a flexible model-based approach that may be intuitive

to those familiar with sum score approaches. This paper presents a tutorial on the model

along with code for estimating it using three different software packages: flexMIRT®,

mirt, and Mplus. We focus on specification and interpretation of response functions.

In addition, we provide analytical details on how sum score to scale score conversion

can be done with the MNRM. In the context of a real data example, three different

scoring approaches are then compared. This example illustrates how sum-score-based

approaches can sometimes yield scores that are confounded with substantive content.

We expect that the current paper will facilitate further investigations as to whether

different substantive conclusions are reached under alternative approaches to measuring

response styles.

Keywords: likert-type items, nominal response model, multidimensional item response theory, response styles,

tutorial

INTRODUCTION

Likert-type items are ubiquitous throughout the social sciences. Some example uses of such items
include measurement of positive and negative affect (Watson et al., 1988), and personality traits
such as the Big Five (Goldberg, 1992) and self-esteem (Tafarodi and Swann, 2001). Despite the
popularity of Likert-type items, one critique focuses on the vulnerability of such items to response
styles, or peculiarity in how respondents use response options that are not relevant to item
content, including extreme responding (ERS; selection of the lowest or highest anchor), midpoint
responding (MRS; use of the middle anchor), acquiescence (ARS; agreement to the items), and so
on (Baumgartner and Steenkamp, 2001). Although the nature of response styles has been debated
for many decades (Cronbach, 1950; Couch and Keniston, 1961; Hamilton, 1968), recent research
suggests that response styles may be individual characteristics that have some level of stability over
time (Wetzel et al., 2016) and are consistent both within and across surveys or items from different
substantive traits (Javaras and Ripley, 2007;Wetzel et al., 2013). Yet, response stylesmay be sensitive
to the format of the Likert scale (Diamantopoulos et al., 2006; Weijters et al., 2010). Also, when
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response styles occur, they can reduce the validity of
measurements, possibly inducing illusory correlations among
variables, and distortion of mean differences across groups
(Baumgartner and Steenkamp, 2001; De Jong et al., 2008; Bolt
and Johnson, 2009; Buckley, 2009).

However, many of the most cited findings regarding response
styles’ demographic and personality correlates, cross-cultural
variability, and temporal stability have used a sum-score-based
approach to measurement (Hui and Triandis, 1989; Chen et al.,
1995; Baumgartner and Steenkamp, 2001; van Herk et al., 2004;
Johnson et al., 2005; Harzing, 2006). Specifically, a researchermay
simply compute the sum or mean number of times a participant
selected the endpoint categories to establish a measure of ERS.
Although easy to implement, this approach is not based on
an explicit measurement model and it is unclear under what
conditions it can sufficiently disentangle style from content
(e.g., see De Beuckelaer et al., 2010). Furthermore, conclusions
regarding the consequences of response styles may depend on the
methodology employed to measure them.

Alternatively, item response models can measure response
styles, and include, but are not limited to multiprocess models
(e.g., Thissen-Roe and Thissen, 2013; Khorramdel and von
Davier, 2014; Plieninger and Meiser, 2014; Böckenholt and
Meiser, 2017), unfolding models (Liu and Wang, 2019), and the
multidimensional nominal response model (MNRM; e.g., Bolt
and Newton, 2011; Kieruj and Moors, 2013; Falk and Cai, 2016).
Such approaches arguably rest upon testable assumptions and
can handle some situations that sum scores cannot (e.g., planned
missing data designs), and have numerous other advantages
(e.g., conditional standard errors for score estimates). We argue
that use of the MNRM can be similar to researchers’ intuitions
regarding sum scores and provides a suitable alternative. To
elaborate, suppose for ERS we assign a score of “1” to the
endpoint categories and “0” to intermediate categories when
determining how to create a sum score. These same 0 or 1 values
could be used to specify the scoring functions of the MNRM,
which determine how the order of categories for each item relate
to the latent traits. This strategy has recently appeared in the
methodology literature with item slopes, or “loadings,” being
fixed (Bolt and Newton, 2011) or varying across both style and
substantive traits (Falk and Cai, 2016). Thus, it is possible to
study whether some items are better for measuring a particular
construct, and whether certain content, item stems, or response
options are more likely to yield response styles (Deng and Bolt,
2017). The MNRM can also be used when a style, such as
socially desirable responding (SDR), is defined in a different
way across items (Kuncel and Tellegen, 2009). And recent work
illustrates the utility of the MNRM in investigating the effects of
response styles on the test construction process andmeasurement
precision of model-based scores (Adams et al., 2019).

Despite the connection between these variants of the MNRM
and sum scores, comparisons are rare, and further study of
response styles with the MNRM depends on the availability
of illustrative examples. One goal of this paper is to provide
a tutorial along with code for estimating the MNRM for
response styles. Thus, although tutorials are available for
multiprocess models (Böckenholt and Meiser, 2017), none are

apparently available for the MNRM. Schneider (2018) provided
code for Mplus (Muthén and Muthén, 1998-2017), yet for
a more constrained model analogous to that by Bolt and
Newton (2011). Falk and Cai (2016) provided R code in their
Supplementary Materials, yet their example was slow to estimate
and not easily adaptable to other measurement instruments.
Anecdotally, their presentation of theMNRMmay be challenging
to understand; here we draw explicit connections between
the MNRM and logistic regression, and with existing sum-
score-based approaches. The MNRM is now available within
flexMIRT R© (Cai, 2017) and mirt (Chalmers, 2012), and we
provide code in Supplementary Materials to estimate Falk and
Cai’s (2016) approach with these programs and with Mplus.

As context, it has been argued that measurement of response
styles is best done using a set of “heterogeneous” items
(Greenleaf, 1992; De Beuckelaer et al., 2010). We understand
heterogeneity to refer to content, in that items used to assess
response style should come from measurement instruments
meant to assess different domains and have low inter-item
correlations. Items may be drawn from standard inventories
(Weijters, 2006) or from vignettes (e.g., Bolt et al., 2014; Baird
et al., 2017). Such items, however, are not devoid of content, pairs
of items may be correlated, and individuals may respond in an
idiosyncratic way to some items. In contrast, the MNRM can be
fit to data intended to measure just a single substantive construct,
raising the question of how much content heterogeneity is
necessary. We provide an empirical example in which many
items with many response options measure a single substantive
construct, along with an illustration of the separation of style vs.
content scores for the MNRM and sum scores.

Finally, once the MNRM is estimated, there are several major
ways of estimating scores for the substantive and style traits
(often called scale scores), some of which require knowledge
of the full response pattern for each participant. Alternatively,
sometimes it is easier to generate an approximate scale score
through use of sum score to scale score translation tables (Thissen
et al., 2001). This scoring approach requires the researcher to only
compute a sum score and then use a table to find an approximate
corresponding scale score for the latent trait; the full response
pattern is not required. Our example provides an additional
comparison with the use of sum score to scale score conversion
for MNRM response style models. In what follows, we present
notation, a dataset, and details for computing sum scores and
estimating the MNRM. We focus heavily on interpretation of
the MNRM, anticipate common questions regarding definition
of scoring functions, touch on use of software, as well as briefly
discuss model fit. We then compare sum scores vs. two scoring
procedures for the MNRM.

EMPIRICAL ILLUSTRATION

Notation and Data
To introduce notation, suppose that i = 1, 2, . . . ,N people
respond to j = 1, 2, . . . , n items. Person i’s observed response
to item j is denoted yij. For measuring a substantive trait, the
response options are often coded in an ordinal fashion with k =

0, . . . ,Kj − 1 indexing the categories for item j. For convenience,
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TABLE 1 | Some important symbols used in this manuscript.

Symbol Purpose Notation omitting person

and/or item subscript

yij Person i’s observed response to item j. y or yj

tij Recoded response for person i and item j. t or tj

Kj Total number of categories for item j. K

vi,d Person i’s sum score composite for

construct d.

vd

xi,d Person i’s score on the latent trait for

construct d.

xd

aj,d Slope (or loading) for item j and

construct d.

ad

cj,k Intercept for item j and category k. ck

sj,kd Scoring function value for item j, category

k and construct d.

skd

additional commonly used symbols appear in Table 1 and will be
discussed in further detail as they appear. To reduce notational
clutter, we will omit item and person subscripts as often as
possible. However, inspection of Table 1 reveals that the number
of categories, slopes, intercepts, and scoring functions may vary
across items; latent traits or sum score composites may vary
across people; and observed responses (original or recoded) vary
across both people and items. Finally, any vectors or matrices in
our paper will appear in bold.

To make this example concrete, consider N = 586
participants that completed n = 35 items measuring quality of
life (QOL) on a 7-point Likert scale (Kj = 7 for all j). This
dataset was published by Lehman (1988) and is included in
online examples for flexMIRT R©. All items are coded such that
higher scores indicate higher QOL. Assuming the n items are
intended to measure a single underlying substantive construct,
a sum score composite for QOL is computed by adding up scores
for the items:

vQOL = y1 + y2 + · · · + yn =

n
∑

j=1

yj (1)

Sum scores also correlate perfectly with taking the mean of all
responses as an index of QOL.

To understand sum-score-based approaches to response
styles, consider recoding the original categories. For assessing
ERS as defined by responding to the lowest and highest
categories, we use yj to create tj using the following mapping:
{0, 1, 2, 3, 4, 5, 6} 7→ {1, 0, 0, 0, 0, 0, 1} . Specifically, when
creating tj, we may change all “0” and “6” responses to “1” and
all other responses to “0.” A sum-score-based measure of ERS is
then the composite:

vERS = t1 + t2 + · · · + tn =

n
∑

j=1

tj (2)

Responses from several participants for all 35 items, their recoded
response patterns, and their sum-score-based composites appear
in Table 2. Further details of this table will be discussed later.

TABLE 2 | Example response patterns, sum scores, and EAP scores.

QOL Scores

Subject Original response pattern vQOL SS EAPQOL EAPQOL

1 11111131116361131163661661161363466 105 −0.74 −0.64

2 00000600043324433564443564551452235 105 −0.74 −0.66

3 51112454246566624524556563466652344 145 0.40 0.05

4 66466555511131144644434660556555445 145 0.40 0.20

5 36644444244455221553545332566546556 147 0.47 0.28

6 63333444455555555555545665002055555 147 0.47 0.46

ERS Scores

Subject Recoded ERS response pattern vERS SS EAPERS EAPERS

1 00000000001010000010110110010010011 11 0.56 0.96

2 11111111100000000010000010000000000 11 0.56 0.80

3 00000000001011100000001010011100000 9 0.38 0.60

4 11011000000000000100000111001000000 9 0.38 0.41

5 01100000000000000000000000011001001 6 0.05 0.15

6 10000000000000000000000110110100000 6 0.05 0.16

MRS Scores

Subject Recoded MRS response pattern vMRS EAPMRS EAPMRS

1 00000010000100010001000000000101000 6 0.42 0.44

2 00000000001100011000001000000000010 6 0.42 0.21

3 00000000000000000000000001000000100 2 −0.38 −0.58

4 00000000000010000000010000000000000 2 −0.38 −0.54

5 10000000000000000001000110000000000 4 0.07 −0.04

6 01111000000000000000000000000000000 4 0.07 0.37

Dimension subscripts are as follows: QOL, quality of life; ERS, extreme response style;

MRS, midpoint response style.

In either example above, each item is given equal weight when
computing a sum score. For instance, item 2 will contribute the
same as item 1 to a QOL score, even if item 1 is more closely
related to QOL. Since the unique properties of each item are not
considered, it is also difficult to tell, for example, if the reason a
participant selected “6” for an item is because they are high on
the substantive construct, high on ERS, or the item is just easy
to endorse.

To later connect the MNRM with sum scores, suppose we
represent how the items were recoded in a vector called a scoring
function. The scoring function for construct d for a particular
item is denoted sd = [s1d s2d · · · sKd] and has as many elements
as there are categories. For this example, sQOL = [0 1 2 3 4 5 6]
represents QOLwhereas sERS = [1 0 0 0 0 0 1] represents ERS.
In other words, the scoring functions determine how an item’s
categories are related to a construct, and one application involves
how to (re-)code the original categories when computing sum
scores. The MNRM will use such scoring functions, but models
both substantive and response style constructs simultaneously
and can consider the properties of test items.

Multidimensional Nominal Response
Model (MNRM)
Model Representation and Interpretation
The MNRM is based in part on a unidimensional model by
Bock (1972). Recent work provides additional insight into the
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FIGURE 1 | Model with quality of life (QOL) and extreme response style (ERS).

interpretation and history of the MNRM (Thissen et al., 2010;
Thissen and Cai, 2016). We argue that knowledge of logistic
regression is sufficient for understanding the MNRM, and we
assume such knowledge in what follows.

Considermeasurement of QOL and ERS (Figure 1). Each item
response is regressed on QOL and ERS, which are correlated.
More formally, the predictor variables are a participant’s scores
on d = 1, 2, . . . ,D latent traits, x = [x1 x2 · · · xD]

T , and
the outcomes are responses to particular items. If this were
a confirmatory factor analysis (CFA) model, the relationship
between the latent traits and each of the items would resemble
a linear regression. For example, item j would be regressed on
both QOL and ERS, yj = ιj + λj,QOLxQOL + λj,ERSxERS + εj
where ιj is an intercept, λj,QOL and λj,ERS are loadings (or slopes)
for these latent dimensions, and εj is an error term. The CFA
framework, however, does not make sense. Aside from such a
model not being identified (QOL and ERS are redundant since
all items load on both factors), we would also not expect a
linear relationship between ERS and item responses. Using the
MNRM, we can decide the type of relationship between ERS
and the item responses, while specifying a different type of
relationship for QOL. If such a constrained version of theMNRM
is used, the model in Figure 1 becomes identified and makes
more substantive sense.

One way of representing the MNRM is that of a series of
logistic regressions. Suppose that we know that a response is in
one of two categories: k or k′. Under this setup, we define T∗

k,k′

as the probability that the response is category k, and T∗
k′ ,k

as the

probability that the response is k′ (note the different subscripts).
Since we are currently considering only two categories, these
two probabilities must sum to one: T∗

k,k′
+ T∗

k′,k
= 1. A logistic

regression under the MNRM can then be represented as the
log-odds of choosing category k instead of category k′:

log
T∗

k,k′

T∗
k′,k

= c∗k,k′ + a1 (sk1 − sk′1) x1

+ · · · + aD (skD − sk′D) xD (3)

To unpack the right-hand side of Equation (3), note that c∗
k,k′

=

ck − ck′ is an intercept with ck and ck′ as category-specific
intercepts, but are not of central importance to us at the present.
Next, ad is a slope for dimension d that represents the strength

of relationship between the construct and response. Thus, ad
is analogous to a factor loading, and conceptually similar to a
regression coefficient in a logistic regression. Finally, skd is a
scoring function value for category k and dimension d. Note the
re-use of notation in that the scoring function values, skd, are
the same as those used for sum scores in the previous section.
Returning to measurement of just QOL and ERS, Equation (3)
becomes the following:

log
T∗

k,k′

T∗
k′,k

= c∗k,k′ + aQOL
(

sk,QOL − sk′ ,QOL
)

xQOL

+aERS
(

sk,ERS − sk′ ,ERS
)

xERS (4)

QOL and ERS have slopes, aQOL and aERS, respectively, and
there is some difference in the scoring function values that
also determines whether xQOL or xERS is related to a choice
between k and k′. Further understanding can be obtained by
examining specific categories, using sQOL= [0 1 2 3 4 5 6],
and sERS= [1 0 0 0 0 0 1], and example item parameters:
aQOL = 0.46, aERS = 1.03, c0 = 0.00, c1 = 1.16, c2 = 1.17,
c3 = 2.56, c4 = 2.89, c5 = 2.96, c6 = 2.72. If we compare the
second (k = 1) and first (k′ = 0) categories, the expression in
(4) simplifies:

log
T∗
1,0

T∗
0,1

= c∗1,0 + aQOL
(

s1,QOL − s0,QOL
)

xQOL

+aERS
(

s1,ERS − s0,ERS
)

xERS

= c∗1,0 + aQOL (1− 0) xQOL + aERS (0− 1) xERS

= (c1 − c0)+ aQOLxQOL − aERSxERS

= 1.16+ 0.46xQOL − 1.03xERS (5)

Assuming aQOL and aERS are both positive, choice of k = 1 (vs.
k′ = 0) is positively related to the QOL dimension (aQOLxQOL
or 0.46xQOL) but negatively related to ERS (−aERSxERS or
−1.03xERS). That is, higher QOL results in a choice of this higher
category (consistent with higher scores indicating higher QOL),
but higher ERS may lead someone to be less likely to endorse
k = 1 since it is not an endpoint category, but k′ = 0 is. We can
also say that for a 1-unit increase in xQOL, there is a aQOL change
in the log-odds of choosing category 1 instead of category 0.

Consider another example comparing categories 0 and 2:

log
T∗
2,0

T∗
0,2

= c∗2,0 + aQOL (2− 0) xQOL + aERS (0− 1 ) xERS

= (c2 − c0) + 2aQOLxQOL − aERSxERS

= 1.17+ 2(0.46)xQOL − 1.03xERS (6)

Here choice of k = 2 vs. k′ = 0 is more indicative of QOL
(by 2aQOL = 2 × 0.46) since k = 2 is an even higher category
than k = 1 from the previous example. ERS retains the same
negative relationship with this pair of categories because k′ = 0
is an endpoint category, but k = 2 is not.
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TABLE 3 | Probability of response in each category at several values of the latent

traits.

Latent Traits Probability of Response, T (k|x)

xQOL xERS 0 1 2 3 4 5 6

−3 −3 0.03 0.60 0.15 0.15 0.05 0.01 0.00

0 −3 0.00 0.06 0.06 0.22 0.31 0.34 0.01

3 −3 0.00 0.00 0.00 0.03 0.16 0.70 0.10

−3 3 0.94 0.03 0.01 0.01 0.00 0.00 0.00

0 3 0.05 0.01 0.01 0.03 0.04 0.05 0.81

3 3 0.00 0.00 0.00 0.00 0.00 0.01 0.98

Finally, consider the following:

log
T∗
2,1

T∗
1,2

= c∗2,1 + aQOL (2− 1) xQOL + aERS (0− 0 ) xERS

= (c2 − c1) + aQOLxQOL

= 0.01+ 0.46xQOL (7)

Here, the log-odds of choosing k = 2 vs. k′ = 1 is related to
QOL by just aQOL, since k = 2 is only one category higher than
k′ = 1. ERS is apparently unrelated to a choice between these two
categories as neither is an endpoint category. Similarly, this same
relationship with ERS is also apparent for the choice of k′ = 0 vs.
k = 6 as both are endpoint categories.

The pairs of logistic regressions in the above examples are
estimated simultaneously, and another way to represent the
MNRM proposed by Thissen and Cai (2016) is as follows:

T
(

k
∣

∣x
)

=
exp (a1sk1x1 + a2sk2x2 + . . . + aDskDxD + ck)

∑K−1
m exp (a1sm1x1 + a2sm2x2 + . . . + aDsmDxD + cm)

(8)

This parameterization matches that used by flexMIRT R© (Cai,
2017) and the constrained version of the MNRM used by mirt
(Chalmers, 2012). Equation (8) traces the probability that a
response will be in category k at different levels of the latent
traits. If we consider the above example item parameters, we
can plug in particular values of the latent traits and examine
the resulting probabilities computed by T

(

k
∣

∣x
)

. We encourage
verifying understanding of Equation (8) by replicating the values
in Table 3. For example, when a participant is low (xQOL = −3)
on QOL, there is only a 0.03 proportion of the time we would
expect them to select the lowest category (k = 0) when ERS is
also low (xERS = −3), but a 0.94 proportion when ERS is high
(xERS = 3).

If we construct a two-dimensional grid along QOL and ERS,
we can then plot the probability of selecting each category
(the z-axis “P”) in three-dimensional space (Figure 2). Here
QOL ranges from −6 to 6 and ERS from −1 to 1, and darker
shades of blue indicate lower categories. As ERS increases, the
endpoint categories become more dominant response options—
participants are more likely to pick such categories even if they
are not very high or low on QOL. The intermediate categories

FIGURE 2 | Category response functions for Item 2 from a model with QOL

and ERS.

(e.g., k= 1 and k= 5), become more dominant response options
as ERS decreases (For two-dimensional slices of such plots, see
Falk and Cai, 2016).

Choice of Scoring Functions
Researchers have much flexibility in choosing scoring functions.
We have focused on ERS, but only because it is so common in
the literature. For instance, if SDR is defined by selection of a
particular category, or if the social desirability of all categories
for an item is evaluated by an independent set of raters, then it
may also be possible to define scoring functions such that higher
values correspond to higher SDR. Falk and Cai (2016, p. 334,
Table 2; see also Wetzel and Carstensen, 2017) provide this and
additional examples for a 5-category item, noting that “A useful
heuristic is to consider scoring functions analogous to contrasts
used for categorical predictors in linear models (e.g., regression,
analysis of variance)” (p. 331). To provide other examples, it
may be possible to conceptualize a tendency to stay close to
the middle of the response scale with a scoring function such
as s = [0 0 1 1 1 0 0] or by defining MRS as exclusive use of
the middle category, s = [0 0 0 1 0 0 0]. The definition of s
may therefore depend heavily on substantive theory and a certain
extent on model fit or some other criterion. The flexibility of the
MNRM in this case is both a blessing and curse. However, we
argue that substantive researchers who use sum scores are already
making similar assumptions about scoring functions.

Part of the above analogy to contrast coding in linear models
refers to linear dependence among the scoring functions. The
model in Figure 1 is estimable because QOL and ERS have
different scoring functions. We cannot add a third construct
with a scoring function of [0 1 1 1 1 1 0] as this would be
redundant with our definition of ERS. If there are few categories,
say 4, then modeling acquiescence may be controversial with
s = [0 0 1 1] as this may be too similar to s for a substantive
trait. Thus, this advice is similar to the choice of categorical codes
in linear regression to avoid redundancy and multicollinearity
among predictors, else risk estimation problems. Even if a model
is identified, parameter estimates may be difficult to find if there
are not enough good items and participants. An ad-hoc way
to check for identification is to begin model estimation again
with different starting values for parameters. Convergence to
a different solution provides evidence that the model may not
be identified.
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In many cases, the most interpretability for scoring functions
may be offered by using integer values starting with 0 as
a reference category on one end of the latent continuum
and higher integer values representing responses toward the
other end of the continuum. For instance, if we instead used

[1 − 1 − 1 − 1 − 1 − 1 1] for assessing ERS, Equations (5)
and (6) would contain terms such as −2ǎERSxERS instead of
−aERSxERS where ǎERS = 0.5aERS. While this is an equivalent
model (−2ǎERS = −aERS), the scaling of the slope changes to
compensate for changes in the scoring functions, and software
would yield ǎERS = 0.515 as output instead of aERS = 1.03.
Use of 1 and 0 instead for ERS makes such slopes analogous to
those obtained from a logistic regression where the ERS factor
is standardized (since the model is usually identified by fixing
the variance of the ERS factor to one). That is, a one standard
deviation change in ERS corresponds to a aERS change in the log-
odds of obtaining an observed response for an endpoint vs. non-
endpoint category. Convention dictates that scoring function
values used for QOL, [0 1 2 3 4 5 6], are the same as those
used by the generalized partial credit model (GPC; Muraki,
1992).

A limitation is that it may not be easy to directly
compare item slopes from dimensions that have different
scoring functions. For example, it may be tempting to
say that ERS is more strongly related to the item than
is QOL since aERS = 1.03, but aQOL = 0.46. Such
an interpretation is imprecise as this ignores the fact that
the item has seven categories for measuring QOL, but
essentially only two for ERS due to its scoring function
definition. Thus, the item still may provide more information
regarding the participant’s standing on QOL than it does
for ERS, and additional work may still be required to
further examine item information in the context of such a
multidimensional model. It may instead be more worthwhile
to compare slopes across items for a single dimension, such as
comparing which items are most closely related to ERS (e.g.,
Deng and Bolt, 2017; Ju and Falk, 2019).

Model Estimation and Software
The models we report were estimated using maximum marginal
likelihood with the Expectation-Maximization algorithm (EM-
MML; Bock and Aitkin, 1981), though other algorithms are a
good option when there are more than two or three latent traits
(Cai, 2010). To estimate the model in Figure 1, scoring functions
must be specified such that one dimension represents QOL and
the other ERS. The various software programs accomplish this in
different ways, and we further elaborate on some of these details
in Supplementary Materials.

flexMIRT®

It is possible to tell flexMIRT R© to fix the scoring functions of the
MNRM to prespecified values. These values appear in the first
column of a K × (K − 1) matrix, Ta,d. The subscript a indicates
that this matrix is relevant for slopes, and d specifies a latent
dimension. For example, for QOL and a 7-category item, this is a

7× 6 matrix and corresponds to the following:1

Ta,QOL =





















0 0 0 0 0 0
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
4 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0





















If we instead wish to model ERS with a scoring function of
sERS = [1 0 0 0 0 0 1], we may specify different values for the
first column of the relevant matrix:

Ta,ERS =





















1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0





















To use these matrices as input to flexMIRT R©, we use what
resembles a block-diagonal super-matrix:

[

Ta,QOL 0

0 Ta,ERS

]

where 0 is a matrix of zeros of appropriate dimensions.
An example of such a matrix is found in the control file
“QOL_Calib_1dimERS.txt,” and annotated control files further
elaborate on exactly how to input this matrix. If additional
dimensions are required, the super-matrix provided as input can
be expanded. For instance, if we add a third factor, MRS, with
scoring function sMRS = [0 0 0 1 0 0 0], this is accomplished
in the “QOL_Calib_1dimERSMRS.txt” file.

mirt
For the mirt package in R (see “mirtcode.R”), the models
discussed here are specified such that all items load on all
dimensions and the GPC model is chosen as the item type for
all items. Custom scoring functions for each dimension are input
using a special argument, “gpcm_mats.” This argument takes a
list of matrices, each corresponding to a Kj × D matrix. For a
model with QOL, ERS, and MRS, this matrix may resemble the
following for a 7-category item:





















0 1 0
1 0 0
2 0 0
3 0 1
4 0 0
5 0 0
6 1 0





















1The logic underlying this representation can be found in other resources (e.g.,

Thissen et al., 2010) and provides additional flexibility for the MNRM.
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Thus, each column corresponds to the scoring function for
a particular latent dimension. Here the QOL, ERS, and
MRS scoring functions are in the first, second, and third
columns, respectively.

Mplus

Mplus uses a multidimensional version of Bock’s (1972) nominal
categories model:

T
(

k
∣

∣x
)

=
exp (ãk1x1 + ãk2x2 + . . .+ãkDxD + ck)

∑K−1
m exp (ãm1x1 + ãm2x2 + . . .+ãmDxD + cm)

(9)

where ãkd is a slope for category k and dimension d2. Each ãkd is a
slope that represents change in the log-odds of choosing category
k over some reference category, k′ (due to a 1 unit change
in xd). Thus, these slopes have a familiar logistic regression
interpretation. To see the connection between this and Equation
(8), notice that category slopes are equivalent to the product of
an overall slope for dimension d and scoring function value,
ãkd = adskd. Although it is typical to use the first category as
the reference category (i.e., ã0d = 0 for all d and c0 = 0),
Mplus uses the last category and sets its slope and intercept to
zero (ã(K−1)d = 0 for all d and c(K−1) = 0) − a default that
cannot be changed. Thus, standard Mplus output is analogous to
setting the last scoring function value for each dimension, s(K−1)d,
to zero, which may not be congruent with all scoring functions
of interest. Use of Mplus therefore requires additional work to
obtain the desired scoring functions and overall item slopes (e.g.,
Huggins-Manley and Algina, 2015; Schneider, 2018).

To obtain the GPC model for measuring QOL, a strategy
employed byHuggins-Manley and Algina (2015) starts by reverse
coding the items, resulting in the original first category now
coded as the last category (its scoring function value and intercept
fixed to zero). It may then be easiest to consider reversing the
order of all scoring function values we have previously presented
in this manuscript. For QOL, we can use equality constraints
to obtain a scoring function that is reversed and with a zero
in its last position: s =

[

6 5 4 3 2 1 0
]

. Determining how to
impose constraints may be easiest if considering a category slope
with 1 (or −1) as its corresponding scoring function value, and
imposing constraints relative to that slope. In this case, ã5,QOL =

aQOLs5,QOL = aQOL (1) = aQOL, or that this category slope
is equivalent to the overall slope for this item on the QOL
dimension. Next, consider ã4,QOL = aQOLs4,QOL = aQOL (2) =

2aQOL. After a little algebra, we see that, ã4,QOL = 2ã5,QOL,
and this constraint can be implemented in the CONSTRAINT
section of the Mplus control file. In addition, ã3,QOL = 3ã5,QOL,
ã2,QOL = 4ã5,QOL, and so on. In brief, (K − 1) constraints per
dimension are typically required for each item.

For measuring MRS, zero is in the last position for the
scoring function, regardless of whether the categories are in
reverse order: s =

[

0 0 0 1 0 0 0
]

. Thus, all other category

2We use a tilde here to avoid notational confusion with “a” from the Thissen and

Cai (2016) parameterization, though it is common to use “a” with the original

nominal categories model.

slopes for MRS (except for the middle category) may be fixed
to zero. Recognizing that the last scoring function value must
always be zero, for ERS we may instead subtract 1 from the
scoring function values and use: s =

[

0 −1 −1 −1 −1 −1 0
]

.
The category slopes for the fivemiddle categories can be set equal,
and the category slope in the first position fixed to zero. Note
however, that any of the middle category slopes are equivalent
to −aERS, for example, ã3,ERS = aERSs3,ERS = aERS(−1) =

−aERS. The MNRM behaves similar rules as other factor analytic
models in that some factors may be reflected (i.e., higher values
on the latent variable may mean lower scores on the construct,
depending on whether loadings are positive or negative). To
avoid reflection for ERS, we use negative starting values for the
middle category slopes. Finally, remember that intercepts may
appear in the opposite order in the output, and it may be desirable
to convert one of the category slopes to the overall slope, ad,
for each dimension. Re-ordering of intercepts and this slope
conversion can be facilitated by defining new parameters in the
CONSTRAINT section of the Mplus control file.

Results of Fitted Models
A summary of fit for models with all combinations of ERS and
MRS (one style dimension, both, or neither) appears in Table 4,
based on output from flexMIRT R©. The limited information
fit statistic, C2, was used based on Cai and Monroe (2014),
along with RMSEA (e.g., Maydeu-Olivares and Joe, 2014) and
a Tucker-Lewis Index (TLI; Cai and Monroe, 2013). Inspecting
AIC and BIC, the model with both ERS and MRS fit best as
these values are at their lowest. If one prefers, nested models
could be compared with a likelihood ratio test (but see Maydeu-
Olivares and Cai, 2006). For example, the QOL only model can
be obtained from any of the other models by fixing all response
style slopes to zero and not estimating correlations between QOL
and other dimensions. The likelihood ratio tests for comparing
this model to that with both ERS and MRS proceeds by taking
the difference in −2 times the log-likelihood (−2LL) from these
twomodels (67424–63958) and comparing to a central chi-square
distribution with degrees of freedom equal to difference in the
number of free parameters (318–245). In this case, themodel with
both ERS and MRS fits better, χ2 (73) = 3466, p < 0.001. It
would not be possible, however, using this approach to compare
the models containing only ERS or MRS, as these models are
not nested.

We will present scoring results based on the ERS and MRS
model, yet none of the models had stellar fit (e.g., C2 rejects
all models, and associated fit indices look mixed). However,
guidelines for RMSEA and TLI in this context have yet to be
developed and may not be comparable to their counterpart in
structural equation modeling.

As item parameters are used in scoring, it may be useful to
also inspect estimates before scoring results. Full output from
flexMIRT R© and Mplus appears in Supplementary Materials,
and the provided code for mirt can also be used to obtain item
parameter estimates. In Figure 3, we provide short snippets of
output from all three programs so that the reader may more
easily identify slope estimates from the MNRM. Highlighted
are slope estimates for QOL (cyan), ERS (green), and MRS
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TABLE 4 | Summary of model fit for quality of life data.

Model C2 df p RMSEA TLI AIC BIC −2LL np

QOL 5,266 560 <0.01 0.12 0.85 67,914 68,985 67,424 245

QOL, MRS 4,158 524 <0.01 0.11 0.88 66,887 68,116 66,325 281

QOL, ERS 3,694 524 <0.01 0.10 0.89 65,570 66,799 65,008 281

QOL, ERS, MRS 2,761 487 <0.01 0.09 0.92 64,594 65,984 63,958 318

QOL = quality of life; ERS = extreme response style; MRS = midpoint response style; np = number of estimated parameters.

(gray). In general, slope estimates will be nearly the same across
programs, yet some small discrepancies can be seen at the
second decimal place. Estimation options for the three programs
may be different (e.g., the algorithm used to obtain estimates,
number and spacing of quadrature points, rules for judging
convergence of the algorithm, and so on) and may be responsible
for such differences. Drastically larger discrepancies, should the
user run estimation using more than one program, may be more
indicative of an identification problem or poor starting values
for estimation. Default approaches for estimating standard errors
also vary across programs, and it is important for the user to
choose an approach that is computationally feasible, but also
reasonably accurate. Although it is outside the scope of this paper
to make a particular recommendation, standard error estimation
is the topic of much recent research (Tian et al., 2013; Paek and
Cai, 2014; Pritikin, 2017; Chalmers, 2018).

MNRM-Based Scoring
Once an appropriate model is estimated, scoring of individual
participants may proceed. Such scores may be used to make
decisions about individual participants or used in subsequent
analyses (Curran et al., 2018). In what follows, we explain
such scoring procedures in a heuristic way and refrain from
the underlying mechanics (e.g., Thissen et al., 2001). However,
estimated item parameters for category response functions in
Equation (8) play an intricate role in determining an individual’s
score estimate on the underlying latent traits. Different values
of item parameters would determine different shapes of category
response functions (Figure 2). Responses to multiple items with
a variety of category response function shapes then allows
triangulation on the participant’s location within the latent space.
The below scoring procedures are illustrated with flexMIRT R© in
Supplementary Materials.

Response-Pattern-Based EAP Scores
The full response pattern can be used to obtain Expected a
Posteriori (EAP) scores (Bock and Mislevy, 1982). In practice,
maximum likelihood (ML) or Maximum a Posteriori (MAP)
are also used, yet EAP scores are arguably easy for a computer
to calculate from a multidimensional model and have good
properties in terms of precision and recovery of scores. EAP
scores are produced using a Bayesian approach that entails
finding the mean of a posterior distribution for each participant.
Of most importance to the current paper, we note that the
posterior for EAP scores depends on the full response pattern.
This means that two (or more) individuals may share the same

sum scores on substantive and/or response style traits, but may
have different EAP scores. Sum scores and pattern-based EAPs
will diverge to the extent that item slopes and intercepts vary
across items as some items may be better at differentiating
among individuals at different levels of the latent trait(s).
Table 2 provides several examples of this phenomena, including
participants who share the same sum scores but different EAPs.

Sum-Score-Based EAP Scores
In contrast to EAP scores based on the full response pattern, sum-
score-based EAP scores provide estimates of a posterior mean
that only requires knowledge of an individuals’ sum score. This
means that individuals with the same sum scores will have the
same estimated EAP scores under this approach. For instance,
note in Table 2 how participants with the same sum score will
also have the same sum-score-based EAP estimate. In addition,
this approach facilitates pre-computation of sum score to EAP
translation tables that may be used to provide an EAP score
without the use of scoring software, which can be convenient in
some applied settings. Sum-score-based EAPs provide estimates
that can preserve some, but not all features of the non-linear
relationship between the latent trait and the item responses.
As details for sum score to EAP translation for response style
models have not yet been previously presented, we provide
additional details on this procedure in the Appendix at the end
of this manuscript.

Summary of Scoring Results
Figure 4 presents scatterplots comparing scores within each
scoring method, with the top row corresponding to sum scores,
middle row to sum-score-based EAPs, and the bottom row
to response-pattern-based EAPs. A few patterns are worth
mentioning. First, QOL and ERS have a distinct U-shaped non-
linear relationship for both sum scores and sum-score-based
EAPs, such that those low or high on QOL tend to have high ERS
scores. Such a pattern would be expected if it were difficult for
such methods to disentangle ERS from the construct of interest.
Another intuitive pattern arises for QOL and MRS—such that
those who have intermediate QOL scores tend to have high MRS
scores. Finally, a negative relationship is observed between ERS
and MRS. Indeed, it is not possible for participants to use the
endpoint categories at the same time as the middle categories.
However, whether this negative relationship between ERS and
MRS is due to an actual negative relationship between the two
underlying constructs or is an artifact of the sum score procedure
being confounded with substantive content is not immediately
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FIGURE 3 | Slope estimate output for the first three items.

apparent until one examines response-pattern-based EAPs. This
general pattern of results changes for response-pattern-based
EAPs. That is, the scatterplots on the bottom row appear to depict
clouds of points where a systematic pattern is more difficult to
detect. This latter result is also consistent with estimated factor
correlations from the fitted model that are somewhat small:
−0.15 for QOL and ERS, −0.17 for QOL and MRS, and 0.18 for
ERS and MRS.

Figure 5 compares across scoring methods, but within each
latent dimension. The first row corresponds to QOL, the second
to ERS, and the final to MRS. In general, there is a very strong
positive relationship between the different scoring methods for
the same dimension. Sum score and sum-score-based EAPs have
a deterministic and non-linear relationship (the middle plot on
each row; 0.95 < rs < 0.99). EAPs correlate strongly with both
sum scores and sum-score-based EAPs, but have a far from
perfect relationship. For instance, Pearson correlations between
EAPs and sum scores are 0.94 for QOL, 0.89 for ERS, and 0.88 for
MRS and between EAPs and sum-score-based EAPs are 0.95 for
QOL, 0.94 for ERS, and 0.91 for MRS.

Finally, as an anonymous reviewer pointed out, both EAP
and sum-score-based EAP scoring also provide standard errors
for each score estimate (Figure 6). Such standard errors provide
some potentially useful information regarding the precision of
the score estimates, and sum scores do not readily provide this
same information. For example, we see that standard errors for
ERS and MRS tend to be larger than that for QOL, possibly
indicating that it is more difficult to obtain accurate score
estimates for response styles. In addition, standard errors for
pattern EAP scores for ERS and MRS tend to be smaller than
those based on sum scores. Standard errors also tend to be
lowest at higher levels of ERS or MRS (e.g., between 1 and

2), suggesting that we have better score estimates for those
who tend to be somewhat high on those constructs (relative to
the mean the sample). In contrast, QOL appears to be most
accurately measured for those who are slightly low on QOL (e.g.,
close to−1).

Sum Score Equivalence: Separate
Unidimensional Partial Credit Models
At the outset of our paper, we noted that it may be difficult
to tell whether sum scores explicitly correspond to a particular
measurement model. As obvious from the previous section, sum
scores do not perfectly correspond to the modeling procedure
outlined by Falk and Cai (2016), but provide a useful heuristic
from which to scaffold to use of the MNRM. Since sum scores are
sufficient statistics for estimating a unidimensional partial credit
model (PCM; Masters, 1982), it is tempting to conclude that sum
scores are equivalent to the procedure by Bolt and Newton (2011)
in which slopes are equal across items or a variant that further
constraints intercepts equal across items (a multidimensional
rating scale model; Andrich, 1978)3. Aside from model fit
deteriorating in some cases, neither of these approaches results
in pattern-based EAP scores that are perfectly (albeit non-
linearly) related to sum scores. The MNRM-based models that
are most similar to sum scores are separate unidimensional
models. Specifically, a unidimensional PCM using the scoring
function for just QOL and constraining all item slopes to be
equal would result in EAP scores that have a perfect Spearman
rank correlation with sum scores for QOL. In addition, a
unidimensional PCM with an ERS scoring function and equal

3Constraints to estimate these models appear in our flexMIRT R© control files and

are commented out.
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FIGURE 4 | Scatter plots of QOL, ERS, and MRS scores within each scoring method.

slopes equal across items results in EAP scores with a perfect
(non-linear) relationship with ERS sum scores. There does not
appear to be a model that allows for simultaneous testing of sum-
score-based approaches, making it impossible to evaluate use of
sum scores based on grounds of model fit.

DISCUSSION AND CONCLUSION

We have provided examples on the use and interpretation of
the MNRM for measuring response styles, along with code
for estimating the model and producing scores. We have also
provided details on how sum-score-based EAP scores can be
obtained from the MNRM. These examples were presented
against the backdrop of comparing a popular sum score approach

to two scoring methods based on the MNRM: response-pattern-
based EAP and sum-score-based EAP.

Although the empirical example contained data from 35 items
that are intended to measure a single underlying construct, EAP
scores from the MNRM appeared to allow separation of style and
content. In contrast, both sum scores and sum-score-based EAPs
appeared to show a confounding of style and content. Estimates
of the correlation among latent traits indicated that ERS andMRS
were weakly related to each other and to QOL. These illustrations
highlight that it is insufficient to merely examine correlations
among sum scores for response styles and substantive constructs.
Visual aids may help in identifying how style is confounded
with content.

This result seemingly contrasts recommendations that
response styles need to be measured from heterogeneous items
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FIGURE 5 | Scatter plots of QOL, ERS, and MRS scores across scoring methods.

(Greenleaf, 1992; De Beuckelaer et al., 2010). De Beuckelaer
et al. (2010) refer to approaches that measure response styles
using items from the substantive constructs of interest as
“ad-hoc,” and are skeptical when style is measured using items
with modest inter-item correlations (e.g., 0.20–0.27). Yet, we
also do not dispute that a set of heterogeneous items may be
best for measuring response styles and seek to reconcile this
discrepancy. The MNRM may have a relative advantage over
sum score approaches in separating style and content, and it
is still advisable to have some items that are heterogeneous. In
addition, the ability to have loadings and intercepts that vary
across items may represent a distinct kind of heterogeneity. For
instance, provided that items vary substantially in how easy they
are to endorse and are also more or less strongly related to the

substantive trait, a model-based approach such as the MNRM
may be able to disentangle style from content from a set of items
that are relatively homogenous in terms of content coverage.

Caution is warranted to not over-generalize the above results
as the example was intended for didactic purposes in illustrating
the MNRM. Assessing fit for such models is challenging, and
we suspect that a better model may require more than one
substantive dimension, and some previous illustrations have
focused on bi-factor models for QOL (e.g., Gibbons et al., 2007).
Thus, one might reasonably argue that the items used in this
example do have some content heterogeneity. In addition, a
full bi-factor nominal model reveals that lower categories for
several QOL items may be indistinguishable or not perfectly
ordinal. However, we note that the best fitting response style

Frontiers in Psychology | www.frontiersin.org 11 February 2020 | Volume 11 | Article 72

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Falk and Ju Response Styles Nominal Response Model

FIGURE 6 | Scatter plots of QOL, ERS, and MRS scores and standard errors.

model studied here (QOL, ERS, and MRS) fits better according
to AIC and BIC than a bi-factor model using the GPC or
unconstrained nominal model. Furthermore, the addition of ERS
and MRS to a bi-factor GPC model yields a similar pattern
of EAP scores as in Figure 54. Thus, one logical alternative
modeling choice (bi-factor model with ERS and MRS) would
have yielded similar conclusions. Still, it is possible that other
measurement instruments, especially those with fewer items and
response options, may not allow such a clean separation of style
and content.

Conclusions regarding which approach is best must also be
tied to evidence for validity, and we caution the reader that

4Results of these models are available upon request.

model fit is only one possible aspect. We present the MNRM
with a concrete example that compares it to sum scores and
provide examples and information to allow applied researchers
to more widely use the model in practice for such validity
investigations. We withhold arguing that the current approach
is the best for modeling response styles, as there have recently
emerged a number of alternatives (e.g., Plieninger and Meiser,
2014; Böckenholt and Meiser, 2017). However, the MNRM and
the majority of similar latent trait models are most appropriate
when there are multi-item measures of constructs, and typically
assume what is known as a reflective measurement model (Bollen
and Lennox, 1991). That is, it is reasonable to assume that
underlying substantive constructs (and response styles) cause
people to respond to items in a certain way. If either of these
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conditions does not hold, it may still be possible to use a latent
model for extracting information about response styles, often
from a separate set of items, and then make corrections to
the [possibly sum score-based] responses for the substantive
constructs of interest (Greenleaf, 1992; De Jong et al., 2008; van
Rosmalen et al., 2010). In addition, more alternatives include the
use of a separate dedicated set of items called anchoring vignettes
(Bolt et al., 2014; Baird et al., 2017) or hybrid approaches where
items that do not belong to the construct of interest are used to
form sum score indicators for use in covariance structure analysis
(Weijters et al., 2008). However, we note that researchers have
done little to make comparisons among the plethora of extant
response style models. A few examples provide some evidence
for modeling approaches similar to what we use here (e.g., Deng
et al., 2018; Schneider, 2018), but it is too early to draw definitive
conclusions. The question of how to best disentangle response
style from the construct(s) of interest thus remains an important
issue, and we hope that the current manuscript will facilitate
future comparisons with such alternatives.

APPENDIX: SUM SCORE TO EAP
TRANSLATION

Here we provide details on sum-score to EAP translation for
response styles and the Multidimensional Nominal Response
Model (MNRM). We currently consider the case where all items
load on the style dimensions. We follow similar notational
conventions as that found in the main text associated with
this paper.

For EAP scores (Bock and Mislevy, 1982), the mean of the
posterior distribution is given by the following:

EAP (x)=

∫

L
(

y
∣

∣x
)

φ (x) xdx
∫

L
(

y
∣

∣x
)

φ (x) dx
(10)

where L
(

y
∣

∣x
)

is the likelihood of the response pattern y given
scores on the latent traits x, and φ(x) is a prior distribution—
usually the multivariate normal density function based on
the mean and variance-covariance of the latent traits. The
integrals can be approximated using quadrature or Monte Carlo
integration. Alternatively, with high-dimensional models, the
mean of a large number of imputations from the posterior can
be taken as the EAP estimate.

For sum-score-based EAPs, here we follow similar notational
conventions as Cai (2015), though we do not consider item
clusters nor seek to reduce the dimensions of integration as
was done in this previous paper. For simplification, we also
omit participant subscripts, i. Let x =

[

η ξ
]

indicate that
the latent traits are partitioned into a factor of interest, η, and
nuisance factors, ξ . In other words, η = xd, corresponds to some
dimension d that is of interest for scoring purposes.

Explicit inclusion of custom item weights accomplishes the
following two steps when conducting sum score to EAP scoring.
First, weights, sjd, for item j on dimension d are used for recoding
item responses. Buckley (2009) presents an expression for this
recoding for response styles and that we modify for our purposes:

ujd
(

yj
)

=
∑Kj−1

k=0
sj,kd1

(

yj = k
)

, where 1(yj = k) is an indicator
function that equals one when yj = k and zero otherwise. Such
recoded variables are used to form sum scores for dimension d:
vd =

∑n
j=1 ujd

(

yj
)

. Second, we may re-define category response

functions for dimension d,

Td
j (m|η, ξ) =

Kj−1
∑

k=0

1
(

ujd
(

k
)

= m
)

T
j
(k|η, ξ ) (11)

where m ∈ sjd, and Tj

(

k
∣

∣η, ξ
)

is short-hand notation for
the category response function for item j (see Equation 8 in
the main text). In other words, m is some possible recoding
of the Kj categories for item j. For the examples in this
paper, for a single item a participant can obtain an ERS
score of “0” by selecting a category other than the endpoints,
TERS
j (0|η, ξ) = Tj (1|η, ξ)+Tj (2|η, ξ)+Tj (3|η, ξ)+Tj (4|η, ξ)+

Tj (5|η, ξ) , and a score of “1” by selecting an endpoint

category, TERS
j (1|η, ξ) = Tj (0|η, ξ) + Tj (6|η, ξ). Note that

flexMIRT R© (Cai, 2017) does not automatically do such coding
unless item weights are specified, even if the MNRM is used.
Otherwise, item categories are treated as ordinal. As a result,
custom item weights may only make sense for dimension d,
multiple scoring runs may be needed if dimensions have different
scoring functions, and scores for other dimensions may be
ignored as necessary. In such a case, the model does not
change—only the code used to extract sum scores converted to
scale scores.

TABLE 5 | Parameters for three items measuring QOL and ERS.

aQOL aERS c1 c2 c3 c4 c5 c6 c7

Item 1 0.80 1.68 0.00 1.84 2.39 3.57 3.94 3.64 2.49

Item 2 0.46 1.03 0.00 1.16 1.17 2.56 2.89 2.96 2.72

Item 3 0.49 1.49 0.00 1.50 1.97 2.30 2.95 2.65 1.61

TABLE 6 | Ordinates of recoded category response functions and quadrature

weights evaluated over the 3 × 3 direct product rectangular quadrature points for

the three items.

η −2 −2 −2 0 0 0 2 2 2

ξ −1 0 1 −1 0 1 −1 0 1

W (x) 0.019 0.046 0.040 0.215 0.361 0.215 0.040 0.046 0.019

TERS1 (0|η, ξ) 0.997 0.997 0.987 0.910 0.916 0.722 0.259 0.274 0.082

TERS2 (0|η, ξ) 0.978 0.965 0.924 0.853 0.779 0.606 0.426 0.310 0.164

TERS3 (0|η, ξ) 0.994 0.994 0.987 0.901 0.901 0.792 0.318 0.317 0.163

TERS1 (1|η, ξ) 0.003 0.003 0.013 0.090 0.084 0.278 0.741 0.726 0.918

TERS2 (1|η, ξ) 0.022 0.035 0.076 0.147 0.221 0.394 0.574 0.690 0.836

TERS3 (1|η, ξ) 0.006 0.006 0.013 0.099 0.099 0.208 0.682 0.683 0.837

η is for ERS (extreme response style), and ξ is for QOL (quality of life).
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We then define the likelihood for x =
[

η ξ
]

for response
pattern y and relevant for scoring dimension d as the following:

Ld
(

y
∣

∣η, ξ
)

=

n
∏

j=1

Td
j (ujd(yj)|η, ξ ) (12)

The sum-score-based likelihood for dimension d is then:

Ld (vd|η, ξ) =
∑

vd=||y||
d

Ld
(

y
∣

∣η, ξ
)

(13)

where
∣

∣

∣

∣y
∣

∣

∣

∣

d
=

∑n
j=1 ujd

(

yj
)

is short-hand notation for the sum

score for dimension d, based on response pattern y. The sum in
(13) is therefore over all response patterns that would yield sum
score vd on dimension d. Assuming a prior distribution, φ (η, ξ),

the normalized joint posterior of x =
[

η ξ
]

for sum score vd is:

p (η, ξ |vd) =
Ld (vd|η, ξ) φ (η, ξ)

p (vd)
(14)

where p (vd) is the marginal probability of sum score vd:

p (vd) =

∫∫

Ld (vd|η, ξ) φ (η, ξ) dξdη. (15)

Since we are interested in the sum-score-based EAP score for
only η, we may integrate the posterior over ξ to obtain a marginal
posterior for η,

p (η|vd) =
1

p (vd)

∫

Ld (vd|η, ξ) φ (η, ξ) dξ (16)

TABLE 7 | Accumulating sum score likelihoods.

Quadrature grid for (η, ξ )

INITIALIZATION OF SUM SCORE LIKELIHOODS WITH ITEM 1

η −2 −2 −2 0 0 0 2 2 2

ξ −1 0 1 −1 0 1 −1 0 1

LERS1 (0|η, ξ) = TERS1 (0|η, ξ) 0.997 0.997 0.987 0.910 0.916 0.722 0.259 0.274 0.082

LERS1 (1|η, ξ) = TERS1 (1|η, ξ) 0.003 0.003 0.013 0.090 0.084 0.278 0.741 0.726 0.918

ADDING ITEM 2 TO EXISTING SUM SCORE LIKELIHOODS

LERS2 (0|η, ξ) = LERS1 (0|η, ξ) TERS2 (0|η, ξ) 0.975 0.962 0.911 0.776 0.713 0.438 0.110 0.085 0.014

LERS2 (1|η, ξ) = LERS1 (0|η, ξ) TERS2 (1|η, ξ) + LERS1 (1|η, ξ) TERS2 (0|η, ξ) 0.025 0.038 0.088 0.211 0.268 0.453 0.464 0.414 0.220

LERS2 (2|η, ξ) = LERS1 (1|η, ξ) TERS2 (1|η, ξ) 0.000 0.000 0.001 0.013 0.019 0.110 0.426 0.501 0.767

ADDING ITEM 3 TO EXISTING SUM SCORE LIKELIHOODS

LERS3 (0|η, ξ) = LERS2 (0|η, ξ) TERS3 (0|η, ξ) 0.970 0.957 0.899 0.700 0.643 0.347 0.035 0.027 0.002

LERS3 (1|η, ξ) = LERS2 (0|η, ξ) TERS3 (1|η, ξ) + LERS2 (1|η, ξ) TERS3 (0|η, ξ) 0.030 0.043 0.099 0.266 0.312 0.450 0.223 0.189 0.047

LERS3 (2|η, ξ) = LERS2 (1|η, ξ) TERS3 (1|η, ξ) + LERS2 (2|η, ξ) TERS3 (0|η, ξ) 0.000 0.000 0.002 0.033 0.043 0.181 0.452 0.442 0.309

LERS3 (3|η, ξ) = LERS2 (2|η, ξ) TERS3 (1|η, ξ) 0.000 0.000 0.000 0.001 0.002 0.023 0.290 0.342 0.642

TABLE 8 | Adding weights and integrating over the nuisance dimension.

Quadrature grid for (η, ξ )

η −2 −2 −2 0 0 0 2 2 2

ξ −1 0 1 −1 0 1 −1 0 1

MULTIPLY SUM SCORE LIKELIHOODS BY WEIGHTS W (x)

LERS (0|η, ξ)W (x) 0.018 0.044 0.036 0.151 0.232 0.075 0.001 0.001 0.000

LERS (1|η, ξ)W (x) 0.001 0.002 0.004 0.057 0.113 0.097 0.009 0.009 0.001

LERS (2|η, ξ)W (x) 0.000 0.000 0.000 0.007 0.016 0.039 0.018 0.020 0.006

LERS (3|η, ξ)W (x) 0.000 0.000 0.000 0.000 0.001 0.005 0.011 0.016 0.012

η

−2 0 2

SUMMING OVER ξ
∑

ξ L
ERS(0|η, ξ )W(x) 0.098 0.457 0.003

∑

ξ L
ERS(1|η, ξ )W(x) 0.006 0.267 0.018

∑

ξ L
ERS(2|η, ξ )W(x) 0.000 0.062 0.044

∑

ξ L
ERS(3|η, ξ )W(x) 0.000 0.006 0.039
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TABLE 9 | Final score and variance estimates.

Sum Scores Posterior Summaries

p (νERS) E (η|νERS) V (η|vERS)

νERS = 0 0.558 −0.340 0.603

νERS = 1 0.292 0.082 0.333

νERS = 2 0.106 0.829 0.979

νERS = 3 0.045 1.740 0.452

and then further compute the expected value to obtain the EAP
score for η,

E (η|vd) =
1

p (vd)

∫

η

[∫

Ld (vd|η, ξ) φ (η, ξ) dξ

]

dη (17)

Finally, the variance of this estimate, which can be used to form a
standard error, can also be obtained:

V (η|vd) =
1

p (vd)

∫

η2
[∫

Ld (vd|η, ξ) φ (η, ξ) dξ

]

dη

−E2 (η|vd) . (18)

In this paper, all integrals were approximated using rectangular
quadrature with 49 equally spaced nodes from−6 to 6 along each
latent dimension, with normalized quadrature weights,W(x), for
x =

[

η ξ
]

, taking the place of the multivariate normal density.
If items have more than two categories, a polytomous

extension of the Lord-Wingersky algorithm (e.g., Cai, 2015) may
be used to obtain the sum-score-based likelihoods, Ld (vd|η, ξ).
Consider the case of the model in the main text (see Figure 1)
that included only QOL and ERS dimensions. Sum-score-based
EAP estimates for ERS based on just the first three items may
take the following procedure. Item parameter estimates for these
items appear in Table 5. In addition, Table 6 lists quadrature
nodes for nine different combinations of ERS (η) and QOL (ξ )
along with normalized quadrature weights with a correlation of
−0.18 among constructs. In addition, values for the category
response functions for the MNRM based on the ERS dimension,
TERS
j (m|η, ξ) for each item j and category m appear along this

quadrature grid.
Then, as can be seen in Table 7, the algorithm begins with the

initialization of sum-score-based likelihood with the first item,

LERS1 (0|η, ξ) = T1 (1|η, ξ) + T1 (2|η, ξ)

+T1 (3|η, ξ) + T1 (4|η, ξ) + T1 (5|η, ξ) = TERS
1 (0|η, ξ)

LERS1 (1|η, ξ) = T1 (0|η, ξ) + T1 (6|η, ξ) = TERS
1 (1|η, ξ) ,

continues with additional recursions for the second item,

LERS2 (0|η, ξ) = LERS1 (0|η, ξ)TERS
2 (0|η, ξ)

LERS2 (1|η, ξ) = LERS1 (0|η, ξ)TERS
2 (1|η, ξ)

+LERS1 (1|η, ξ)TERS
2 (0|η, ξ)

LERS2 (2|η, ξ) = LERS1 (1|η, ξ)TERS
2 (1|η, ξ) ,

and for the third item in the final step in Table 8. Subscripts
are used to denote the sum score likelihood after adding each
item, yet those from the last step, LERS3 (·|η, ξ), are analogous
to Equation (13) at each quadrature node. The “3” subscript
is omitted at the top of Table 9, where the sum-score-based
likelihoods are multiplied by quadrature weights. Approximation
of the integral in Equation (16) requires summing across ξ

for each unique node of η, resulting in the lower part of
Table 5. These values may then be further summed to compute
an approximation of (vd) ≈

∑

η

∑

ξ L
ERS(νd|η, ξ )W(x),

or a weighted sum across nodes for η can be done to
approximate integrals across η in Equations (17) and (18). For

example, in Equation (17),
∫

η

[

∫

Ld (vd|η, ξ) φ (η, ξ) dξ
]

dη ≈
∑

η η

[

∑

ξ L
ERS(νd|η, ξ )W(x)

]

. Final example EAP scores and

variance estimates appear in Table 9.
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