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Transitions between asynchronous and synchronous states:
a theory of correlations in small neural circuits
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Abstract The study of correlations in neural circuits of dif-
ferent size, from the small size of cortical microcolumns
to the large-scale organization of distributed networks stud-
ied with functional imaging, is a topic of central importance
to systems neuroscience. However, a theory that explains
how the parameters of mesoscopic networks composed of a
few tens of neurons affect the underlying correlation struc-
ture is still missing. Here we consider a theory that can be
applied to networks of arbitrary size with multiple popu-
lations of homogeneous fully-connected neurons, and we
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focus its analysis to a case of two populations of small
size. We combine the analysis of local bifurcations of the
dynamics of these networks with the analytical calculation
of their cross-correlations. We study the correlation struc-
ture in different regimes, showing that a variation of the
external stimuli causes the network to switch from asyn-
chronous states, characterized by weak correlation and low
variability, to synchronous states characterized by strong
correlations and wide temporal fluctuations. We show that
asynchronous states are generated by strong stimuli, while
synchronous states occur through critical slowing down
when the stimulus moves the network close to a local bifur-
cation. In particular, strongly positive correlations occur
at the saddle-node and Andronov-Hopf bifurcations of the
network, while strongly negative correlations occur when
the network undergoes a spontaneous symmetry-breaking
at the branching-point bifurcations. These results show how
the correlation structure of firing-rate network models is
strongly modulated by the external stimuli, even keeping
the anatomical connections fixed. These results also suggest
an effective mechanism through which biological networks
may dynamically modulate the encoding and integration of
sensory information.

Keywords Stochastic neural networks - Graded firing-rate
model - Finite-size effects - Bifurcation analysis -
Synchronous and asynchronous states - Propagation

of chaos - Critical slowing down

1 Introduction
The study of correlations (or in general of statistical depen-

dencies) among neurons is a topic of central importance
to systems neuroscience. Statistical dependencies, which
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are also termed functional connectivity (Friston 2011),
have been studied extensively at multiple scales, from
interactions among neurons within a network, to interac-
tions among macroscopic circuits (Sporns 2006; Bressloff
2009; Renart et al. 2010; Pernice et al. 2011; Trousdale
et al. 2012; Buice and Chow 2013). There are several rea-
sons why studying statistical interactions among neurons is
important. Firstly, the structure of both second-order and
higher-order statistical dependencies among neurons, and
how these dependencies are modulated by either exter-
nal stimuli or internal factors such as neuromodulation or
attention, is key to understanding the information encoding
capabilities of neural populations (Abbott and Dayan 1999;
Pola et al. 2003; Pillow et al. 2008; Cohen and Maunsell
2009; Moreno-Bote et al. 2014). Secondly, measuring and
understanding statistical dependencies is crucial to making
inferences about how different neurons or areas exchange
and integrate information (Singer 1993; Tononi et al. 1994,
David et al. 2004; Rogers et al. 2007; Friston 2011). Thirdly,
statistical dependencies among the activities of different
neurons are useful to infer the underlying network structure
(Friston et al. 2013; Gilson et al. 2016).

From the theoretical point of view, it is of particular
interest to understand whether and how these statistical
interactions can be modulated dynamically by changes in
parameters, such as the strength of the external input to the
network or by other network characteristics. This knowl-
edge can help to better interpret patterns of correlations
observed experimentally, and to understand how the brain
can implement a dynamic qualitative change in information
processing or transmission despite the relatively slow time
scales of changes of anatomical connectivity (Womelsdorf
etal. 2007; Akam and Kullmann 2010; Battaglia et al. 2012;
Besserve et al. 2015). In their pioneering work (Ginzburg
and Sompolinsky 1994), Ginzburg and Sompolinsky devel-
oped a first theory of correlations among neurons in a neural
network model with binary firing rates. They proved that,
in the limit of large network size, the population averaged
activities can switch from asynchronous states (a regime in
which correlations among neurons become weak and vanish
as 1/N, where N is the size of the network) to synchronous
states characterized by strong correlations.

The emergence of asynchronous states of uncorrelated
neurons has been reported also by many other studies of
large neural systems, and is key to the formulation of their
mean-field approximation (Samuelides and Cessac 2007,
Touboul et al. 2012; Baladron et al. 2012; Baladron Pezoa
et al. 2012). On the other hand, synchronous regimes have
been reported in large networks typically when the net-
work undergoes critical slowing down, a phenomenon that
happens when a system becomes increasingly sensitive
to external perturbations (Kéfi et al. 2013). In this sit-
uation, the state variables undergo large and asymmetric
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fluctuations, with a strong increase in the cross- and auto-
correlation functions (Scheffer et al. 2009; Kuehn 2013).
Critical slowing down occurs at some (but not all) of the
bifurcation points of the network’s dynamics, where small
parameter variations cause profound qualitative changes in
its dynamics. For example, in Ginzburg and Sompolinsky
(1994) the authors showed the formation of critical slow-
ing down in large networks of binary neurons when they
approached a saddle-node or an Andronov-Hopf bifurca-
tion, which corresponded to catastrophic transitions and the
emergence of oscillatory activity, respectively.

The most established theories of correlation were devel-
oped in the large-network size limit (Ginzburg and Som-
polinsky 1994; Bressloff 2009; Renart et al. 2010; Buice and
Chow 2013) and can be in practice applied to macroscopic
networks composed of at least few thousands of neurons.
However, and somewhat counter-intuitively, the cross-corre-
lation structure of small neural networks containing only a
few tens of neurons can be much more difficult to study
mathematically than that of large networks. This is mainly
due to the impossibility to apply the powerful methods of
statistical analysis, such as the law of large numbers and the
central limit theorem, to small neural circuits. This fact pre-
vents these theories to be able to describe networks of neu-
rons at the mesoscopic and microscopic circuit level encom-
passing, for example, networks of few tens of cells in inver-
tebrates (Williams and Herrup 1988). This small network
level has been investigated in recent years both theoreti-
cally (Ingber 1992; Freeman 2000a, b; Wright et al. 2003;
Bohland et al. 2009) and experimentally (Buzsdki et al.
2012; Einevoll et al. 2013), as it is a useful scale to link neu-
ral activity to brain function (Buzsaki and Draguhn 2004).

In this article we fill this gap by developing a theory of
correlations in small neural circuits composed of homoge-
neous populations of fully-connected neurons. Unlike the
analytical results introduced in Ginzburg and Sompolinsky
(1994) and Renart et al. (2010), which were based on neu-
rons with binary firing rates, we will consider the more
complex and more biologically realistic case of graded fir-
ing rates. While Refs. (Ginzburg and Sompolinsky 1994;
Renart et al. 2010) considered both fully-connected circuits
with homogeneous synaptic weights and systems with ran-
dom connectivity, for simplicity in this work we focus only
on the case of networks with fully-connected topology (a
possible extension to the case of random networks is dis-
cussed in Section 4.5). Moreover, unlike previous work, we
will explicitly compute how cross-correlations relate to the
whole bifurcation structure of the network. To do so, we
study the dynamics of neural circuits of arbitrary size tak-
ing advantage of a mathematical approach that does not
rely on statistical averaging (Fasoli et al. 2016). These net-
works of arbitrary size, when studied in the deterministic
case, revealed a surprisingly rich set of local bifurcations
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of dynamics that could be studied analytically (Fasoli et al.
2016). By extending this previous work to include stochas-
tic perturbations to the dynamics, we computed analytically
the correlations among all neurons in the network, we stud-
ied their dependence on the network parameters and related
them to the bifurcations of the dynamics.

We found that such finite-size networks displayed both
asynchronous and synchronous regimes, with important
qualitative and quantitative differences with respect to the
large network size limit of Ref. (Ginzburg and Sompolin-
sky 1994). We proved that asynchronous states may occur
also in small networks for strongly depolarizing or strongly
hyperpolarizing stimuli, extending and generalizing previ-
ous analytical calculations (Fasoli et al. 2015) valid only
when the network has a regular topology. We then proved
the emergence in finite-size networks of critical slowing
down at the saddle-node and Andronov-Hopf bifurcations,
that was previously observed in the large-size limit of binary
networks (Ginzburg and Sompolinsky 1994). Moreover, we
proved that at the branching points or pitchfork bifurca-
tions, which are characterized by a spontaneous symmetry-
breaking of neural activity with spontaneous formation of
heterogeneous activity within homogeneous populations, the
inhibitory neurons undergo critical slowing down character-
ized by strong anti-correlation. This phenomenon was not
found in large-size networks (Ginzburg and Sompolinsky
1994).

Interestingly, our formalism predicts the formation of
synchronous and asynchronous states in networks com-
posed of an arbitrary number of neural populations without
calculating explicitly their cross-correlation structure (see the
Online Resource 1 and Online Resource 2). However, our
approach also allows explicit calculations in networks com-
posed of a few neural populations. For exemplary purposes,
in the main text we focus on the case of two neural popula-
tions, and we extensively validate the closed-form expression
of the cross-correlations through numerical simulations.

2 Materials and methods
2.1 The stochastic firing-rate network model

Here we describe the stochastic firing-rate finite-size neu-
ral network model that we use in this article. This model
is based on a number of assumptions and simplifications
(described below) that represent the best compromise we
could find between biological plausibility and mathematical
tractability.

A cortical column can be thought of as a network of
neural masses distributed vertically across layers, and there-
fore it is composed of several populations of excitatory
and inhibitory neurons (see for example (Binzegger et al.

2004)). Our theory can be used to study such cortical
architectures, but the complexity of the resulting formu-
las increases considerably with the number of populations.
Thus for exemplary purposes, in the main text we focus
on the case of a network made of two fully homogeneous
neural populations, one excitatory (E) and one inhibitory
(1), which is commonly considered a good approximation
of a single neural mass (Grimbert 2008). The structure of
this network is schematized in the left-hand panel of Fig. 1.
In the Online Resource 1 we generalize these results to an
arbitrary number 3 of populations (an example of network
structure for B = 8 is shown in Fig. 1, right panel).

The populations contain an arbitrary finite number of
neurons which are interconnected through synaptic connec-
tions with arbitrarily strong weights. In order to make the
network analytically tractable, we assume (as it is often
made when considering local cortical circuits Grimbert
2008; Deco et al. 2008) that the axonal delays are negli-
gible. Moreover, whenever a neural population « projects
synapses to a population g (with o, 8 = E, I), we assume
that each neuron in population « sends connections to each
neuron in population B (avoiding self-connections in the
case @ = ). Furthermore, as often done in theoretical neu-
ronal network studies (Brunel and Hakim 1999; Steyn-Ross
et al. 2004; Touboul et al. 2012), we describe random fluctu-
ations in the network by means of a white noise component
in the external input to the network.

In more detail, we consider a graded rate model to
describe the dynamics of single neurons by means of the
following system of stochastic differential equations:

N—1
it = Vi D B (GO HEO
]:

+o 7440 =0, N1,

where N is the number of neurons in the network, V; (¢)
is the membrane potential of the ith neuron at the time
instant ¢, and 7; is its membrane time constant. The nor-
malization factor M; represents the number of incoming
connections to the ith neuron, while J;; is the weight of the
synaptic connection from the jth (presynaptic) neuron to
the ith (postsynaptic) neuron. .27; (-) is an algebraic activa-
tion function which converts the membrane potential V into
the corresponding firing rate v = < (V), according to the
formula:

A.
U;nax T] (V — VjT)
(V) =-1—11+

2 A2 2
T
\/1+T’(V—Vj)

Here v is the maximum firing rate of the neuron, V/.T
is the threshold of the activation function, and A; is its
slope parameter. The latter represents the “speed” with

2
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Fig. 1 Examples of the neural network architectures considered here.
The left panel shows the case of 8 = 2 populations that we study in
the main text. For simplicity we identify the two populations by the let-
ters E, I, in order to distinguish between populations of excitatory and
inhibitory neurons. In the case 8 = 2 we consider non-zero synap-
tic weights, therefore the network has a fully-connected architecture

which the neuron switches between low rates (v; ~ 0)
and high rates (v; ~ v;?“a"). Moreover, in Eq. (1) [; (¢) is
a deterministic external input (i.e. the stimulus) to the ith
neuron, while alf%d'%# is a white noise input with normal
distribution and standard deviation cr,f%. In order to apply
linear response theory, we will assume that o? is small
enough to neglect second-order corrections to the pertur-
bative expansion of the cross-correlations. This assumption
will hold if the standard deviation of the fluctuations in
the membrane potential is smaller than the minimum radius
of curvature of the activation function of Eq. (2). The

latter is a function of the parameters of the activation func-

147" 2\3/2
% , where &/’ and /" are the

first and second-order derivatives of </ with respect to V,
while w is the stationary membrane potential in absence
of noise. The functions Z; (t) are arbitrarily correlated
Brownian motions, which represent the source of stochas-
ticity of the model. The model defined in Eq. (1) can
be considered a stochastic perturbation to the firing-rate
finite-size network model that we previously analyzed in
Fasoli et al. (2016).

We define Ng (respectively Nj) to be the size of the
excitatory (respectively inhibitory) population, with Ng +
N; = N, and we rearrange the neurons so that the structural
connectivity of the network can be written as follows:

tion: r (u) =

JEE J Iy, —Idy. ), f -
J = JEE JEI o~ JW(Na Na) ora=f
| Jie i | Jop =
Jopln, Ny fora # B,

3
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(Mg = M; = N —1). The right panel shows an example of a network
composed of B = 8 neural populations. In particular, we high-
lighted the structure of the synaptic connections within and between
two neural populations. The extension of the theory to the case of
an arbitrary number of neural populations has been developed in the
Online Resource 1

for o, B = E, I. The real numbers J,g are free parameters
that describe the strength of the synaptic connections from
the population S to the population «. We have Jgg, Jig > 0
and Jgg, Ji1 < 0. Moreover, ]INa,Nﬂ is the Ny x Ng all-ones

matrix (here we use the simplified notation I, &t In, N, )s
while Idy, is the N, x N, identity matrix. From our rear-
rangement of the neurons, we also obtain that the external
input currents are organized into two vectors I g 1 such that:

Iy (1) = I (1) 1n,,

def .

where 1y, = In,,1 is the Ny x 1 all-ones vector. The
same subdivision between populations is performed for the
parameters M, t, v, A, vT,

We also assume that the covariance structure of the white
. B . . .
noise aigg d’f}# is given by the matrix:
== | 5% 54 |

2 21

o (af)z [1x, +CZ (i, ~1dw,)] . fora = p

af = g 7 G
Gggafthg]INa,Nﬁ, for o # B,

“

where C;;% are arbitrary parameters that quantify the
cross-correlation between the white noise sources. We
observe that C?} = Cl‘% since £ must be symmet-
ric in order to be a true covariance matrix, and that %

determines the covariance structure of the white noise

: BAFB () BIZi$)\  _ &
since Cov (0;” =/, C =) = p l_j(S(t—s).

Equation (4) represents the most general covariance matrix
of the noise under our assumption of fully homogeneous
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neural populations. Since noise correlations can be inter-
preted as the amount of shared inputs between nearby
neurons (Renart et al. 2010), which is not uniform in the
brain, we perform our study for all the possible values of
noise correlation, ranging from zero (independent stimuli)
to one (identical stimuli to all the neurons).

Since we study the case of two neural populations, we
can take advantage of the detailed bifurcation analysis per-
formed in Fasoli et al. (2016) (see also Fig. 2), which we

Fig. 2 Codimension two bifurcation diagram in the /p — I; plane
for the two-population network. This diagram was obtained in Fasoli
et al. (2016) for the values of the parameters reported in Table 1.
The blue curves represent the saddle-node bifurcations (LP for short
in Figs. 3, 5) on the primary branch of stationary solutions of
Eq. (1), with cusp bifurcations (CP). The red curves correspond to
the Andronov-Hopf bifurcations (H for short in Figs. 4, 5) on the
primary branch, which in turn are divided into supercritical (plain)
and subcritical (dashed) portions. The supercritical/subcritical portions
are bounded by a generalized Hopf bifurcation (GH), and Bogdanov-
Takens bifurcations (BT). The latter are the contact points among
saddle-node, Andronov-Hopf and homoclinic bifurcation curves on
the primary branch (hyperbolic-saddle/saddle-node homoclinic bifur-
cations are represented by plain/dashed orange curves). Saddle-node
on invariant circle bifurcations (SNIC) correspond to the contact points
between the saddle-node and the homoclinic curves. GH generates
limit point of cycles curves, represented by dark green lines, that col-
lapse into the homoclinic curves. The gray lines represent the torus
bifurcations, while the light green dot-dashed curves correspond to
the branching-point bifurcations (BP for short in Figs. 3, 4 and 5).
The purple curves represent the Andronov-Hopf bifurcations that orig-
inate from the secondary branches, which meet the branching-point
curves and the other Andronov-Hopf curves at the zero-Hopf bifur-
cations (ZH). The double-headed black arrows represent the ranges
in which we varied the stimuli /£ ; in order to study the behavior of
the cross-correlation. In more detail, on the horizontal arrow the net-
work switches from an asynchronous state to critical slowing down
near a saddle-node bifurcation (see also Fig. 3). Moreover, on the ver-
tical arrow the network switches from positively correlated activity at
the Andronov-Hopf bifurcation curve, to anti-correlated activity in the
inhibitory population at the branching-point curve (see also Fig. 4).
Adapted from Fasoli et al. (2016) with permission of the authors

will use to determine where the cross-correlation undergoes
the most interesting variations.

2.2 Cross-correlation

To quantify statistical dependencies among neurons, we
use Pearson cross-correlation, the simplest and most used
measure of functional connectivity (David et al. 2004):

Cov (V; (1), V; (1))
\/Var(Vi () Var (V; (t))’

where Var (V; (¢t)) = Cov (V; (t), V; (¢)). By applying lin-
ear response theory around a stable fixed point of the
dynamics, we obtain the following analytical expression of
the covariance structure of the rate model (1) at the first

. . G
perturbative order in O‘ZJZ :

)&

Corr (V; (1), Vj (1) (5)

N-1 ;
Cov (Vi (), V;)) = 3 [E@]kl/o Diy (¢ — ) Dy (t — 5)ds.
k,[=0

©)

In Eq. (6), the matrix £% is given by Eq. (4), @ (1) = 7"
is the fundamental matrix of the system at time ¢, and J
is its Jacobian matrix (which depends on J). Note that this
linearized equation is equivalent to that derived in Risken
and Frank (1996) (see Eq. (3.45) therein) for a set of linearly
coupled Ornstein-Uhlenbeck processes.

When applied to our connectivity matrix (see Eq. (3)),
Eqgs. (5) and (6) provide a very cumbersome expression of
the cross-correlation. Thus, for simplicity, in this article we
consider only the infinite-time limit f — 400 (i.e. the sta-
tionary state of the probability distribution of the membrane
potentials), even if correlations may be calculated at any
finite ¢, if desired.

It is also important to note that under our weak-noise
assumption, as proven in Fasoli et al. (2015), the correla-
tions between membrane potentials are equivalent to the
correlations between the firing rates of the neurons (which
are the quantities normally measured and computed by
neuroscientists), as summarized by the following equation:

Corr (vi @) ,v; (t)) ~ Corr (Vi @®),V; (t)) . 7)

Thus in our paper we will quantify and plot without loss
of generality correlations between membrane potentials, but
this measure will reflect also the correlations between the
firing rates.

2.3 Numerical simulations

To validate our analytical approach, we compared it with
numerical evaluations of the correlations in the same
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network, and we expressed all the results in simulation units
(see Section 3). The numerical results were obtained by inte-
grating the neural equations (1) with the Euler-Maruyama
scheme, using the parameters reported in Table 1. We used
an integration time step of Az = 1073 (in simulation
units), and the equations were integrated with a Monte
Carlo method over 5,000 repetitions of the network dynam-
ics in the temporal interval ¢+ = [0, 30]. Cross-correlations
reach a stationary solution after a time period of the order
of ——1 —_ where R (A;) is the real part of the ith

eigenvalues of 7. Whenever the network is close to a local
bifurcation, the real part of (at least) one of its eigenvalues
goes to zero, therefore the duration of the transient regime is
determined by that eigenvalue. For this reason, the temporal
evolution of the cross-correlations slows down. We assumed
that at + = 30 the transient regime of the correlation has
already passed (so that the correlation has already converged
to its equilibrium solution), an assumption confirmed a pos-
teriori by the good agreement between the analytical and
numerical results.

To conclude, we observe that the numerical integration
schemes generally display a loss of stability at the bifur-
cation points of the network. For this reason, we stabilized
the Euler-Maruyama scheme by choosing a small noise
amplitude, UE% = a;ﬂ =104,

3 Results

In this section we explicitly calculate the cross-correlation
structure of the firing-rate network model introduced in
Section 2.1, and we study how it depends on the strength

Table 1 Values of the parameters of the two-population network

Population Sizes Synaptic Weights

and Memb. Time Consts.

Ng =8 Jeg =10

Ny =2 Jgr = -70

‘EE=T1=1 J[E=70
Jir=-34

Activation Functions Brownian Motions

v =P =1 a?:(x?: 1074

A — B _ B _ B _
Ap=A;=2 Cep=Ci1 =Cg; =0
vi=vl=2
E I

We used these parameters to generate all the figures in the article, apart
from Figs. 5 and 6 where the cross-correlation was evaluated for dif-
ferent values of C 53 The ratio Ng/N; = 4 matches the proportion
between excitatory and inhibitory neurons in real cortical circuits (see
Markram et al. 2004). Our theory can be applied to networks of arbi-
trary size, but in the article we analyze only the case of small networks
(N = 10 in this example), see text
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of the external stimulus. For simplicity, throughout the main
text we consider only the case of two neural populations (for
a Python implementation, see the Online Resource 3), but
we report the theory for an arbitrary number of populations
in the Online Resource 1 and Online Resource 2.

The usefulness and novelty of our approach consists in a
convenient decomposition of the spectrum of the Jacobian
matrix into “intra-population” eigenvalues, which are gen-
erated by the fully-connected architecture within each neu-
ral population, and “inter-population” eigenvalues, which
depend on the synaptic connections among the popula-
tions. According to Eq. (6), the cross-correlations depend
on the fundamental matrix of the network, @ (1) = e7".
We define pg ; to be the stationary membrane potentials
in the two populations in absence of noise, namely the
zeroth-order approximation to the mean membrane poten-
tials of the stochastic network in the stationary regime. In
the Online Resource 1 (see Eq. (S28)) we calculated @ (¢)
in terms of the intra-population eigenvalues Ag ; and the
inter-population eigenvalues )»&21 of the Jacobian matrix 7,
evaluated at the stationary solutions:

1 JEE
g = — | — + “EE ,
E |:TE + M E(ME)]
1 Jir
A= —| — 4+ —, , 8
I |:TI + M, I(IL/)] (8)
R VHZEJQY -2 +4x
Ao = 5 ;
where:
NEN;p , /
X = Je1 J1E, o, ,
MM, e1J1Eg (WE) < (1r)
1 Ng —1
= B g , 9
y - + My EEDE (LE) 9
1 Ny —1
Z=——q4— o ,
T1+ T 7 (p)

and in terms of the functions:

Mg (AR + L) = Ve = 1) Jep sy (up)

K& i
NiJer<] ()
_ NgJipsy, (WE) £=0. L
My (B + L) == Dy
(10)

If the parameters of the network are such that Ag ; and )\(7)?1
have negative real part, by applying Egs. (6) and (S28) we
obtain the following expression of the covariance matrix of
the membrane potentials:

y def . EI‘S/E 21‘2/1
b) =I_I}$OO[COV(V,-(t),Vj(t))]W’j= DAL
(11)
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where T denotes the transpose of a matrix, while the blocks El KoK, 1 Ky K Ko+ K |
V. are given by the following formulas: T = Ki— K2 |2 \HR T R) T RLR |
M (K1 — Ko™ [ 2 \Ay X Ao AT
5 _ -
T = (%V) Id, + G (Iv, —1dw,,) . TEE = KoK Ko+ K1 1Ko + K 7
(K1 — Ko)? [ A +2F  2\af " af
EI‘E/I = gl‘?/IHNE,NI’ I — ! Ko + K\ _l ﬁ+ﬁ
Bk — Ko [aF+aR 2\aF AR
2 2 1
14 B EE -
() = (+£) [TEEAE_(I_N_J@E} TE : KoKy [~ + 2
= 5 oAl 55 B T T
B\ 11 B_BArEl B K- Ko L L
+ (o) ribar + 20 TECE, -
Ki+K;
- = |- (13)
Ao+ A

2 2 1
(a,V) - (a;%) [T,’,’AI - (1 - V/) @,}
2
+(of) 1hE AR+ 200 TE CF),
2\ O
SEp = (%ﬂ) (TIféEAE + N_E>
7 2 G [ 7
+ (o) rhp A +207 07 TELCE),

2 O,
gIVI = (GI%) (TIIIIA] + N—)
1

[ 2 [ 7
+ (a;f”) TEE AL + 20267 TE CZ)

12)

2 2
Sk = (U?) Yif A + (Uf@) YA

B _BArEIl ~AB
togor Yer Ceps

1 1
Aa:N_a+Caa<1_N_>’

o

1 %
O = m(1—cm).

The functions 7" are defined as below:

yEE 1 2Kok1 1 (K} K?\]
EE — “ S\ TR TR ’
(K1 —Ko)* [ AF+af 2\ /]
oy 1 2 L, 1
EE — “AHlTR T TR ’
(Ky — Ko)? [ AfF+a 2\afF AR )]
FEE KK} 2 1L 1
1 = S5l m TR )
(K1 —Ko)? [ AF+af 2\afr  af /]
.y 1 2KoK; 1 (K} N K?
1 = "SI\ TR TR ’
(K1 —Ko® A+ 2\afF R
El 1 1 [ Ky K1 Ko+ K
Tee= 5| \="t %) "7 % |
(K1 —Ko)* [ 2 \A]Y X Aot A

In Eq. (12), aav is the standard deviation of the membrane
potentials in the population «, while ¢\ is the covariance
between any pair of potentials in the same population «, and
S 1‘5/ ; is the covariance between any pair of potentials in two
different populations.

From the above equations, the correlation matrix is
obtained simply by normalizing the covariance matrix (11)
as follows (see Eq. (5)). In particular, we call C Xﬂ:

\%
cV. def _Sap
P oY)

the entries of the correlation matrix that represent the
correlation between any pair of membrane potentials in
populations «, 8.

In the following sections we will study how the above
obtained analytical expression of the cross-correlation
varies when changing the network parameters. This will be
used to show that, depending on the values of the param-
eters, the network can switch from asynchronous to syn-
chronous states. These regimes have radically contrasting
properties, which will be discussed in detail in Sections 3.1
and 3.2.

3.1 Asynchronous states

We will first examine the existence of network states char-
acterized by small cross-neuron correlations. Networks are
said to be in an asynchronous regime when they show
uncorrelated activity (Ecker et al. 2010; Renart et al. 2010;
Tetzlaff et al. 2012; Grytskyy et al. 2013). In mathematics,
a regime characterized by statistically independent (though
interacting) units is called local chaos (Boltzmann 1872;
Samuelides and Cessac 2007; Touboul et al. 2012; Baladron
et al. 2012; Fasoli et al. 2015). Note that however in our
model the asynchronous state and local chaos are equiva-
lent at the first perturbative order, since neurons are jointly
normally distributed under our weak-noise assumption.
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The characterizing feature of an asynchronous state is the
weak cross-correlations between the membrane potentials.
Moreover, in our model asynchrony generally occurs with
small fluctuations of the potentials, as we prove below. The
most known and straightforward way to generate an asyn-
chronous state with negligible correlations across neurons is
using a network of large or infinite size (Ginzburg and Som-
polinsky 1994; Samuelides and Cessac 2007; Touboul et al.
2012; Baladron et al. 2012; Baladron Pezoa et al. 2012).
Indeed, if CZ, = C7/} = C%, = 0, from Egs. (12) and (13)

it follows that 5‘025 — 0 and (60}/)2 — (—i) (0&@)2 ~
2

o (o)

NEg,; — oo. In other words, in infinite-size networks with

independent Brownian motions, the membrane potentials

are independent too, leading to local chaos with small fluc-

tuations (indeed, under our weak-noise assumption, their

(for a, B = E, I) in the thermodynamic limit

o
V214
ally invoked to justify the mean-field description of large

neural networks and is compatible with recent findings in
visual cortex (Ecker et al. 2010; Renart et al. 2010; Tetzlaff
et al. 2012).

Interestingly, also finite-size networks can however expe-
rience decorrelated activity. In Fasoli et al. (2015) the
authors showed that, for any N, weak correlations occur for
strongly depolarizing or strongly hyperpolarizing external
inputs, if the Brownian motions are independent. This phe-
nomenon can be proven to occur in networks with any topol-
ogy from general considerations about its Jacobian matrix
(see the Online Resource 1). However, this approach is only
qualitative, therefore it does not provide any explicit for-
mula of the cross-correlation. In Fasoli et al. (2015), explicit
expressions of the correlation structure were obtained for
networks with regular topology, through the analytical cal-
culation of the eigenquantities of the synaptic connectivity
matrix. In this work we extended the analytical calcula-
tions to multi-population networks (an explicit example is
shown in Egs. (11), (12), (13) for the two-population case),
whose topology is generally irregular since the correspond-
ing graph has non-uniform synaptic weights.

By taking advantage of the analytical expressions of the
cross-correlation, we observe that the formation of asyn-
chronous states can be proven for the two-population case
as a consequence of 7o — —ﬁ, Ygg — 0(witha # B)

standard deviation o) ~ is small). Local chaos is usu-

and TZ¢ — 0 for |IE’1| — 00, which in turn is due
to the saturation of the activation function .o (V). For the
same reason, the standard deviations ag ; of the membrane
potentials in the two populations decrease with the input.
Interestingly, the input-driven reduction of both the corre-
lation and the variance of the neural responses is supported
by experimental evidence (Tan et al. 2014; Ponce-Alvarez
et al. 2015). Figure 3 shows an example of formation of an
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asynchronous regime, which is obtained for the values of
the parameters in Table 1 and for strong stimuli (/g > 13,
I; = —35).

The theory developed in this article can also be applied
when the noise sources in Eq. (1) are correlated. However,
given arbitrary (i.e. non-specifically tuned) parameters, the
firing-rate network model of Eq. (1) generally does not
undergo the formation of asynchronous states when the
Brownian motions are not independent. In particular, since
Tail — 0 and Tgll — Nﬁ for |IE,1‘

v

[ 2 Z
get (o, )2 — i(o'év and Cyy — C(f‘f; (see also

— 00, We

o o

Figs. 5 and 6, where we plot the cross-correlations for dif-
ferent values of CZ ). In other words, in the considered
small-size firing-rate model, for strong stimuli the corre-
lation between the membrane potentials converges to that
between the Brownian motions, and again the fluctuations
of the membrane potentials have small standard deviation.
Note, however, that other network models (such as the net-
works of non-leaky integrate-and-fire neurons considered in
Moreno-Bote 2014 and Moreno-Bote et al. 2014) can have
very weak correlations even for correlated inputs if the
connectivity matrix is specifically tuned for that.

3.2 Synchronous states

We now examine the existence of network states charac-
terized by large correlations among neurons, called syn-
chronous states (Ginzburg and Sompolinsky 1994; De La
Rocha et al. 2007; Harris and Thiele 2011).

Large correlations can be generated in two different
ways. The most straightforward is by increasing the corre-
lation between the Brownian motions, while a more subtle
one takes advantage of the phenomenon called crifical slow-
ing down (Scheffer et al. 2009; Kéfi et al. 2013). Contrary to
asynchronous states, the most important features of critical
slowing down are large temporal fluctuations of the mem-
brane potentials and strong cross-correlations (even though
the Brownian motions are independent). Critical slowing
down typically occurs at the bifurcation points of the sys-
tem. Near local bifurcations, the real part of one of the
eigenvalues tends to zero, therefore the system becomes
increasingly slow in recovering from small perturbations.
As a consequence, the system has a longer memory for
perturbations, and its dynamics is characterized by larger
stochastic fluctuations and stronger correlations. In Fasoli
et al. (2016) we performed a detailed bifurcation analy-
sis in the two-population case and for the values of the
parameters in Table 1, obtaining the entangled set of local
and global bifurcations shown in Fig. 2. Local bifurcations
occur when a parameter variation causes the stability of
an equilibrium point to change, therefore they are stud-
ied through the eigenvalues of the Jacobian matrix. Local
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Fig. 3 Transition between asynchronous and synchronous states near
a saddle-node bifurcation. The top panels show a good agreement
between the numerical approximations of the standard deviation and
correlation (left and right panel respectively), and the correspond-
ing analytical formulas (see Eqgs. (12) and (13)). The numerical
approximations have been obtained through the methods described in
Section 2.3. For large inputs (/g > 13, see also Fig. 2) we observe the
formation of an asynchronous state, which is characterized by weak
correlation and low variability. On the other hand, near a saddle-node
bifurcation (/g = 11.86, see the highlighted LP), we observe the for-
mation of a synchronous state characterized by strong correlations and

bifurcations can be of codimension one or two, depending
on the number of parameters (e.g. /g ;) that must be var-
ied for the bifurcation to occur. As shown in Fig. 2, the
local bifurcations of codimension one the network under-
goes are saddle-node, Andronov-Hopf and branching-point
bifurcations, while those of codimension two are cusp,
Bogdanov-Takens, generalized Hopf and zero-Hopf bifurca-
tions. As discussed in Fasoli et al. (2016), for N; > 2 other
kinds of local bifurcations of codimension two may occur
due to spontaneous-symmetry breaking (e.g. the double-
Hopf bifurcation). Nevertheless, for simplicity, in the main
text we restrict our discussion to the case N; = 2.

wide temporal fluctuations (critical slowing down). The bottom pan-
els show numerical simulations of the fluctuations of the membrane
potentials in the excitatory and inhibitory population (left and right
panel respectively), calculated at t = 30 for different values of /g and
superposed to the codimension one bifurcation diagram of the network.
The fluctuations are displayed at 3, 000x actual size in the excitatory
and inhibitory population, in order to make them visible on the bifur-
cation diagrams. The reader may verify the agreement between the
standard deviations (top-left panel) and the envelope of the fluctuations
of the membrane potentials

Similarly to Kuehn (2013), we study the behavior of the
correlation only at the local bifurcations of the network, and
in particular we consider only those of codimension one.
These bifurcations are studied in the following paragraphs
for the case of two neural populations, and in Section (S6)
of the Online Resource 1 for the case of an arbitrary num-
ber of populations. Our theory can also be used to study the
behavior of the correlation near local bifurcations of codi-
mension two, but due to the high variety of the bifurcations
the system exhibits, a complete study is beyond the purpose
of this article. We note that there are also global bifurca-
tions (for example the homoclinic, limit point of cycles, and
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torus! curves that are global bifurcations of codimension
one, and saddle-node on invariant circle points that represent
the only global bifurcations of codimension two). However,
to our knowledge no analytical method is known for study-
ing the global bifurcations of Eq. (1). We therefore restrict
our analysis to local bifurcations only.

Saddle-node bifurcations (catastrophic transitions)
Saddle-node bifurcations occur in many dynamical systems.
They represent tipping points at which tiny perturbations
can cause an abrupt and discontinuous change of the equi-
librium point of the system. In particular, in neuroscience
some authors proposed that the whole-cortex activity may
undergo saddle-node bifurcations during anesthetic admin-
istration at the edge between conscious and unconscious
states (Steyn-Ross et al. 2004).

In Fasoli et al. (2016) we proved that, in the two-
population case, the network undergoes a saddle-node bifur-
cation whenever one of the eigenvalues )»(7)21 in Eq. (8)
tends to zero. The saddle-node bifurcations are described
by the blue curves in Fig. 2. In Fasoli et al. (2016) we also
proved that a necessary condition for the formation of these
bifurcations is:

Ng — 1 Ve Ap
N—1"FF",
or in other words sufficiently strong self-excitatory weights

are required. From Eq. (13) we observe that for )%3 —- 0~
or )LF — 07 the functions 7" diverge, therefore the terms

e > 1, (14)

proportional to ﬁ in Eq. (12) become negligible. This

. . 2
implies o, ~ (o))" — oo and sy~ oya), therefore
C Xﬂ ~ 1 between every population. Thus, when the net-
work is close to a saddle-node bifurcation, we observe the
emergence of critical slowing down. Moreover, we obtain a
simple relation between the variances of the two neural pop-
. def .
ulations, namely J]V ~ Kog , where K < lim Ko =
AR—0-
0

. oy

lim Kl = w NeJie E(ME/) .
AR —0- T/—(NI—I)JHW, (ur)
ify that §1‘9/1 > 0 for AZ} — 0 as a consequence of K > 0,
which in turn is due to J;g > 0 and J;; < 0. An exam-
ple of critical slowing down obtained for /r ~ 11.86,

B B B ; :

I} = =35and Czp, = Cy; = Cg; = 0 is reported in
Fig. 3. We observe that this phenomenon occurs even if
there is no correlation between the Brownian motions (i.e.

The reader can also ver-

'More precisely, the torus bifurcation is a local bifurcation of the
Poincaré map of a limit cycle of the network (Kuznetsov 1998). For
this reason the torus bifurcation corresponds to a change of stability of
the fixed points of the Poincaré map, and not to a change of stability of
the equilibrium points of Eq. (1). Therefore, the torus bifurcation can-
not be studied through the eigenvalues of the Jacobian matrix of the
network.

@ Springer

C (fg = 0), therefore it is entirely a consequence of the neural
interactions mediated by the synaptic connections.

Andronov-Hopf bifurcations (oscillations) Andronov-
Hopf bifurcations correspond to the emergence of neural
oscillations, which are a phenomenon often seen in corti-
cal activity and which is thought to play a key role in many
cognitive processes (Ward 2003). In the two-population
case, the network undergoes an Andronov-Hopf bifurca-
tion whenever )»Zfl in Eq. (8) are complex-conjugate purely
imaginary. The Andronov-Hopf bifurcations are described
by the red curves in Fig. 2. In Fasoli et al. (2016) we
proved that a necessary condition for the formation of these
bifurcations is:

l)l'l'la)(/l

E TE o and b —4ac>0 (15)
43

where:

;= —b — Vb2 —4ac

2a

Ng —1 2 NeNp (Ng —1) JgeJerJiE
a= JEE ) — 3 ,
N -1 (N —=1*(N;—=1) Jir
2 Ng—1 NgN JerJ, 1 1
p— 2 Ne Jop 4+ EN; erdie (1 1Y
TE N—1 (N—l)(N[—l) J][ TE Ty

1

g.

The mechanism of formation of critical slowing down at
the Andronov-Hopf bifurcations is similar to that described
in the previous paragraph for the saddle-node-bifurcations,
therefore we discuss it only briefly. Whenever the net-
work approaches an Andronov-Hopf bifurcation, we get
AZ} + )\? — 07, which causes the terms 7" to diverge
(see Eq. (13)). For this reason the variance of the membrane
potentials diverges as well, while the cross-correlation tends
to one, similarly to the case of the saddle-node bifurcations.
This proves that the network undergoes critical slowing
down also at the Andronov-Hopf bifurcations. The main
difference with the case of the saddle-node-bifurcations is
represented by the inter-population correlation C}‘z/ 7» Which
does not tend to one near the Andronov-Hopf bifurca-
tions (this phenomenon is discussed in more detail in
Section (S6.2.2) of the Online Resource 1). An example
obtained for Ir = 1, I; ~ —13.67 and CZ, = C/ =
C?] = 0 is shown in Fig. 4.

Branching-point bifurcations (spontaneous symmetry-
breaking) In the deterministic model (i.e. for o&@ = 0),
because of the homogeneity assumption of Section 2.1, neu-
rons within each population are expected to have identical
dynamics. This means that, in the absence of noise, the
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Fig. 4 Fluctuations and cross-correlations of the membrane potentials
between Andronov-Hopf and branching-point bifurcations. The sim-
ulations are similar to those of Fig. 3), but now we set /g = 1 and
we vary the input to the inhibitory population (see Fig. 2), obtain-
ing a transition between an Andronov-Hopf bifurcation (/; ~ —13.67,
see the highlighted H) and a branching-point bifurcation (I; ~ 1.165,
highlighted BP). We obtain a good agreement between numerical and
analytical correlations for any current /; in the range, while the stan-
dard deviations display a good agreement only when /; is sufficiently

network dynamics is invariant under transformations in the
group Sy, X --- X SN‘.Bfl’ where Sy, is the permutation
group on N, items (also known as symmetric group). When
we include noise (a(j@ > 0), we introduce a small explicit
symmetry-breaking into Eq. (1). However,the behavior of
a nearly symmetric dynamical system is more similar to
that of an idealized symmetric system than that of a com-
pletely asymmetric one (Stewart et al. 2003). Therefore,
if the degree of explicit heterogeneity introduced by the
noise is not too strong, it is legitimate to study Eq. (1) as a
perturbation of the corresponding deterministic system.
However, symmetry-breaking may occur also in the deter-
ministic model. Indeed, at the branching-point bifurcations

far from the bifurcation points. At the Andronov-Hopf and branching-
point bifurcations the standard deviations predicted by the analytical
formulas are larger than those obtained numerically. This suggests
that generally second-order corrections to Eqs. (12) and (13) play a
stronger role when the network undergoes these local bifurcations.
Nevertheless, the first-order approximation describes qualitatively the
increase of the standard deviation that characterizes critical slowing
down

we observe the formation of a spontaneous symmetry-
breaking (Fasoli et al. 2016) because some of the neurons
within a given inhibitory population become dynamically
distinct from the others. In other words, we observe the for-
mation of an heterogeneous inhibitory population, even if
the neural equations (1) for o7 = 0 do not contain any
term that breaks explicitly the symmetry. Interestingly, this
phenomenon is a consequence of the finite size of the net-
work, therefore it does not occur in the thermodynamic limit
(Fasoli et al. 2016).

In Fasoli et al. (2016) we also proved that, in the
two-population case, branching-point bifurcations occur
whenever A; = 0 (see the light green dot-dashed curves in
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Fig. 2) and that a necessary condition for their formation
is:

T || v Ay

4(N—1) (16)

This means that sufficiently strong self-inhibitory weights
are required for the bifurcations to occur. According to
Eq. (12), for C;%; < land A; — 07 only the variance of
the inhibitory neurons diverges. As a consequence, in the

7 [ 2
case C7J < 1 we get (o,‘/)2 ~— (of’?) (1 — N%) ©; and

§1V1 ~ <O’}@ ) %, from which we conclude that CIVI ~
ﬁ. According to Fasoli et al. (2015), this is the lower
bound of the correlation between fully-connected neurons
in a homogeneous population with size Nj. Since ﬁ <
0 for Ny > 2, at the branching-point bifurcations the
inhibitory neurons are maximally anti-correlated (in particu-
lar, the correlation tends to — 1 only for N; = 2). From these
results we conclude that, contrary to the saddle-node and
Andronov-Hopf bifurcations, at the branching points critical
slowing down occurs only in the inhibitory population. This
is confirmed by Fig. 4, which shows an example obtained
for I = 1, I; ~ 1.165 and CZ, = C7) = CZ, = 0.
Intuitively, the membrane potentials become anti-correlated
because the inhibitory neurons follow different branches
of stationary solutions beyond the branching-point (see the
codimension one bifurcation diagram in the bottom-right
panel of Fig. 4). Therefore while the potential of one neu-
ron increases due to noise fluctuations, the potential of the
other neuron decreases and viceversa, resulting in a negative
correlation.

On the other hand, for C'Igf = 1and A; — 07, from
Eq. (12) we get:

2 N2 2
(‘71‘/) =5/ = (U}EE> Y/t Ap + (U}Z> T{{

B g 7
+20 0/ 1 C.

2 .
therefore now (cr IV) does not diverge anymore and C}/I =1

(see also Figs. 5 and 6). To conclude, for Cf’z; = 1 and

A1 = 0, Eq. (12) gives an indeterminate form 8 for the vari-

2 . I
ance (0}”)” and the covariance ¢, which is represented by

the empty circles in the middle panels of Fig. 5 and in the
bottom-central panel of Fig. 6. This result can be intuitively
interpreted as the consequence of the competition between
the positive correlation introduced by the Brownian motions
and the anti-correlation generated by the branching point.
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4 Discussion

We developed a theory of correlations in a multi-population
graded-firing-rate network model of arbitrary size. This the-
ory, taking advantage of mathematical methods (Fasoli et al.
2015; Fasoli et al. 2016) not based on statistical averages,
allows a rigorous analytical understanding of how correla-
tions depend on the parameters and structure of networks of
arbitrary size. These networks include small-size circuits of
a few tens of neurons, such as for example neural circuits in
some invertebrates (Williams and Herrup 1988), and are not
restricted to large systems as in previous work (Ginzburg
and Sompolinsky 1994; Bressloff 2009; Renart et al. 2010;
Buice and Chow 2013). Importantly, our formalism allowed
us to investigate the interplay between network dynamics
and network statistics, by combining the non-linear analysis
of the bifurcations of the network with a linear analysis of
the covariance matrix.

Through our formalism, explicit calculations of the cross-
correlations are possible only for networks composed of
a few neural populations. In particular, for exemplary
purposes, in the main text we focused on the case of
a two-population network, composed of excitatory and
inhibitory neurons, and we extensively validated the closed-
form expression of its correlation structure through numer-
ical simulations. However, it is important to observe that
the more abstract formalism introduced in the Online
Resource 1 does not rely on the explicit calculation of
the cross-correlations, and therefore predicts the forma-
tion of synchronous and asynchronous states in networks
composed of an arbitrary number of neural populations.

In the following we discuss the advances of our results
with respect to previous work, and the implications of our
work to better understand neural network dynamics.

4.1 Progress with respect to previous modeling work

A first advance with respect to some previous theories of
correlations based on rate models made of binary neurons
(Ginzburg and Sompolinsky 1994; Renart et al. 2010), was
that we were able to introduce a biologically more realistic
network composed of graded neurons with continuous fir-
ing rate, without losing the possibility to derive analytical
expressions for the network correlations. However, a more
important advance with respect to these previous works was
that we could consider correlations among populations of
arbitrary size rather than of large size. In the context of
neuroscience, this is important because some networks (e.g.
the nervous system of some invertebrates such as rotifers
and nematodes) are composed only of a few tens of cells
(Williams and Herrup 1988), and because small networks
have, as shown in this work, different relationships between
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and the cross-correlation, for ab?, fixed (see Table 1). The middle
panels show similar results for the neural states between Andronov-
Hopf and branching-point bifurcations (compare with Fig. 4). The
only difference is observed close to the branching-point bifurca-
tion, where O'g, ; decrease with the noise correlation. The bottom
panels show the comparison between the analytical and numerical
cross-correlations in the case C?E = C,gf = CE% =0.8

Fig.5 Fluctuations and cross-correlations of the membrane potentials
as a function of the input and of the noise correlation. The top panels
show the standard deviation (left) and the cross-correlation (right) of
the membrane potentials when the network is close to a saddle-node
bifurcation (similarly to Fig. 3), for different values of the noise cor-
relation. The curves have been obtained from Eqs. (12) and (13) for
CZ =C% = CZ =002 04,06, 0.8, 0.97, 1. The panels
show that the noise correlation increases both the standard deviation
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Fig. 6 Cross-correlations of the membrane potentials as a function
of the firing rate and of the noise correlation. The figure shows the
cross-correlation of the membrane potentials as a function of the

geometric mean of the firing rates /Vavg = /Fu (1a) p (1p)

dynamics and correlations than the large scale ones. In
particular, the main difference between small and large net-
works is the formation of spontaneous-symmetry breaking
in the inhibitory populations. This phenomenon, which we
discuss in the next subsections, increases considerably the
complexity of the dynamics in small networks, and deter-
mines relationships between dynamics and correlations that
are not predicted by large-network studies.

In the recent work (Fasoli et al. 2015), the authors
were able to begin investigating some properties of corre-
lations in small networks. However, in this earlier work,
they could only investigate neural circuits with regular
topology, while here we extended their theory to multi-
population networks with irregular topology. Importantly,
and unlike in Fasoli et al. (2015), here we studied the rela-
tion between the correlation structure of the network and
the bifurcation points of the neural dynamics. Specifically,
we studied the behavior of the correlation in terms of the
stimuli 7, and this analysis revealed the ability of the net-
work to switch dynamically from asynchronous regimes,
characterized by weak correlation and low variability, to
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0, 0.2, 0.4, 0.6, 0.8, 0.97, 1. The panels show a non-monotonic
dependence of the correlation on the firing rates

synchronous regimes, characterized by strong correlations
and wide temporal fluctuations of the state variables.

Note that the mathematical bases for systematically
studying critical slowing down at bifurcations up to codi-
mension two were laid out in general terms in Kuehn (2013).
Here, we show that such deep mathematical concepts can be
realized and found in neural networks.

4.2 New insights into the relation between network
dynamics and correlation structure

These mathematical advances with respect to previous work
allowed us to reach a set of novel insights into the rela-
tion between the correlation structure of the network and
the bifurcation points of the neural dynamics. In partic-
ular, we found how transitions between synchronous and
asynchronous states relate to bifurcations.

The asynchronous regime can be observed in large net-
works driven by independent sources of noise (Samuelides
and Cessac 2007; Touboul et al. 2012; Baladron et al. 2012;
Baladron Pezoa et al. 2012). Here, however, we proved
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that in the small-size firing-rate network model considered
here asynchronous states can be generated dynamically by
strong stimuli. In the firing-rate model we study, this phe-
nomenon occurs for arbitrary (i.e. not specifically tuned)
network parameters, provided the input is strong enough
and the Brownian motions are independent. This is a con-
sequence of the saturation of the activation function which
avoids blowing-up solutions. However, asynchronous states
can occur through this mechanism also in networks with
non-saturating functions for specific values of the network
parameters. Interestingly, the decrease of both the variance
and the cross-correlation of the neural responses with the
input is supported by experimental evidence (Tan et al.
2014; Ponce-Alvarez et al. 2015). For arbitrary (i.e. non-
specifically tuned) parameters, the small-size firing-rate
network model of Eq. (1) in general does not undergo
the formation of asynchronous states when the Brownian
motions are correlated. However, it is important to note
that, unlike our case of small-size circuits, in large neu-
ral networks several mechanisms have been shown to be
able to decorrelate network activity even in the presence of
correlated inputs (see e.g. van Vreeswijk and Sompolinsky
1998; Renart et al. 2010; Tetzlaff et al. 2012; Hennequin
et al. 2016).

Importantly, we found that the synchronous regime
occurs near the bifurcation points of the network, which
in this model can be analytically determined (Fasoli et al.
2016). In particular, in the present article we considered the
local bifurcations of codimension one, namely the saddle-
node, Andronov-Hopf and branching-point bifurcations.
Contrary to the strongly positive correlations that occur at
the saddle-node and Andronov-Hopf bifurcations, at the
branching points we have observed the emergence of strong
anti-correlations between inhibitory neurons.

The emergence of strong correlations at any of the local
bifurcations of the network is a finite-size effect, and does
not require correlated sources of noise. Indeed, for a net-
work with independent Brownian motions, in Fasoli et al.
(2015) the authors proved that the neurons are strongly syn-
chronized at a time instant 7y that depends on the size of
the network. Strong correlations are very unlikely to occur
in large networks after short time intervals, since fy — 00
in the limit N — oo. However, exceptions may arise in
sparsely-connected networks (see Section 4.5), or if the
Brownian motions are correlated.

It is also important to observe that, in the case of net-
works made of two populations, Egs. (11), (12), (13) rep-
resent a mathematical description of a multidimensional
continuum of states, ranging from asynchronous to syn-
chronous states, and corresponding to varying levels of
spontaneous fluctuations and cross-correlation in neural
population activity. The existence of this continuum was
first proposed in Harris and Thiele (2011), where the authors

observed that the multidimensional nature of the continuum
emerges from analyzing the structure of the fluctuations
and of the cross-correlation under several different behav-
ioral and experimental conditions. These conditions can be
effectively modeled for example by varying the strength of
the synaptic weights (see Section 4.4), or by varying the
strength of the input parameters /¢ 7 in order to describe the
presence or absence of external stimulation.

4.3 Spontaneous symmetry-breaking as the origin
of anti-correlations

We proved that at the branching-point bifurcations the
inhibitory neurons become strongly anti-correlated as a con-
sequence of spontaneous symmetry-breaking. More gen-
erally, other kinds of spontaneous symmetry-breaking can
occur in the network, depending on its symmetries. For
example, in the case of two identical inhibitory popula-
tions, two different symmetries may be broken: the sym-
metry between neurons in a given population, and that
between the two populations. In the latter case, the two
populations would behave differently from each other,
while keeping their corresponding neurons homogeneous.
This phenomenon is also characterized by strongly pos-
itive intra-population correlations and strongly negative
inter-population correlations (result not shown), reinforc-
ing the idea of a general relationship between spontaneous
symmetry-breaking and anti-correlations. In Fasoli et al.
(2016) we described possible extensions of our formalism
to spatially extended networks with more complex sym-
metries, therefore spontaneous symmetry-breaking is likely
to affect also the cross-correlation structure of large-scale
neural models.

Negative correlations have been observed in resting-state
fMRI experiments, for example during cognitive tasks per-
formed by human subjects (Fox et al. 2005), and also in the
frontolimbic circuit of awake rats (Liang et al. 2012), but
their origin and functional role are still poorly understood.
Our findings suggest branching-point bifurcations and spon-
taneous symmetry-breaking as a potential neurobiological
basis of this phenomenon.

4.4 How pharmacological manipulations may affect
the correlation structure of the network

One potential application of our formalism is to model
the effect on neural correlations of pharmacological appli-
cation of drugs that act as agonist or antagonists of the
major neurotransmitters (Curtis et al. 1971; Krogsgaard-
Larsen et al. 1980; Corda et al. 1992; Chen et al. 1992;
Cunningham and Jones 2000; Garcia et al. 2010). The
effect of these drugs can be effectively modeled by vary-
ing the synaptic strengths in the model; in other words their
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effect on network dynamics and correlations can be studied
through a bifurcation analysis in terms of the parameters
Jupg. Our results suggest that pharmacological manipula-
tions that alter synaptic weights of small networks will
change their dynamics profoundly. For example whenever
for a set of synaptic weights the network does not satisfy
the conditions (14), (15), (16), the corresponding bifurca-
tions become forbidden for any pair of stimuli (I, I7). Itis
therefore natural to speculate that our formalism may add to
theoretical models of the effect of drugs on neural dynamics
(Foster et al. 2008).

4.5 Future directions

We studied the cross-correlation structure of multi-po-
pulation networks near local bifurcations of codimension
one. Furthermore, our theory can be easily extended to the
analysis of local bifurcations of larger codimension.

Another possible extension of our theory is the study
of correlations in sparse networks. In Fasoli et al. (2015)
the authors showed that, when the number of connections
per neuron does not diverge for N — 00, asynchronous
states in general do not occur in the thermodynamic limit for
weak stimuli (compare with van Vreeswijk and Sompolin-
sky (1998), where the authors considered the case of sparse
networks with infinite connections per neuron). Therefore,
sufficiently sparse networks cannot rely on their size for
generating asynchronous states, but uncorrelated activity
can still be generated through strong stimuli or with spe-
cial combinations of the network’s parameters. Moreover,
in Fasoli et al. (2016) we showed that in sparse networks
the branching-point bifurcations are more likely to occur,
resulting in a considerable increase of the complexity of the
bifurcation diagrams.

It is also possible to study correlations in small neural
circuits with random synaptic weights, extending the results
obtained in Ginzburg and Sompolinsky (1994) and Renart
et al. (2010) for large random networks of binary neurons.
Their correlation structure can be calculated straightfor-
wardly from the fundamental matrix @, by applying the
formalism developed in Fasoli et al. (2015) (see Egs. (4.3)
and (4.6) therein). The bifurcation structure of networks
with heterogeneous weights has been studied only in the
limit of large systems (Hermann and Touboul 2012), and is
still unexplored in the case of small neural circuits.

The effect of temporally correlated afferent currents on
neural activity has been studied extensively in integrate-
and-fire neural network models, see e.g. Brunel and Sergi
(1998), Sakai et al. (1999), Moreno et al. (2002), and
Renart et al. (2003). We observe that, by following the
techniques described in Hennequin et al. (2016), also our
finite-size firing-rate model can be easily extended to

@ Springer

include temporally correlated noise sources. Due to the non-
linear interplay between spatial and temporal correlations,
we expect to observe strong quantitative deviations from
Egs. (12) and (13), especially at the bifurcation points of
the network. However, in our model these deviations do not
affect qualitatively the properties of critical slowing down.
In other words, in our model the explosion of the variance
of the stochastic fluctuations, and the formation of arbi-
trarily strong cross- and auto-correlations, are expected to
occur regardless of the temporal correlations of the noise
sources. Moreover, by extending our perturbative approach
to the second order, we would be able to quantify rigor-
ously how temporal correlations affect the skewness of the
stochastic fluctuations of the membrane potentials, which is
expected to be strongly non-zero at the bifurcation points of
the network (Scheffer et al. 2009).

The dependence of network correlations on the neu-
ron’s firing rates has been investigated extensively in recent
years (De La Rocha et al. 2007; Ecker et al. 2014; Goris
et al. 2014). In particular, for pairs of unconnected cor-
tical neurons receiving correlated inputs in vitro, and for
model integrate-and-fire neurons, in De La Rocha et al.
(2007) the authors reported that correlations increase with
the geometric mean of the firing rates. However, in our
model we generally observed a non-monotonic dependence
of the correlation on the firing rates, that depended on
which dynamical state the network was in. In particular, we
found non-monotonicity when the stimulus made the net-
work switch between Andronov-Hopf and branching-point
bifurcations, or when, given a strong correlation between
the Brownian motions, the network was close to a saddle-
node bifurcation (see the bottom panels and the top-right
panel of Fig. 6, respectively). This result shows that the
relation between firing rates and correlations are expected
to be more complicated in neuronal networks than in pairs
of non-interacting neurons. A consequence of the possibly
non-monotonic and dynamical state-dependent relationship
between rates and correlations is that the mean firing rates
and correlations can act as separate information channels
for the encoding of the strength of the external stimuli. A
rigorous analysis of the encoding capability of our model
may be performed by calculating analytically the Cramér-
Rao bound (Abbott and Dayan 1999). In particular, it would
be interesting to evaluate how the mean firing rates and the
correlation structure of the network contribute to the analyt-
ical expression of the Cramér-Rao bound, and to determine
the differences in the encoding capability of the network
between synchronous and asynchronous regimes. In future
work, this approach will allow us to determine systemat-
ically whether correlations are detrimental or helpful for
the encoding of sensory information in firing-rate network
models.
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Online resource 1

Theory of correlations for multi-population networks In
this supplemental text we extend our analysis of correlations
to networks composed of an arbitrary number of neural pop-
ulations. In particular, we prove that asynchronous states are
elicited by strong stimuli, while synchronous states occur
at the local bifurcations of the network, regardless of the
number of neural populations. Moreover, we introduce a
mathematical formalism for calculating the fundamental
matrix @ of the network, from which the correlation struc-
ture can be derived from Eq. (6). For the sake of clarity,
we also implemented this formalism with Python in the
Online Resource 2.

Online resource 2

Python script 1 In this script we implemented the formal-
ism, described in the Online Resource 1, for the calculation
of the fundamental matrix @ of multi-population neural
networks.

Online resource 3

Python script 2 This script performs a compari-
son between the numerical simulations (described in
Section 2.3) and the analytical formulas of the variance and
cross-correlation (Egs. (11)—(13)), in the specific case of
the two-population network considered in the main text.
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