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Abstract: Metabolomics techniques are now applied in numerous fields, with the ability to provide
information concerning a large number of metabolites from a single sample in a short timeframe.
Although high-frequency (HF) nuclear magnetic resonance (NMR) analysis represents a common
method of choice to perform such studies, few investigations employing low-frequency (LF) NMR
spectrometers have yet been published. Herein, we apply and contrast LF and HF 1H-NMR
metabolomics approaches to the study of urine samples collected from type 2 diabetic patients
(T2D), and apply a comparative investigation with healthy controls. Additionally, we explore the
capabilities of LF 1H-1H 2D correlation spectroscopy (COSY) experiments regarding the determination
of metabolites, their resolution and associated analyses in human urine samples. T2D samples were
readily distinguishable from controls, with several metabolites, particularly glucose, being associated
with this distinction. Comparable results were obtained with HF and LF spectrometers. Linear
correlation analyses were performed to derive relationships between the intensities of 1D and 2D
resonances of several metabolites, and R2 values obtained were able to confirm these, an observation
attesting to the validity of employing 2D LF experiments for future applications in metabolomics
studies. Our data suggest that LF spectrometers may prove to be easy-to-use, compact and inexpensive
tools to perform routine metabolomics analyses in laboratories and ‘point-of-care’ sites. Furthermore,
the quality of 2D spectra obtained from these instruments in half an hour would broaden the horizon
of their potential applications.
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1. Introduction

High-frequency (HF) 1H NMR analysis has been successfully developed to be applied in untargeted
metabolomics investigations, through decades of successive optimisations with a wide range of
biological media [1]. Metabolomics comprises both quantitative and qualitative analyses of whole
metabolomes, which arise from a complex series of metabolic interactions and processes occurring
within cells, tissues or organs. The overall purpose of metabolomics investigations is to detect, quantify
and interpret variations in the concentrations of metabolites responsible for biological behaviour;
the detection of perturbations or imbalances in metabolic pathways can reveal defects in the function
or activities of selected enzymes therein, which may be characteristic of particular disease processes [2].
The detection of such defects may therefore lead to the identification of potential biomarkers, or the
development of targeted diagnostic test systems for the diagnosis and prognosis of diseases, processes
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which also give rise to improved understandings of their pathologies. This, in turn, may also lead to
the identification of suitable drug targets [3].

Moreover, in addition to pathologies, such approaches may also provide a complete and systematic
profiling of metabolites and their temporal changes caused by factors such as diet, lifestyle, environment
and administered drugs. This is possible through the multicomponent analysis of body fluids and/or
extracts of tissue biopsy samples, coupled with a statistical interpretational strategy known as
multivariate analysis [4]. In view of its multicomponent analytical advantages, HF NMR analysis
serves as a powerful tool for the simultaneous and rapid identification and quantification of large
numbers of biomolecules present in biofluids or tissue sample extracts. Hence, it is ideal for probing
the metabolic profiles of complex samples collected from living systems, for diagnostic or prognostic
purposes [5,6].

HF NMR spectroscopy has long been employed to conduct metabolomics studies, and offers
many further significant bioanalytical advantages for such applications. Indeed, the technique is
virtually non-destructive, and requires a short analysis time, and for biofluids, usually requires very
little sample preparation [7]. However, HF NMR analysis also presents a number of disadvantages,
such as cost, size, and transportation limitations, and often the requirement for specialist technical
staff for instrumental operation. Moreover, the size of such high-resolution NMR facilities limits their
accessibility to many researchers, and therefore precludes regular use outside of university-based
NMR-dedicated laboratories, along with those in large industrial centres.

Low-frequency (LF) applications of NMR have previously been explored in some detail [8–10],
and the future of NMR-based metabolomics has also been recently discussed, with an emphasis on
this approach providing a convincing solution for metabolic fingerprinting at ‘point-of-care’ sites
or prospectively, even for personal use [11–13]. Moreover, LF 1H NMR applications have recently
been shown to distinguish between control and type 2 diabetic (T2D) participants, with potential
use for point-of-care applications in a metabolomics study using a near-portable benchtop NMR
spectrometer as a novel bioanalytical tool [11]. The advantages of this technique included fast
acquisition time, ease-of-use and low limits of detection [11]. Moreover, LF benchtop NMR facilities
do not require expensive cryogens, nor a Gauss safety line for the magnetic field, and much less
power is required for operation, achieving desirable low running costs for potential applications in
clinical chemistry. However, although acceptable correlations between urinary metabolite calibration
standard concentrations, and selected prominent metabolites detectable in urine itself, particularly
those of glucose, were found between the LF and HF analyses conducted, the overall metabolomics
results obtained in this study at an operating frequency of 60 MHz were not directly validated by
comparisons with those arising from the application of a corresponding HF NMR facility. f especial
interest is an evaluation of whether the nature of detectable metabolites, and the number of these found
as discriminant markers in the 60 MHz study, were comparable to those found using HF NMR analysis.
Furthermore, disadvantages of the one-dimensional (1D) approach included a lack of resolution,
or more specifically a range of resonance overlap and crowding problems encountered in LF analysis.
Indeed, it was not possible to resolve the β-glucose anomeric proton signal from the residual water
resonance. However, the use of such 1D LF techniques for many qualitative analyses, as well as the
development of appropriate and robust automated computational tools for real-time analysis, have the
potential to impact on a myriad of additional applications.

In this pilot study, we first investigate LF and HF datasets robustly, in order to compare the
accuracies and precision of statistical tools via the acquisition of urinary spectra at both operating
frequencies. We also present results regarding improvements in spectral resolution, which are
achievable via the acquisition of 2D NMR urinary profiles through LF 1H-1H correlation (COSY)
spectra. This paper complements the preliminary metabolomics results reported by Percival et al. [11],
and describes for the first time the fully assigned 2D spectra acquired at LF, in addition to a robust
comparison between metabolomics studies performed at both operating frequencies. Results presented
in this manuscript are therefore sub-divided into three sections. The first phase of the study investigates
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the capabilities and analytical advantages of 2D NMR spectra acquired at low-field, whilst the
second phase compares the results of metabolomics analyses performed at both LF and HF NMR
operating frequencies. The final phase is based on the results obtained from Phase 2, and, partial least
square (PLS)-regression analysis, is conducted in order to determine the relationship between glucose
concentrations detectable in the urinary 1H NMR profiles of T2D patients, and also modifications in
the urinary excretion of other metabolites.

2. Results

2.1. Analysis of 2D “POWER COSY” 60 MHz LF Spectra

2D NMR measurements were acquired on 10 T2D patient urine samples, using gradient- enhanced
magnitude for 1H-1H COSY experiments. As shown in Figure 1, at least several metabolites can be
identified via their corresponding diagonalized resonances, and correlation signals are observed for
those present at high urinary concentrations, such as glucose, as well as a four-bond connectivity
(long-range connectivity cross-peak) for creatinine at [3.06,4.06] ppm. Interestingly, apparent doublet
resonances were observable in the LF one- and two-dimensional NMR spectra, but not in the
corresponding HF equivalents. Indeed, two regions of the spectrum, at δ = 5.55–5.72 and 4.24–4.40 ppm,
appeared to be “mirrored” by a specific region of the spectrum within the 5.13–5.29 ppm range. In T2D
patients, with the doublet at 5.25 ppm assigned to the α-glucose anomeric C1-H proton, these signals
appear in 1D spectra as a “mirroring” doublet of the α-glucose anomer’s signals located at δ = 4.3 and
5.7 ppm, and a corresponding cross-peak signal was observed in the 2D COSY spectrum (Figure 1A,B,
respectively). Moreover, it should be noted that the urea resonance located at δ = 5.7 ppm, which is
readily detectable in the HF spectra, is much less visible in the 60 MHz profiles in view of this interfering
signal, which as expected, is certainly not observed when glucose is not 1H NMR-detectable in urine
samples (Figure 1B).

Integration of the glucose (α-glucose [5.25,3.58]; bulk glucose ring protons [3.20,3.98] ppm) and
creatinine ([3.06,4.06] ppm) 2D cross-peaks signals, and those of corresponding 1D proton intensities,
was followed by their normalization to the internal TSP reference signal. Notably, β-glucose proton
integration values could not be used for quantification purposes, in view of a significant overlap with
the residual water signal at 60 MHz operating frequency. Furthermore, a 1D integration of the creatinine
signals was performed on the 3.06 ppm >N-CH3 resonance only, since that of the -CH2 function at
4.06 ppm was subject to overlap from those arising from glucose bulk-chain protons. Relationships
between these 2D cross-peak intensities and those of matched 1D proton signals were investigated by
linear correlation analysis. As shown in Figure 1, regression lines show strong correlations between the
TSP-normalised 1D and corresponding 2D integrals, with R2 values of 0.96, 0.95 and 0.81 for α-glucose,
the bulk glucose ring protons, and creatinine (Figure 1C, E and D respectively).

As noted above, the 4.60 ppm β-glucose signal cannot be integrated in 1D spectra, in view of a
very high level of overlap with the residual water resonance in this region. However, the 2D cross-peak
resonance is clearly observable in 2D COSY spectra acquired, as shown in Figure 1. To assess whether
the proximity of the water signal also interferes with the β-glucose intensity in 2D spectra, linear
correlation analyses of the intensity of the 2D cross-peak of β-glucose versus those of α-glucose
or the bulk glucose ring were performed. Excellent correlations were found, with R2 values for
the relationships of β-glucose with α-glucose and bulk glucose ring protons being 0.92 and 0.96
respectively (Figure 1E,F respectively). The unusual δ = 4.3 and 5.70 ppm resonances were also strongly
correlated with the δ = 5.13–5.29 ppm spectral region (R2 = 0.96 and 0.97 respectively), and these data
provide evidence for its glucose source. Association between these spectral zones was evaluated by
computing the 1D integral ratio of α-glucose with these signals’ integral intensity ratios, i.e., 5.25/5.70
or 5.25/4.38 ppm. Based on this, spectral intensities at the 5.70 ppm integral revealed a mean intensity
of 22.4 ± 3.6% (mean ± SEM values) of that at 5.25 ppm, whereas the integral value for the δ = 4.38 ppm
resonance was 11.6 ± 1.7% of that at 5.25 ppm. Overall, this analysis confirmed that these three
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separate spectral zones are strongly correlated. However, although correlated with glucose’s α-anomer
C1-H resonance, these two unusual coupled doublet signals (J = 4.23 Hz) are not simply explicable,
and therefore further experiments are required to establish their precise identity.

Metabolites 2020, 10, x 4 of 13 

 

In principle, the gradient (regression coefficient) of the plot of the intensity of the β-glucose C1-
H anomeric proton 2D cross-peak (δ = 4.66 ppm), versus that of the corresponding 5.25 ppm α-glucose 
one, should reflect their natural abundancies, i.e., 64%:36% = 1.64. However, this gradient was only 
0.60, and this much lower value arises from the β-anomer 1D resonance being much closer to the 
water presaturation frequency (δ = 4.74 ppm) than that of the α-anomer. The marked influence of the 
presaturation process on the intensity of the 1D α-glucose resonance has already been explored in 
detail in Ref. [11], at both 60 and 400 MHz operating frequencies. 

 

Figure 1. Investigation of 2D 1H-1H COSY low-frequency NMR spectra. (A): 2D 1H-1H COSY NMR 
T2D urinary profile acquired at 60 MHz using a benchtop NMR facility. Creatinine blue squares 
represent the long-range connectivity cross-peak for this metabolite. Blue squares labelled A represent 
unassigned, unusual doublet resonances arising from ‘mirroring’ spectral signal located at δ = 5.13–
5.29 ppm (in this case, reflecting the α-glucose cross-peak). (B): Unassigned 4.38 and 5.70 ppm doublet 
resonances, detectable in the 1D 60 MHz NMR profile of a urine sample collected from a 
hyperglycaemic T2D patient, but completely absent from that of a healthy control participant. Urea, 
which is observable in HF 400 MHz spectra and resonates at ~5.80 ppm, was not readily observable 
in our LF spectra in view of its broadness and overlap with the unassigned δ = 5.70 ppm signal. Typical 
spectra are shown. (C) and (D): Linear correlations between 1D and 2D integrals of α-glucose’s C1-H 
5.25 ppm resonance (C), and that of creatinine’s N-CH3 function at δ = 3.06 ppm (D). (E) and (F): Linear 

Figure 1. Investigation of 2D 1H-1H COSY low-frequency NMR spectra. (A): 2D 1H-1H COSY NMR T2D
urinary profile acquired at 60 MHz using a benchtop NMR facility. Creatinine blue squares represent the
long-range connectivity cross-peak for this metabolite. Blue squares labelled A represent unassigned,
unusual doublet resonances arising from ‘mirroring’ spectral signal located at δ = 5.13–5.29 ppm (in this
case, reflecting the α-glucose cross-peak). (B): Unassigned 4.38 and 5.70 ppm doublet resonances,
detectable in the 1D 60 MHz NMR profile of a urine sample collected from a hyperglycaemic T2D
patient, but completely absent from that of a healthy control participant. Urea, which is observable
in HF 400 MHz spectra and resonates at ~5.80 ppm, was not readily observable in our LF spectra
in view of its broadness and overlap with the unassigned δ = 5.70 ppm signal. Typical spectra are
shown. (C,D): Linear correlations between 1D and 2D integrals of α-glucose’s C1-H 5.25 ppm resonance
(C), and that of creatinine’s N-CH3 function at δ = 3.06 ppm (D). (E,F): Linear correlations between
2D cross-peaks signal integrals of β-glucose’s C1-H signal versus those of glucose bulk ring (E),
and α-glucose’s C1-H function (F).

In principle, the gradient (regression coefficient) of the plot of the intensity of the β-glucose C1-H
anomeric proton 2D cross-peak (δ = 4.66 ppm), versus that of the corresponding 5.25 ppm α-glucose
one, should reflect their natural abundancies, i.e., 64%:36% = 1.64. However, this gradient was only
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0.60, and this much lower value arises from the β-anomer 1D resonance being much closer to the
water presaturation frequency (δ = 4.74 ppm) than that of the α-anomer. The marked influence of the
presaturation process on the intensity of the 1D α-glucose resonance has already been explored in
detail in Ref. [11], at both 60 and 400 MHz operating frequencies.

2.2. Metabolomics Investigation of T2D Versus Healthy Urine Samples: Low- and High-Frequency 1H
NMR Comparisons

Urinary 1H NMR spectra of 10 non-rigorously controlled T2D patients and 15 self-reported healthy
control participants were acquired using both 60 and 400 MHz spectrometers. Spectral comparisons
between both frequencies, along with a table of identified metabolites, is shown in the Supplementary
Material (Figure S1). In order to determine whether the metabolomics analysis performed effectively
on spectra acquired on a LF benchtop NMR facility, and provides results comparable to those of a HF
instrument, a comparative multivariate statistical analysis of datasets was performed, and the results
acquired compared. An orthogonal partial-least squares discriminant analysis (OPLS-DA) scores plot
(component 2 versus component 1) featuring both T2D and control participants revealed identical
spatial localizations of the patients, under both HF and LF conditions (Figure 2). Samples could be
separated into two clear clusters according to their health status along the first PC, and these acquired
results appeared to be similar for experiments conducted at both spectrometer operating frequencies
(Figure 2A,B). Moreover, analysis of the second component showed a wide intra-group variation within
diabetic samples, with the appearance of two sub-clusters within this classification. A further analysis
revealed that these two sub-clusters arose from diabetic patients presenting with high urinary glucose
concentrations, and those with only little or none of this metabolite detectable. The cluster separation
of T2D and control samples is clearly observable under both LF and HF conditions, with LF model
R2 and Q2 values of 0.924 and 0.611, respectively, and similar HF model values of 0.943 and 0.706,
respectively (for models with a total of three components).

Most relevant variables linked to this separation were extracted from an S-line correlation and
VIP plots. In the S-curve, the main metabolites contributing to the separation were identified with
higher values of correlation coefficients (denoted by a red colouration in (Figure 2C,D). Moreover,
17 and 16 variables of interest with VIP values > 1 were identified for high- and low-frequency
conditions, respectively. Of note, only one variable of interest differs between the HF and LF condition:
the 5.86 ppm urea bucket stands out as a discriminator only in the HF NMR dataset acquired, and this
is not unexpected in view of its detectability only at the latter operating frequency.

From these variables, 5 (LF) and 6 (HF) potentially discriminant metabolites were identified.
Indeed, glucose is increased in T2D patients, whilst levels of citrate, creatinine, indoxyl sulfate,
urea (only observed in HF analysis) and hippurate are significantly reduced (Figure 2C,D). With the
exception of urea, the metabolites responsible for the separation observed between these clusters
were similar in both datasets acquired. Model validity was assessed via permutation testing (1000
permutations, HF Q2 value p < 0.001; LF Q2 value p < 0.001) and ROC analysis (Figure 2E,F). ROC
curves generated via Monte Carlo cross-validation (MCCV) and based on the PLS-DA strategy (using
2 latent variables) demonstrated that the overall mean classification success rate was 92% and 90% for
the HF and LF 1H NMR models, respectively.

The most effective PLS models were those incorporating 25 bucket regions, the AUROC value
obtained being 0.96 for spectra acquired by HF, and 0.94 when using LF NMR analysis (95% confidence
intervals 0.81–1.00). Therefore, based on the AUROC values and the overall Q2 and R2 scores obtained
above, both models revealed a highly effective discriminatory ability. In view of complications arising
from the very prominent glucose resonances present in approximately one-half of the T2D urinary 1H
NMR profiles, and the application of the CSN (constant sum normalisation) approach, we elected to
perform a corresponding statistical analysis on the full dataset after removal of all glucose resonance
bucket regions. Indeed, following the removal of these resonance regions, the dataset was again
constant sum-normalized and Pareto-scaled. Briefly, the results acquired confirmed significantly
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diminished urinary concentrations of hippurate (p < 0.005 to < 0.05 for three bucket regions) and
indoxyl sulfate (p < 0.007 to < 0.05, again for three bucket regions). This univariate analysis was
performed on all remaining (non-glucose) resonances using false discovery rate (FDR)-corrected
two-samples t-tests.
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Figure 2. Metabolomics analysis of T2D 1H NMR urinary profiles (n = 10), versus those of healthy
controls (n = 15), acquired using HF and LF NMR spectrometers. Scores plots (A,B), and corresponding
loading-plots (C,D) from orthogonal partial-least squares discriminant analysis (OPLS-DA) applied to
1H-NMR spectra of control versus T2D samples, acquired using HF (A,C) or LF (B,D) 1H NMR analysis.
The colour of the signals in the loading plots correspond to the metabolites contributing most greatly
towards the separation between T2D and healthy control group samples. The colour bar next to the
right-hand side of these plots indicates the level of importance of the metabolites discriminating between
classes (either positively or negatively so), the least significant represented by a blue colouration,
and the most highly significant metabolites, red. (E,F): Receiver operating characteristic (ROC) curve
(with an area under ROC curve (AUROC) value of 0.96 (E, HF NMR acquisition) and 0.94 (F, LF NMR
acquisition) obtained from the PLS model building system, explored with 25 discriminant variables.

We also directly compared the mean TSP-normalised intensities of ‘bulk resonance bucketed’ 1H
NMR signals between the HF 400 and LF benchtop 60 MHz spectrometers employed for this study in a
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univariate manner via a paired sample t-test, and found that the only significant ‘between-spectrometer’
difference observed was that between the δ = 2.89 ppm trimethylamine N(CH3)3 singlet resonance,
this value being greater for the 60 MHz spectrometer (FDR-corrected p value 0.002). However,
this difference can be rationalized by its close location to the relatively intense joint creatinine/creatine
>N-CH3 signal (δ = 3.03 ppm), which at an operating frequency of only 60 MHz, will be expected to
provide a significant contribution towards the intensity of that of TMA. For this analysis, a series of 12
pre-selected resonances (of signal-to-noise (STN) values ≥ 10) were compared, and the dataset was
also generalized logarithmically (glog)-transformed and Pareto-scaled prior to analysis.

2.3. Linear Correlations of Glucose Levels with the Urinary Metabolome of Diabetic Patients

Potential relationships between the urinary levels of glucose, measured independently with a
spectrophotometric GOD-PAP method as a clinical chemistry standard, and the urinary metabolomic
profiles acquired were evaluated by conducting transversal correlation studies. These correlations
were obtained by performing PLS regression (PLS-R) using only the non-glucose resonance NMR
spectral regions of diabetic urinary samples included as the X-matrix, and the non-NMR-determined
glucose levels as the Y-matrix; spectral regions of the glucose resonances (3.12–4.00, 4.15–4.35 and
5.10–5.40 ppm) were removed from the X-matrix prior to analysis, and the complete remaining dataset
was then again constant sum-normalised and Pareto-scaled. It should also be noted that the glucose
values vary greatly (spanning from 0.15 to 251 mmol/L), and hence were logarithmically-transformed
to facilitate linear regression analysis. Two T2D samples with a glucose concentration value of 0
were excluded from the study. As shown in Figure 3, PLS regression lines for glucose levels correlate
strongly with the urinary metabolome of all n = 8 T2D patients, with R2 coefficients of 0.99 and 0.89
when using HF or LF spectra, respectively (Figure 3). On the basis of the VIP plots, variables with
values ≥ 1 were selected as key ones related to urinary glucose variation. A total of 18 variables were
determined as significant, and from these, 5 metabolites identified were found to be correlated with
urinary glucose levels. Indeed, creatinine, alanine, citrate, lactate and N-acetylsugar/N-acetylamino
acid resonances all appeared to be negatively correlated with urinary glucose levels. Hence, diabetic
patients presenting with lower levels of urinary glucose display increased levels of hippurate, indoxyl
sulfate, citrate and lactate levels, when compared to patients with high glucose values.
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Figure 3. Transversal correlation studies between the T2D urinary metabolome and urinary glucose
levels. PLS regressions were used to determine correlations between the glucose levels (Y actual values,
on the y-axis) and the urinary metabolome of diabetic patients (depicted as Y predicted, on the x-axis)
from spectra acquired by HF (left panel) or LF NMR analyses (right panel).
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3. Discussion

Metabolomics is a powerful approach which, in the space of a few decades, has developed
considerably, and HF NMR analysis is one of the most commonly applied techniques to perform
metabolomics studies. However, despite adoption in several domains, the application of LF
spectrometers for this purpose remains limited [8,11,13]. Here, we have reported metabolomics
analysis comparisons between the 1H NMR profiles of T2D and control participant urine samples
acquired by both high- and low-frequency NMR techniques. In our chemometrics analysis, T2D urine
samples are readily distinguishable from those of healthy controls, and several metabolites are linked
to this separation. Indeed, while glucose levels are higher in T2D patients, those of hippurate and
indoxyl sulfate are lower in these participants. These results are observable in both HF and LF spectra,
with OPLS-DA scores plots presenting highly similar spatial localizations of each sample at both
operating frequencies, as well as corresponding discriminatory metabolites, with the exception of urea.
Hence, under the same bucketing and normalisation conditions, it is possible to attain comparable
results at both high and low operating frequencies. However, several limitations of this study should
be considered, primarily, a probable insufficient sample size was involved, and the high levels of
glucose present in some of the T2D urine specimens renders a facile multivariate metabolomics
separation between the two conditions. The robustness of this approach still requires further testing
on a large number of samples, and in a study investigating more non-glucose-based metabolic changes.
Nevertheless, this challenges the paradigm of HF NMR applied in metabolomics, and also provides
potential scope and insight for the development of new metabolomics strategies employing faster,
cheaper and easier to use NMR techniques.

Poorly controlled diabetic patients regularly suffer from nocturia and polyuria, the former a
condition in which patients awaken at least once during the night to void urine [14]. These lead to
decreases in the concentrations of many urinary metabolites, together with wide ’between-participant’
variations in urinary excretion volumes. This may explain why T2D group downregulations in
hippurate and indoxyl sulfate are also responsible for the ‘between-disease class’ distinction observed
here, with significantly higher concentrations observed in the healthy control group. One approach to
adjust for this would be to normalize the dataset using creatinine levels, which are usually excreted
steadily in the urine. However, this was not possible in our study for the spectra acquired by LF NMR
analysis, since the two buckets corresponding to this biomolecule’s resonances at δ = 3.06 and 4.06 ppm
were subject to several overlap instances with other metabolites, i.e., those with resonance frequencies
close to those of these signals. This is highlighted by the linear correlation observed between the
integrals of the 1D versus 2D cross-peaks for creatinine, since the resulting correlation coefficient
value is lower when compared to other corresponding plots obtained. This can be rationalised by
considering several closely located metabolites signals, such as creatine and glucose, that are also
likely integrated within the creatinine signal chemical shift region in 1D analysis, whilst integration of
the 2D cross-peak signal serves to limit the superposition of resonances related to other metabolites.
Furthermore, approximately 25% of diabetic patients suffer from kidney dysfunction [15], which is
known to affect creatinine clearance [16], a phenomenon further hindering any creatinine normalisation
strategies in metabolomics studies involving diabetic patients.

In the present study, urinary glucose levels were positively correlated with the non-glucose urinary
metabolome of T2D samples. In particular, the abundance of several metabolites was downregulated
based on glucose levels excreted in patient urine samples. High levels of glucose in the urine serve as
commonly employed markers of poorly-controlled diabetes. These metabolites could correspond to the
excretion of biomarkers of cellular or tissular dysfunctions, or defects linked to diabetes management.
Further studies with larger sample sizes are therefore required to confirm the significant discriminatory
metabolites identified in this case, since they may constitute valuable biomarkers for mechanistic
studies, and the clinical monitoring of patients with type 2 diabetes. Furthermore, as noted above,
multivariate correlation studies reveal that T2D patients presenting with lower levels of glucose display
increased levels of hippurate, indoxyl sulfate, citrate and lactate, when compared to those with high
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glucose values. In our metabolomics analysis, OPLS loadings revealed that these urinary metabolites
are at higher levels in the healthy control group, when compared with T2D participants. Therefore,
this observation may suggest that glycaemically-controlled T2D patients with higher levels of these
metabolites (and correspondingly lower urinary glucose levels) display a metabolomics profile more
closely related to that of healthy control patients, and hence potentially reveals a better managed or
controlled disease status.

The linear correlation analysis performed between the 1D and 2D intensities of glucose, bulk ring
glucose and creatinine resonances showed strong correlations, except for that observed with creatinine,
as noted above, which attests to the validity of 2D spectra acquired with the sequence “POWER COSY”.
In addition, the acquisition of 2D 1H-1H NMR profiles clearly gives rise to an improvement in the
resolution of the signals observed, and in particular allowed for the integration of the cross-peak
signal of β-glucose, which was not possible in 1D spectra in view of overlap of its δ = 4.63 ppm
anomeric proton signal with that of the residual water resonance in this spectral region. It should
also be noted that apart from creatinine and glucose, the cross-peaks of other metabolites present at
lower concentrations are not observable in the 2D spectra acquired. The sensitivity of the 2D spectra
is lower than that of the 1D approach [17], and this is presumably why only the cross-peaks of the
metabolites present in large quantities are observable. However, these spectra were acquired with only
eight scans in only 30 min., and therefore increasing the number of scans may permit the observation
of cross-peaks of several other metabolites. In addition, a metabolomics analysis of 2D COSY spectra
acquired by HF has previously been developed [18,19], and these strategies could, in principle, also be
applied to LF spectra, which could conceivably assist researchers in the context of overcoming the
overlapping resonance issue encountered in 1D LF spectra, and also possibly increase the number of
discriminatory metabolites discovered in such LF metabolomics investigations.

Problems encountered with the 1H NMR detection of urea at LF are explicable by the presence of
unassigned doublet resonances detectable at this operating frequency. Hence, the removal of this signal
may render urea analysis in such T2D urine samples possible. Since these signals are located close
to the residual water signal, they may also be related to the solvent suppression sequence employed,
and therefore further investigations are required to evaluate these effects. Unfortunately, such errors
constitute a bias that must be considered when confirming the identities of 1H NMR signals and/or
metabolomics investigations.

Finally, our results suggest that LF spectrometers could provide excellent, easy-to-use, compact
and inexpensive tools to perform preliminary diagnostic analyses, either in laboratories or at external
locations. Moreover, the quality of 2D spectra obtained within only a few minutes would broaden the
horizon of its potential applications, such as drug analysis [20], or applications in the environmental [21]
or nutrition fields [13]. As demonstrated here, 2D NMR spectral analysis could also contribute to
personalised medicine and translational metabolomics in the areas of healthcare or dentistry. However,
there remain a number of major drawbacks that limit their application in routine metabolomics analysis,
such as low biomarker sensitivities and J-couplings which are spread over a much wider range of the
total spectral width (for example, as much as 0.20 ppm for a triplet resonance with a J value of 6 Hz),
phenomena which limit the number of detectable metabolites in a single sample. Therefore, these major
issues must be addressed in the near future, in order to allow LF NMR diagnostic technologies to gain
momentum in clinical applications.

4. Materials and Methods

4.1. Study Design

All samples in this study were collected with informed consent and approved by the appropriate
Research Ethics Committee, specifically the Faculty of Health and Life Sciences Research Ethics
Committee, De Montfort University, Leicester, UK (reference no. 1936). All participants were primarily
provided with participant information sheets (PISs), and were then required to sign a project consent
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form in the presence of a researcher witness. The PIS clearly informed those recruited that since their
participation was voluntary, they had the freedom to withdraw from the investigation at any stage of
the process. All participants were also requested not to consume any alcoholic beverages, nor any
dietary sources known to affect the human metabolome, for 24 hr. prior to urine sample collection.
Essentially, all ethics considerations were in accordance with those of the Declaration of Helsinki of
1975 (revised in 1983).

4.2. Urine Collection

Participants fasted for a minimum period of 12 hr. prior to sample collection. Urine samples were
collected from healthy control (n = 15) and T2D patients (n = 10), in sterile, plastic universal containers
(King Scientific, Huddersfield, UK). These specimens were then transported to the laboratory on ice,
and centrifuged immediately (3500 rpm at 4 ◦C for 15 min.). The supernatants were finally stored at
−80 ◦C prior to 1H NMR analysis.

4.3. Spectrophotometric Determination of Glucose

Glucose was quantified using the well-established glucose oxidase-peroxide/4-aminophenazone/

phenol (GOD-PAP) spectrophotometric methodology, which is outlined in Percival et al. [11] A glucose
calibration curve, of concentrations ranging from 0.50 to 2.5 mg/mL, were prepared in 0.90% (w/v)
NaCl (glucose was purchased from Sigma-Aldrich Chemical Co., Gillingham, UK). A 0.50 mL volume
of the GOD-PAP reagent was incubated at 37 ◦C (Stuart Scientific Incubator SI 19, Stone, UK) for
10 min. in a polystyrene cuvette (1.0 mL path length, Fisher Scientific, Loughborough, UK). Then, 5 µL
of each calibration standard was added to the cuvettes and incubated for a further 10 min. at 37 ◦C.
Cuvette solutions were homogenized and equilibrated for a further 10 min. at 37 ◦C. Subsequently,
these solutions were analysed using a spectrophotometer (Evolution 60S, Thermo Fisher Scientific,
Leicester, UK), at a wavelength of 510 nm. The same procedure described here was followed for urine
samples, using 5 µL of urine in place of glucose calibration standard solutions. The calibration curve
had an R2 value of 0.990.

4.4. Low-Frequency (60 MHz) 1H-NMR Analysis

Optimised sample preparation techniques for urine samples have been previously described
elsewhere [11]. Briefly, 1H NMR spectra were acquired using a 60 MHz Magritek benchtop
facility (Spinsolve Ultra Proton), operating at a frequency of 61.67 MHz. For the urine samples,
a 90:10% (v/v) ratio of H2O:D2O was used, the latter also containing 0.05% (w/v) sodium
3-trimethylsilyl-(2,2,3,3-2H4)-1-propionate (TSP). Samples were prepared at an ambient temperature in
5-mm diameter NMR tubes. Sample parameters for the 1D 1H NMR analysis were as follows: 64 scans,
acquisition time of 6.4 s, repetition time 10 s, and a pulse angle of 90◦, as previously described [11] pectra
were acquired using a one-dimensional presaturation (1D PRESAT) sequence, to allow for efficient
saturation of the water signal, and the water-suppression pulse was placed during the relaxation
delay (1 s).

A gradient-enhanced magnitude COSY experiment (pulse sequence cosy 1H-1H Power Cosy,
supplied by Magritek GmbH) was employed for the acquisition of 2D 1H-1H spectra. Spectra were
collected with 8192 datapoints in F2, and 256 points in F1, over a sweep width of 14 and 46 ppm
respectively; 8 scans were performed per F2 value, along with 4 dummy scans and a receiver gain
of 101. The acquisition time was 0.16 and 1.63 s for F1 and F2, and the free induction decay (FID)
resolution was 0.61 and 7.81, respectively. Resulting 1H-1H COSY spectra were processed in Topspin
4.0.6 and ACD labs 12.0 software modules using standard approaches, with sine-squared apodization
in both dimensions, and zero filling in F1 to yield a transformed 2D dataset of 8192 by 256 datapoints.
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4.5. High-Frequency (400 MHz) 1H-NMR Analysis

Identical preparation techniques were used for the HF 1H NMR analysis. Sample parameters for
the 1D noesygppr1d HF 400 MHz analysis are detailed elsewhere [11]. Briefly, samples were acquired
using 128 scans, with a size of 32,768 over a spectral width of 12.11 ppm, using an acquisition time
of 3.38 s. and a receiver gain of 128 on a 400 MHz NMR facility (Bruker Avance I, Coventry, UK),
operating at 399.93 MHz. Solvent suppression was employed in order to diminish the signal arising
from water at δ = 4.80 ppm. Samples were placed in 5 mm NMR tubes and were analysed at random
using an autosampler.

4.6. Multivariate Metabolomics Analysis

The same preprocessing and multivariate analysis strategies were applied to both LF- and
HF-acquired FIDs. For statistical analysis, FIDs were converted and imported into Bruker using the
“JCONV” command. They were processed with the Bruker Topspin 4.0.6 software with a standard
parameter set. Phase and baseline corrections were performed manually over the entire range of
the spectra, and the δ scale was calibrated to 0 ppm, using the internal standard TSP. Optimized
1H-NMR spectra were imported into ACD Labs 12.0 (Toronto, ON, Canada). Fixed bucket spectral
intensities were then normalized to total intensities (also known as constant sum normalisation),
and reduced to integrated regions of equivalent spectral width (0.04 ppm), corresponding to the
0.50–10.00 ppm range. The reduced and normalized NMR spectral data were imported into SIMCA
(version 13.0.3, Umetrics AB, Umea, Sweden). Pareto-scaling was applied to bucketed data, and a
multivariate metabolomics analysis, including principal component analysis (PCA) and an orthogonal
partial-least squares discriminant analysis (OPLS-DA) were performed. SIMCA was used to generate
all PCA, OPLS-DA and partial least-squares regression (PLS-R) model analyses, and corresponding
plots. PCA was used to detect possible outliers and visualise intrinsic clusterings within the dataset,
whilst OPLS-DA maximized the separation and facilitated the graphic visualization of differences
and similarities between groups. The quality of OPLS-DA models was determined by goodness
of fit (R2) values; the predictability of these were calculated on the basis of the fraction correctly
predicted in a one-seventh cross-validation process (involving Q2 determinations). Ordinary linear
regression approaches were performed using Excel 2016 (Microsoft Corporation, Redmond, WA, USA).
All univariate statistical analyses were conducted using the freely available web-tool Metaboanalyst
(metaboanalyst.ca).

By using the web-based analysis tool, Metaboanalyst (www.metaboanalyst.ca), receiver operating
characteristic (ROC) curves were generated to assess the robustness of the models. ROC analyses were
based on PLS-DA models, as classification methods with 2 latent variables (i.e., major orthogonal
components). Model sensitivity and specificity were calculated from the ROC confusion matrix
(generated on the basis of the average of predicted class probabilities of each sample across 100
cross-validations). ROC curves were generated by Monte Carlo cross validation (MCCV), using balanced
sub-sampling. In each MCCV, two thirds (2/3) of the samples were used to evaluate feature importance.
The top 2, 3, 5, 10 . . . 100 (max) important features were then used to build appropriate classification
models, which were then validated on the one-third of the samples that were left out. This procedure
was repeated multiple times to calculate performance and associated 95% confidence intervals (CIs)
for each model system.

4.7. Metabolite and Discriminatory Biomarker Identification

From PLS-DA and OPLS-DA loading plots, metabolites with higher loadings values were identified.
Signals with variable importance in projection (VIP) values ≥ 1 were considered as significant,
and further validated using two-sample t-tests within Metaboanalyst. Metabolite identification
was then performed using the open-access database NMRsuite 8.1 (Chenomx inc., Edmonton, AB,
Canada), the free web-based tool Human Metabolome DataBase (HMDB) (http://www.hmdb.ca), and a

metaboanalyst.ca
www.metaboanalyst.ca
http://www.hmdb.ca
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full consideration of substantial chemical shift and coupling constant values available throughout
the literature.

5. Conclusions

NMR spectroscopy is a powerful and reliable tool to assess the molecular compositions of
biosamples using multivariate metabolomics strategies. In this study, we assessed the capabilities of a
metabolomics analysis of data acquired on a LF benchtop NMR spectrometer using both 1D and 2D
strategies, and compared results from these investigations to those obtained on a much higher frequency
spectrometer. We also evaluated the strengths and limitations of LF 2D COSY spectra acquired for this
purpose. Overall, our findings highlight the ability of a LF NMR approach to successfully reproduce
metabolomics results achieved using a HF option. Moreover, the 2D COSY spectra of urinary diabetic
samples gave rise to an improved level of identification and sensitivity, in relation to the resonances
affected or partially overlapped by the more prominent glucose ones observed in 1D spectra. Further
improvements in the numbers of metabolites detectable, and also the sensitivity of such LF NMR
techniques, will, however, be achievable with greater numbers of acquisitional 1H-1H 2D COSY scans.
Finally, development and applications of LF spectrometers are rapidly gaining momentum, and other
metabolomics studies are very likely to be performed on this technique in the near future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/4/155/s1,
Figure S1: Urinary spectra of diabetic patient acquired at 60 (red, upper panel) and 400 MHz (blue, lower panel).
Table: 1H NMR assignments for identified metabolites. Legend: s: singlet, d: doublet, t: triplet, m: multiple,
dd: doublet of doublets.

Author Contributions: Conceptualization, J.L., P.B.W. and M.G. (Martin Grootveld); validation, M.G. (Martin
Grootveld) and B.P.; formal analysis, J.L.; investigation, M.G. (Miles Gibson) and B.P.; resources, F.C., M.G. (Martin
Grootveld) and P.B.W.; data curation, M.G. (Miles Gibson) and B.P.; writing—original draft preparation, J.L.;
writing—review and editing, J.L., B.P., M.G. (Martin Grootveld) and P.W.; visualization, J.L.; supervision, M.G.
(Martin Grootveld) and P.W. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors thank Magritek GmbH for the use of a Spinsolve 60 Ultra Spectrometer and
operation and design of the study. We also thank our colleague Fereshteh Jafari, as well as our 6-week internship
students, Caleb Anderson and Funke Sangowawa, for their valuable laboratory-based contributions. J.L. and
P.B.W. wish to dedicate this manuscript to the memory of Simon Levett, close collaborator and friend.

Conflicts of Interest: The authors declare no conflict of interest. F.C. is an employee of Magritek GmbH, and
contributed towards analytical procedures.

References

1. Beckonert, O.; Keun, H.C.; Ebbels, T.M.D.; Bundy, J.; Holmes, E.; Lindon, J.C.; Nicholson, J.K. Metabolic
profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and
tissue extracts. Nat. Protoc. 2007, 2, 2692. [CrossRef]

2. Frédérich, M.; Pirotte, B.; Fillet, M.; De Tullio, P. Metabolomics as a Challenging Approach for Medicinal
Chemistry and Personalized Medicine. J. Med. Chem. 2016, 59, 8649–8666. [CrossRef] [PubMed]

3. Balashova, E.E.; Maslov, D.L.; Lokhov, P.G. A metabolomics approach to pharmacotherapy personalization.
J. Pers. Med. 2018, 8, 28. [CrossRef] [PubMed]

4. Emwas, A.H.M.; Salek, R.M.; Griffin, J.L.; Merzaban, J. NMR-based metabolomics in human disease diagnosis:
Applications, limitations, and recommendations. Metabolomics 2013, 9, 1048–1072. [CrossRef]

5. Holmes, E.; Wilson, I.D.; Nicholson, J.K. Metabolic phenotyping in health and disease. Cell 2008, 134, 714–717.
[CrossRef]

6. Vinayavekhin, N.; Homan, E.A.; Saghatelian, A. Exploring disease through metabolomics. ACS Chem. Biol.
2010, 5, 91–103. [CrossRef] [PubMed]

7. Markley, J.L.; Brüschweiler, R.; Edison, A.S.; Eghbalnia, H.R.; Powers, R.; Raftery, D.; Wishart, D.S. The future
of NMR-based metabolomics. Curr. Opin. Biotechnol. 2017, 43, 34–40. [CrossRef] [PubMed]

http://www.mdpi.com/2218-1989/10/4/155/s1
http://dx.doi.org/10.1038/nprot.2007.376
http://dx.doi.org/10.1021/acs.jmedchem.5b01335
http://www.ncbi.nlm.nih.gov/pubmed/27295417
http://dx.doi.org/10.3390/jpm8030028
http://www.ncbi.nlm.nih.gov/pubmed/30189667
http://dx.doi.org/10.1007/s11306-013-0524-y
http://dx.doi.org/10.1016/j.cell.2008.08.026
http://dx.doi.org/10.1021/cb900271r
http://www.ncbi.nlm.nih.gov/pubmed/20020774
http://dx.doi.org/10.1016/j.copbio.2016.08.001
http://www.ncbi.nlm.nih.gov/pubmed/27580257


Metabolites 2020, 10, 155 13 of 13

8. Grootveld, M.; Percival, B.; Gibson, M.; Osman, Y.; Edgar, M.; Molinari, M.; Mather, M.L.; Casanova, F.;
Wilson, P.B. Progress in low-field benchtop NMR spectroscopy in chemical and biochemical analysis.
Anal. Chim. Acta 2019, 1067, 11–30. [CrossRef]

9. Silva Elipe, M.V.; Milburn, R.R. Monitoring chemical reactions by low-field benchtop NMR at 45 MHz: Pros
and cons. Magn. Reson. Chem. 2016, 54, 437–443. [CrossRef]

10. Knox, S.T.; Parkinson, S.; Stone, R.; Warren, N.J. Benchtop flow-NMR for rapid online monitoring of RAFT
and free radical polymerisation in batch and continuous reactors. Polym. Chem. 2019, 10, 4774–4778.
[CrossRef]

11. Percival, B.C.; Grootveld, M.; Gibson, M.; Osman, Y.; Molinari, M.; Jafari, F.; Sahota, T.; Martin, M.;
Casanova, F.; Mather, M.L.; et al. Low-field, benchtop NMR spectroscopy as a potential tool for point-of-care
diagnostics of metabolic conditions: Validation, protocols and computational models. High-Throughput 2018,
8, 2. [CrossRef]

12. Wishart, D.S. NMR metabolomics: A look ahead. J. Magn. Reson. 2019, 306, 155–161. [CrossRef] [PubMed]
13. Gouilleux, B.; Marchand, J.; Charrier, B.; Remaud, G.S.; Giraudeau, P. High-throughput authentication of

edible oils with benchtop Ultrafast 2D NMR. Food Chem. 2018, 244, 153–158. [CrossRef] [PubMed]
14. Chung, M.S.; Chuang, Y.C.; Lee, J.J.; Lee, W.C.; Chancellor, M.B.; Liu, R.T. Prevalence and associated risk

factors of nocturia and subsequent mortality in 1301 patients with type 2 diabetes. Int. Urol. Nephrol. 2014,
46, 1269–1275. [CrossRef] [PubMed]

15. Afkarian, M.; Zelnick, L.R.; Hall, Y.N.; Heagerty, P.J.; Tuttle, K.; Weiss, N.S.; De Boer, I.H. Clinical
manifestations of kidney disease among US adults with diabetes, 1988-2014. JAMA 2016, 316, 602–610.
[CrossRef] [PubMed]

16. Di Micco, L.; Quinn, R.R.; Ronksley, P.E.; Bellizzi, V.; Lewin, A.M.; Cianciaruso, B.; Ravani, P. Urine creatinine
excretion and clinical outcomes in CKD. Clin. J. Am. Soc. Nephrol. 2013, 8, 1877–1883. [CrossRef]

17. Emwas, A.-H.M. The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular
focus on metabolomics research. Methods Mol. Biol. 2015, 1277, 161–193.

18. Feraud, B.; Rousseau, R.; de Tullio, P.; Verleysen, M.; Govaerts, B. Independent component analysis and
statistical modelling for the identification of metabolomics biomarkers in 1H-NMR spectroscopy. J. Biom.
Biostat. 2017, 8, 2. [CrossRef]

19. Martineau, E.; Giraudeau, P. Fast Quantitative 2D NMR for Untargeted and Targeted Metabolomics. Methods
Mol. Biol. 2019, 2037, 365–383.

20. Dufour, G.; Evrard, B.; de Tullio, P. 2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix:
Application to Cyclodextrins. AAPS J. 2015, 17, 1501–1510. [CrossRef]

21. Mahrous, E.A.; Farag, M.A. Two dimensional NMR spectroscopic approaches for exploring plant metabolome:
A review. J. Adv. Res. 2015, 6, 3–15. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.aca.2019.02.026
http://dx.doi.org/10.1002/mrc.4189
http://dx.doi.org/10.1039/C9PY00982E
http://dx.doi.org/10.3390/ht8010002
http://dx.doi.org/10.1016/j.jmr.2019.07.013
http://www.ncbi.nlm.nih.gov/pubmed/31377153
http://dx.doi.org/10.1016/j.foodchem.2017.10.016
http://www.ncbi.nlm.nih.gov/pubmed/29120763
http://dx.doi.org/10.1007/s11255-014-0669-2
http://www.ncbi.nlm.nih.gov/pubmed/24595602
http://dx.doi.org/10.1001/jama.2016.10924
http://www.ncbi.nlm.nih.gov/pubmed/27532915
http://dx.doi.org/10.2215/CJN.01350213
http://dx.doi.org/10.4172/2155-6180.1000367
http://dx.doi.org/10.1208/s12248-015-9806-9
http://dx.doi.org/10.1016/j.jare.2014.10.003
http://www.ncbi.nlm.nih.gov/pubmed/25685540
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Analysis of 2D “POWER COSY” 60 MHz LF Spectra 
	Metabolomics Investigation of T2D Versus Healthy Urine Samples: Low- and High-Frequency 1H NMR Comparisons 
	Linear Correlations of Glucose Levels with the Urinary Metabolome of Diabetic Patients 

	Discussion 
	Materials and Methods 
	Study Design 
	Urine Collection 
	Spectrophotometric Determination of Glucose 
	Low-Frequency (60 MHz) 1H-NMR Analysis 
	High-Frequency (400 MHz) 1H-NMR Analysis 
	Multivariate Metabolomics Analysis 
	Metabolite and Discriminatory Biomarker Identification 

	Conclusions 
	References

