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Abstract: Increased arterial stiffness is a degenerative vascular process, progressing with age that
leads to a reduced capability of arteries to expand and contract in response to pressure changes.
This progressive degeneration mainly affects the extracellular matrix of elastic arteries and causes
loss of vascular elasticity. Recent studies point to significant interference of dietary polyphenols
with mechanisms involved in the pathophysiology and progression of arterial stiffness. This review
summarizes data from epidemiological and interventional studies on the effect of polyphenols
on vascular stiffness as an illustration of current research and addresses possible etiological factors
targeted by polyphenols, including pathways of vascular functionality, oxidative status, inflammation,
glycation, and autophagy. Effects can either be inflicted directly by the dietary polyphenols or
indirectly by metabolites originated from the host or microbial metabolic processes. The composition
of the gut microbiome, therefore, determines the resulting metabolome and, as a consequence, the
observed activity. On the other hand, polyphenols also influence the intestinal microbial composition,
and therefore the metabolites available for interaction with relevant targets. As such, targeting the
gut microbiome is another potential treatment option for arterial stiffness.

Keywords: arterial stiffness; aging; polyphenols; polyphenol biotransformation; gut microbiome;
antioxidant; anti-inflammatory; autophagy

1. Introduction

Increased arterial stiffness is a degenerative vascular aging process, which mainly affects the
extracellular matrix of elastic arteries and results in a reduced capability of arteries to expand and
contract in response to pressure changes [1–4]. Stiffening of the arterial wall leads to fundamental
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changes in central hemodynamics with the increased pulsatile strain on the microcirculation, leading
to detrimental consequences for end organ function [5,6]. Arterial stiffness is an independent risk
factor for cardiovascular (CV) morbidity and mortality [5,7,8].

Etiological factors for the development of arterial stiffness include pathways of vascular
functionality, oxidative status, inflammation, glycation, and autophagy. The most relevant activities
of dietary polyphenols on mechanisms involved in the pathophysiology and progression of arterial
stiffness (AS) and its consequences are identified and discussed.

Polyphenol activities are not only due to direct effects of the parent compounds but are also largely
dependent on the bioactivity of their metabolites, originating from the host or microbial metabolic
processes. The composition of the gut microbiome, therefore, determines the resulting metabolome
and the observed effect. Moreover, polyphenols also modulate the intestinal microbial composition
and, therefore, play a role in determining the metabolites available for interaction with relevant targets.
Thus, targeting the gut microbiome is another potential treatment option for arterial stiffness.

2. Arterial Stiffness

Normal elastic arteries have a smoothing function, thus assuring a steady blood flow in peripheral
tissues [9]. The collagen/elastin ratio determines the stiffness of the vascular wall. However, aging and
other risk factors cause the arterial tissue to gradually lose its elasticity, primarily due to progressive
degeneration of the extracellular matrix in the media layer, which leads to arterial stiffness [2,4,8].

The decrease in the elastin/collagen ratio in the media layer progresses under the influence of
altered lysyl oxidase (LOX) and matrix metalloproteinase (MMP) activity [5]. Elastin is progressively
fragmented and degraded, while the amount of collagen increases, and also collagen-elastin cross-links
multiply under the influence of S-nitrosylation and advanced glycation end-products (AGEs).
Angiotensin II (Ang II) signaling further contributes to collagen and advanced glycation endpoints
accumulation and elastin degradation.

Additionally, upon activation of the receptor of AGE (RAGE), intracellular reactive oxygen
species (ROS) levels are increased through upregulation of reduced nicotinamide adenine dinucleotide
(phosphate) (NAD(P)H) oxidase expression, thus contributing to the oxidative stress associated
with arterial stiffness. Moreover, calcium microdisposition in fragmented elastin leads to vascular
calcification, which further increases the stiffening process [5,8–13].

Stiffened arteries contribute to increased systolic blood pressure (SBP), amplified by superposition
of prematurely reflected pulse waves [12]. On the other hand, increased blood pressure (BP) is also a
cause for the reduction of arterial elasticity. Therefore, the unraveling of contributing mechanisms is
complicated considerably [14]. High SBP primarily affects microvasculature in vulnerable end-organs
like the brain and kidney [12,15]. Raised SBP also requires increased left ventricular (LV) workload
and, as a consequence, there is a need for increased coronary perfusion and oxygen. However, the
diastolic pressure determining coronary flow is insufficient, causing LV dysfunction, hypertrophy, and
coronary ischemia, which are known risk factors for CV events [1,2,5,12].

3. Factors Contributing to Arterial Stiffness

Aging and related processes are the main determinants of stiffness in elastic arteries, which are
correlated with nutritional and lifestyle factors and subsequent age-associated disorders, such as
metabolic syndrome, type 2 diabetes, hypertension, atherosclerosis, and renal disease, thus implying
metabolic factors in its pathogenesis [10,11,16,17]. Degeneration and remodeling of elastic components
of the arterial wall usually become important after the age of 55, concomitant with a decrease in
intracellular magnesium [17]. Furthermore, calcification, apoptosis, inflammation and oxidative
and nitrosative stress, genetic influences, as well as reduced autophagy, play a role in age-related
stiffening [5,11,16–18].

Nutrition and lifestyle in general influences are important for protection against the
development of arterial aging. Generally, diets and nutrients that reduce oxidative stress and
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inflammation, such as diets high in fruits and vegetables, grains, nuts, seeds, legumes, low-fat meat,
and fish, with limited amounts of refined foods are associated with reduced arterial stiffness [19,20].
Specific nutrient measures, such as restricted dietary salt, or specific foods, such as dairy products,
fermented dairy, dark chocolate, tea, soy, olive oil, grains, and nuts, have been shown to have
some beneficial effects. Energy intake restriction and aerobic exercise also protect against arterial
aging [9,17,19]. Smoking, on the other hand, has an adverse effect on arterial stiffness [17]. Extreme
(both long and short) sleep duration and poor sleep quality are associated with enhanced arterial
stiffness and are possibly linked to increased MMP expression [5]. Mental stress also contributes to
vascular dysfunction involving oxidative stress and inflammation [21].

Metabolic syndrome-related medical conditions induce vascular stiffening. Hypertension can
lead to arterial stiffening through the upregulation of pathways involved in inflammation, fibrosis,
and wall hypertrophy. Diabetes-accelerated arterial stiffening includes elevated levels of oxidative
stress, similar to age-induced stiffness, MMP-mediated elastin fragmentation, and calcification, and
obesity results in aortic stiffening, at least in part mediated through LOX-downregulation, leading to
elastin fragmentation. Modest weight loss results in the improvement of arterial stiffness [5,22].

Oxidative stress is an important factor in the development of arterial stiffness. During vascular
oxidative stress, enzymatic systems in the vascular wall, including NADPH oxidase, mitochondrial
enzymes, dysfunctional endothelial nitric oxide synthase (eNOS), and xanthine oxidase (XO), produce
ROS. Antioxidant systems that counteract ROS generation include superoxide dismutase (SOD),
catalase (CAT), glutathione peroxidase (GPx), paraoxonase (PONs), thioredoxin (TRX) peroxidase,
and heme oxygenase (Hmox) [23]. Elevated levels of superoxide radical anion react with nitric
oxide (NO) to produce peroxynitrite. Oxidative and nitrosative stress contribute to arterial stiffness
etiology due to oxidative damage to lipids, proteins, and DNA in endothelial cells and uncoupling of
NO synthase, leading to endothelial dysfunction. Moreover, altered blood flow also increases ROS
production, and mitochondrial oxidative stress and SOD 2 deficiency induce aortic stiffening [5]. Stiff
arteries potentially induce a positive feedback mechanism that downregulates eNOS and upregulates
endothelin-1 (ET-1), thus further increasing wall stiffness [10]. Several markers of oxidative stress
have been associated with increased arterial stiffness, although a causative link has sometimes been
questioned due to the experimental complexity of antioxidant clinical trials. Nevertheless, changes
in malondialdehyde (as thiobarbituric acid reactive substances, TBARS), SOD, vascular adhesion
protein-1, oxidized low-density lipoprotein (oxLDL), and isoprostanes have been reported in vascular
stiffness [24].

Inflammation is involved in arterial stiffness development by impairment of endothelial function
by reducing NO bioavailability and increasing ET-1 [10]. The contribution of an inflammatory
status is furthermore reflected in the role of MMPs in elastin degradation, the overexpression of
lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1, by a nuclear factor kappa B (NF-κB)
dependent mechanism), increasing uptake of oxLDL, the transdifferentiation of vascular smooth
muscle cells (VSMCs) into an osteoblastic phenotype under inflammatory conditions, influence of
cytokines, increased AGE’s synthesis, C-reactive protein (CRP: inhibits endothelial NO synthase,
increases cytokine expression and generation of ROS, affects adhesion molecules and microRNAs) [25].
Inflammation can, therefore, induce functional and structural arterial stiffening [26]. Chronic low-grade
inflammation interacts synergistically with oxidative stress, but the order and relationship between
these events are unclear [19].

Currently, limited evidence is available about the possible role of age-related impaired autophagy
in arterial stiffness and endothelial dysfunction. This process is associated with increased levels of
oxidative stress and inflammation [18,27]. ROS can induce autophagy as a defense mechanism against
cell death [28], but recent evidence also indicates that autophagy may be involved in antioxidant
defense mechanisms by taking part in the reduction and repair of oxidative damage [29], which could
have a strong impact on cardiovascular health.
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Heritability of arterial stiffness is about 40%. Associations of gene expression levels with arterial
stiffening have been found for genes involved in extracellular matrix and calcification and for genes
involved in blood pressure regulation. However, still very little is known about the molecular
mechanisms underlying phenotypic variability [8]. Candidate genes (e.g., insulin-like growth factor 1
(IGF-1) receptor, interleukin 6 (IL-6), proprotein convertase PACE4, etc.) potentially involved in arterial
elasticity have been found on chromosomes 2,7,13, and 15 [17].

Factors contributing to the pathophysiology of arterial stiffness have been summarized in Figure 1.
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4. Dietary Polyphenols

Polyphenols are a widespread class of plant secondary metabolites with a diverse range of
biological activities. About 8000 polyphenolic structures have been identified, which can be subdivided
according to their chemical structure into the following structural classes: phenolic acids, lignans,
stilbenes, flavonoids (including isoflavonoids and anthocyanins), condensed and hydrolyzable tannins.
They are found in several foods: the dietary polyphenols most investigated for their vascular properties
include flavonoids (flavanols) and procyanidins in chocolate (Theobroma cacao), catechins, such as
epigallocatechin gallate (EGCG) in green tea (Camellia sinensis), isoflavones in soy (Glycine max),
curcumin from turmeric (Curcuma longa), oleuropein and hydroxytyrosol (HT) in olives (Olea europaea),
anthocyanins in berries, resveratrol and other stilbenes in grapes and wine (Vitis vinifera) [30]. Main
polyphenol classes, major compounds in each class, and important dietary sources are summarized in
Table 1 [31].
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Table 1. Dietary polyphenols and their sources.

Dietary
Polyphenol Class

Subclass Compounds (Examples) Dietary Sources (Examples)

Phenolic acids Chlorogenic acid, caffeic
acid, gallic acid, ferulic acid

coffee, berries, kiwi, apple, cherry

Phenolic alcohols Hydroxytyrosol olive

Stilbenes Resveratrol grapes, wine

Lignans Secolariciresinol linseed

Flavonoids

Isoflavones Genistein, daidzein soy, miso

Flavones Luteolin, apigenin celery, parsley, capsicum pepper

Flavanones Hesperetin, naringenin oranges, grapefruit, lemon

Flavonols Quercetin, kaempferol,
myricetin

onion, leek, broccoli, berries

Flavanols (Epi)catechins,
(epi)gallocatechins,
epigallocatechin gallate

grapes, wine, cocoa, apricots,
beans, green tea

Anthocyanins Delphinidin, cyanidin,
malvidin

berries, aubergine, black grapes,
rhubarb, red wine

Tannins Condensed tannins Procyanidins cocoa, chocolate, apples, grapes

Hydrolyzable tannins Gallotannins, ellagitannins mango, pomegranate

In general, epidemiological studies and interventional trials suggest an inverse association
between dietary polyphenol intake and cardiovascular events both in the general population and in
patients with cardiovascular risk factors [32–34].

In view of the etiology of arterial stiffness, and the important contribution hereto of oxidative
and nitrosative stress and inflammation, among others, plant polyphenols may potentially be effective
biological agents for reducing the occurrence and progression of stiffening arteries. Evidence for
the effects of food polyphenols on arterial stiffness is, however, rather limited due to the scarcity
and heterogeneity of study designs in interventional trials, the complexity of observational trials,
and the problems related to the translation of observations from animal models to human subjects.
Moreover, there are important difficulties in assessing polyphenol intake, and there is a lack of
uniformity in biomarkers and endpoints [35]. Nevertheless, limited relevant data exist, and known
interference of polyphenols with mechanisms involved in arterial stiffness allows the identification of
promising interactions.

5. Bioavailability of Polyphenols

The biological activity of dietary polyphenols depends on their bioavailability, intestinal
absorption, and metabolism in the gastrointestinal tract, which itself depend on their chemical structure.
Polyphenols can be absorbed from the small intestine, but, more often, as they are frequently present
as esters, glycosides or polymers in their food matrix, they cannot be absorbed as such. To be absorbed,
these molecules must first be hydrolyzed by intestinal enzymes or by the colonic microbiota. Phase II
metabolism then converts them to methylated, sulfated and/or glucuronidated metabolites [36]
(Figure 2). Polyphenols are thus rapidly degraded and metabolized and are often poorly absorbed
resulting in limited bioavailability. Most native polyphenols are only found in nM to low µM ranges,
and in plasma, glucuronidated, sulfated, and methylated derivatives are found in addition to the free
phenolic form [37,38].

On the other hand, large differences in bioavailability exist; for example, some flavonoid classes
could be sufficiently absorbed to exert cardioprotective effects in vivo [15,39–41]. Furthermore, the
intracellular deconjugation metabolism of phase II metabolites has to be taken into account, releasing
parent polyphenols in cells and tissues and provoking local activity.
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Figure 2. Schematic representation of absorption, biotransformation, and excretion of polyphenols in
the human body. The gastrointestinal tract acts as a physical barrier, is covered by the mucosa, and
is decisive for polyphenols bioavailability. This function is mediated by physical walls, metabolism,
and passive (solid arrows)/active (dashed arrows) transport mechanisms. Polyphenols interact with
salivary proteins, but they are not metabolized in the oral cavity. Moreover, most of the polyphenols
resist to stomach’s acidic conditions and may be transported bound to dietary plant polysaccharides.
Absorption occurs mainly at the duodenum and the proximal half of jejunum at enterocytes. Apical
cell membranes of enterocytes contain microvilli, which increase the surface area of absorption.
Passive intestinal permeability occurs mainly for aglycones and simple phenolic acids. Absorption of
glycosylated compounds is usually preceded by the release of aglycones by enzymes. Free aglycones
can then enter the epithelial cells by passive diffusion. Alternatively, glycosylated compounds enter
epithelial cells by the active transport and are hydrolyzed by intracellular enzymes. Once inside
enterocytes, polyphenols can be extruded into the lumen by efflux transporters. Compounds which
are not absorbed reach the colon where they can be extensively metabolized by microbiota. Several
transformations in (poly)phenols structure can occur. Most of the colonic metabolites are excreted in
feces, although absorption can still take place. Then, (poly)phenols can undergo phase I and phase II
reactions. Phase I reactions include oxidative and reductive reactions. Glucuronidation, sulfation, and
methylation are the most frequent phase II reactions. The conjugates, being more water-soluble, are
rapidly excreted through bile or urine. Metabolites can then be transported into the bile (enterohepatic
recirculation) and secreted back to the duodenum. Degradation of metabolites in the intestine generates
catabolites available for reabsorption (adapted from [42]).
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6. Polyphenols and the Intestinal Microbiome

6.1. Polyphenol Metabolism by the Gut Microbiota

A significant amount of polyphenols, including conjugated metabolites from the bile (90–95%
of the total polyphenols intake), reaches the colon [43]. Subsequently, they are transformed by gut
microbiota enzymes into a wide range of low-molecular phenolic compounds, which may act as the
true bioactive agents [38]. The crucial role of gut microbiota for polyphenol metabolism has been
highlighted initially by studies showing that germ-free animals did not form phenolic acid metabolites
from flavonoids [44].

The microbial composition of the intestine, therefore, has great relevance for the individual
response to these compounds. Core intestinal microbiota are relatively stable in adulthood and are
dominated by the Firmicutes and Bacteroidetes, and to a lesser extent Actinobacteria, Proteobacteria, and
Verrucomicrobia. Classification of human-associated bacteria into three enterotypes, depending on the
dominating bacterial genus, has been proposed [45]. However, lifestyle and diet can induce major
changes: an acute change in diet alters microbial composition within 24 h [46,47]. Moreover, aging,
a determining factor in AS, induces important microbial modifications, such as lower diversity, a shift
in dominant species, a decrease of beneficial species, lower bioavailability of short-chain fatty acids
(SCFA), and a greater inter-individual variation [45]. Polyphenol metabolism requires a consortium of
microbes [48]. For some common dietary polyphenols, the prevalent gut microbial metabolites have
been identified [49–51]; nevertheless, large inter-individual variations occur, which is attributed to
differences in gut microbiota [48]. Differing metabolomes result in varying bioactivity and polyphenol
health benefits [39,48]. Heterogeneity in responsiveness obscures associations between intake and
potential health benefits [39].

Interindividual heterogeneity is, for instance, illustrated in the biotransformation of some
isoflavones into S-equol (Figure 3A), which is thought to have higher efficacy than the parent
compound. Only about 30% of the Western population and 60% of Asian subjects can produce equol
and, therefore, have more beneficial health effects from soy consumption, due to the presence of specific
bacteria in the gut [30,52]. Equol producers were shown to have significantly lower triglyceride (TG)
and carotid intima thickness levels compared to non-equol excretors in a study involving 572 Chinese
participants [53]. On the other hand, while soy intake improved carotid-femoral pulse wave velocity
(PWV) in equol producers, a single dose of S-equol displayed no cardiovascular benefits in non–equol
excretors suggesting a more complex role of the equol producer phenotype [39,54]. Equol-producing
bacteria include species of the family Coriobacteriaceae, which are associated with beneficial properties
in obesity and diabetes [55]. The occurrence of these bacterial species of the genera Adlercreutzia,
Eggerthella, Paraeggerthella, and Slackia could, therefore, be a potential biomarker for a beneficial
response to the consumption of flavonoids in cardiometabolic diseases [39].

Bacterial conversion of flavan-3-ol monomers, such as catechin, epicatechin, gallocatechin,
epigallocatechin, and their corresponding gallate esters in the human intestine, includes the hydrolysis
of ester bonds, the reductive cleavage of the C-ring, and further conversion of the resulting
1,3-diphenylpropan-2-ols to the corresponding γ-valerolactone and valeric acid (Figure 3B) [56,57].
Urinary excretion of γ-valerolactones was found to be lower in elderly (70 ± 4 y) compared to young
(26 ± 6 y) subjects, which may influence the impact of, for example, cocoa flavan-3-ol consumption on
arterial stiffness and related cardiovascular conditions [58].

Ellagitannins are biotransformed by gut microbiota into ellagic acid, which is then subject to the
lactone ring opening and decarboxylation by Gordonibacter strains from Coriobacteraceae resulting
in the formation of urolithin M5. Urolithin M5 is further transformed by dehydroxylation through
various intermediates to urolithin A and urolithin B (Figure 3C), depending on the composition of the
gut microbiome [59]. Three metabotypes (A, B, and 0) have been described. The B metabotype, which
produces urolithin-B as the main metabolite, is more prevalent in overweight individuals, patients
with metabolic syndrome or patients with colorectal cancer than in healthy individuals. It was also
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suggested that metabotype B individuals were at higher cardiovascular disease risk than metabotype
A subjects (urolithin A producers) [60]. Aging was recently found to be the main factor determining
the urolithin metabotypes in a Caucasian cohort of 839 subjects [61].
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Enterodiol, a metabolite of lignans, may undergo dehydrogenation (cyclization) by
Lactonifactor longoviformis leading to the formation of enterolactone (Figure 3D), which is known
for its beneficial biological activities. High-producers of enterolactone from lignans have a lower risk of
type 2 diabetes, and high serum enterolactone level was found to be associated with reduced coronary
heart disease and CV disease-related mortality in middle-aged Finnish men [62,63]. High frequent
dietary intake of lignans was found to be associated with decreased aortic PWV in postmenopausal
and especially older women [64].

Another example is rutin, quercetin-3-O-rutinoside, that is, quercetin-3-O-(6-O-α-L-rhamnopyranosyl)-
β-D-glucopyranoside, a component of drugs and food supplements intended to strengthen and increase
the flexibility of blood vessels in bruises, spider veins, varicose veins, and hemorrhoids, but also to
reduce post-thrombotic syndrome, venous insufficiency or endothelial dysfunction. Similarly to
other polyphenols, there is a lack of high-quality scientific evidence from clinical trials for rutin
efficacy, possibly partially due to its low bioavailability [65,66]. As no human-L-rhamnosidase or
rutinosidase exists, rutin, like other flavonoids conjugated with rhamnose moiety (e.g., hesperidin,
naringin), cannot be hydrolyzed in the small intestine and the aglycone can only be released from
rhamnose moiety (Figure 3E) by microbial enzymes in the gut [67]. Moreover, not all intestinal strains
possess rhamnose cleaving ability, and in some people, such enzymes seem to be lacking [68,69].
The aglycone quercetin is further extensively metabolized by microbial enzymes to an array of smaller
phenolics. Some of them, such as 3-(3-hydroxyphenyl) propionic and 3,4-dihydroxyphenylacetic acid
and 4-methylcatechol, displayed vasodilatory activity both in vitro and in vivo [70,71]. Microbial
biotransformation of isoflavonoids, flavan-3-ols, ellagitannins, lignans, and flavonoid rutinosides is
summarized in Figure 3.

6.2. Polyphenols Modulate Intestinal Microbiota Composition

Regular consumption of polyphenol-rich foods could in turn influence the colonic bacterial
populations and their metabolic activities, increasing inter-individual bioavailability variation.
Consumption of polyphenols leads to a gut microbiome that is enriched in bacterial genera, such as
Lactobacillus and Bifidobacteria [45–47]. Polyphenols can, therefore, exhibit a prebiotic-like effect and
can potentially be used to selectively modulate the intestinal microbiome. The different microbial
composition is translated into a significant difference in bacterial metabolite profiles, as illustrated in
regular cocoa product consumers in comparison with non-consumers after dark chocolate intake [72].
Influence on the microbial composition has also been demonstrated in pigs and in rat studies [73,74].
Also, for grapes [75–78], apples [51], green tea and oolong tea polyphenols [79,80], blueberries [81],
and extra virgin olive oil [82], modulation of the intestinal microbiome has been reported. Most studies
have been carried out in rodent models, but also human trials are available.

There is thus a bidirectional phenolic—microbiota interaction. Stratification in clinical
trials according to metabotypes is, therefore, necessary to fully assess the biological activity of
polyphenols [60,83]. The complexity of the metabolic output of the gut microbiota, dependent to a
large extent on the individual metabolic capacity, emphasizes the need for assessment of functional
analyses using metabolomics in conjunction with the determination of gut microbiota composition [84].

6.3. Intestinal Microbial Metabolism with Impact on Cardiovascular Health

Besides the mutual interaction between polyphenols and the gut microbiome, additional
microbial modulation of cardiovascular risk further complicates the interpretation of experimental
and epidemiological data. Indeed, the gut microbiota derived metabolite trimethylamine-N-oxide
(TMAO) has been implicated in the pathogenesis of cardiovascular diseases [85]. TMAO is formed
from trimethylamine, which is synthesized by several intestinal bacteria from choline, betaine, and
carnitine. Notably, Firmicutes and Proteobacteria are involved in its generation. TMAO induces
vascular inflammation through mitogen-activated protein kinase (MAPK) and NF-κB signaling [86–88].
In a rat study, age-dependent dysbiosis was reflected in higher TMAO levels, resulting in vascular
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inflammation and oxidative stress, inhibition of eNOS and subsequent lower NO availability and
endothelial dysfunction [87].

In a study in mice, seven months of a Western diet caused gut dysbiosis, increased arterial stiffness
and endothelial dysfunction, and reduced N(ω)-nitro-L-arginine methyl ester (L-NAME)-inhibited
dilation. Impairments in vascular function correlated with reductions in Bifidobacterium spp. Upon
antibiotic treatment suppressing the gut microbiota, Western diet-induced arterial stiffness and
endothelial dysfunction had been reversed [89].

The fact that the microbial community can be modulated by polyphenols has consequently an
impact on arterial function and TMAO production. Resveratrol reduced the Firmicutes/Bacteroidetes
ratio, and increased the genera Lactobacillus and Bifidobacteria, with subsequent lower TMAO levels
in mice. Also, quercetin and apple procyanidins decreased the Firmicutes/Bacteroidetes ratio in rat
and mouse models [88,90]. Recently, a possible role for some (poly)phenol-rich dietary products
on the modulation of trimethylamine colonic production has been reported [91], suggesting colonic
fermentation of carbohydrates as a mechanism to reduce trimethylamine and TMAO formation.

Moreover, a recent report describes the inverse association of AS (through PWV) with gut
microbiome diversity in women, after adjustment for metabolic syndrome-related factors (lifestyle risk
factors, cardiovascular risk factors, inflammatory markers, and metabolic factors). Microbial factors
could explain 4–8% of the variance of PWV. Authors hypothesized that chronic endotoxemia and
subsequent low-grade inflammation could be determining factors. Targeting the microbiome may be a
valuable alternative for the treatment of arterial stiffness [92,93]. Indeed, soy consumption was shown
to ameliorate inflammation and arterial stiffness, while decreasing the Firmicutes/Bacteroidetes ratio,
in ovariectomized rats [94].

Due to extensive metabolism and complex relationship between polyphenols and the intestinal
microbiome, many conflicting results have been reported between in vitro and in vivo studies.
Although in vitro reports of observed activities are not always reflected in a clinical result, human
in vivo activities do occur, often by direct interactions with receptors, enzymes, and signaling pathways,
by modulation of gene expression through activation of various transcription factors or by the
activity of degradation products and metabolites. For flavanols, a consensus has been obtained
for their biological functions, which can occur at cellular and systemic levels by modulating cellular
signaling and enzyme activities at intakes achievable with a normal diet. Randomized, controlled trials
demonstrate an effect on blood pressure, LDL cholesterol, and flow-mediated dilation (FMD) [95].

It must be noted that the enormous diversity of chemical structures—parent and hydrolyzed
polyphenols and phase II and microbial metabolites—hampers the identification of the active
compound(s). Often, several metabolites or a whole array of related compounds could be responsible
for the observed effects [96,97]. This review is focused on the effects of dietary polyphenols on
AS, although mechanisms involved could also influence other cardiovascular pathologies. Some
observational and interventional studies are cited as an illustration of current research, but care
should be taken that great variability exists in compound/food studied, dosage, population, sample
sizes, endpoints, and follow-up. Hereafter, rather than discussing effects of separate polyphenolic
compounds or the foods that contain them, effects will be grouped according to the mechanism
involved, keeping in mind that the same compound can display diverse activities and that several
mechanisms, such as antioxidant and anti-inflammatory activities, are interrelated. Influencing many
different targets with lower affinity, as polyphenols do, may result in a combined effect, which could be
sufficient to provide an overall health benefit [98]. To our knowledge, this fills a gap of recent reviews
on the effect of dietary polyphenols on AS. Besides a review on flavonoids and AS, a little overview of
current evidence is available. Data discussed therein seem to support the improvement of AS with
increased flavonoid intake [15]. Together with the mutual interaction of gut—polyphenol, potential
beneficial effects of polyphenols in AS illustrate the complex management of vascular function in
the elderly.
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7. Epidemiological Studies with AS Assessment

Several epidemiological studies indicate a positive correlation between polyphenol-rich food
intake and several cardiovascular endpoints, such as cardiovascular mortality, myocardial infarction,
chronic heart disease, and heart failure. Studies specifically linking AS outcomes to polyphenols are
heterogeneous and limited, but seem to indicate a beneficial effect. Besides the already mentioned
limitations of dietary polyphenol trials on vascular stiffness, primarily a correct estimation of
polyphenol intake (usually using food frequency questionnaires linked to databases with dietary
polyphenol contents) seems difficult, especially that of non-extractable polyphenols, which is a very
important fraction contributing to total polyphenol intake [35]. Higher polymers with larger molecular
weights will not be bioavailable as such, but their metabolites could contribute to the observed effects.
Assessing polyphenol intake should be addressed by the development and measurement of adequate
robust and validated biomarkers, either individual compounds or a panel of compounds, in plasma or
urine; for example, 5-(3′,4′-dihydroxylphenyl)-γ-valerolactone is a suitable nutritional biomarker for
the estimation of flavan-3-ol intake [35,99].

Higher anthocyanin and flavone, as well as a higher cocoa intake, have been linked to lower
PWV [15,100,101]. Also, phytoestrogens (isoflavones and lignans) reduced PWV [64]. Epidemiological
studies on soy isoflavones, in general, demonstrated improved arterial compliance, induced
nitrite/nitrate levels, and decreased ET-1 levels in men and postmenopausal women [102].

8. Interventional Human Studies with AS Assessment

Several, usually small scale, interventional studies on dietary polyphenols and AS have been
published. These studies are heterogeneous in population, dose, markers, and follow-up. The relevance
of generally small AS effects observed for clinical outcomes remains to be investigated. Often,
evaluation of AS markers is combined with the registration of effects on BP and endothelial function.
All those parameters largely influence each other or are subject to modulation by inflammation and
oxidative stress. The most evidence exists for the beneficial effect of cocoa and its derived products.

8.1. Cocoa, Coffee, Tea, and Their Isolated Polyphenols

Cocoa and chocolate are rich in flavonoids and proanthocyanidins. Several publications exist on
the reduction of blood pressure upon cocoa consumption, with generally a more pronounced effect
on SBP than in diastolic blood pressure (DBP). Cocoa intake has also been associated with decreased
cardiovascular risk. Numerous studies also report improvement in vascular function, measured by
brachial FMD, PWV or aortic augmentation index (Aix). Effects were best correlated with flavanol
intake and plasma concentrations. The positive effect of cocoa flavonoids has been observed in
healthy individuals, as well as in hypertensive, diabetic, obese, cardiovascular or renal disease patients.
Potential mechanisms include activation of NO synthase, increased bioavailability of NO, antioxidant
and anti-inflammatory properties [33,103]. For the isolated flavonoids, conflicting results have been
reported. As an illustration, a few recent reports on reduction of arterial stiffness with cocoa or its
derived products are listed in Table 2.

Although some deviating results have been reported, the bulk of evidence observed in both
epidemiological and interventional studies led to the approval of a health claim about the effect of
cocoa polyphenols on maintaining blood vessel elasticity, by the European Food Safety Authority
(EFSA). To achieve this, 200 mg of cocoa flavanols, consumed as 2.5 g high-flavanol cocoa powder
or 10 g high flavanol dark chocolate, should be ingested daily [104]. Simultaneous administration of
methylxanthines (theobromine, caffeine) with cocoa (polyphenols) resulted in a more pronounced effect
on brachial PWV and on FMD and circulating angiogenic cells. This was associated with increased
plasma concentrations of (−)-epicatechin metabolites, suggesting an increased absorption [105].
Apparently, caffeine did not show comparable effects on coffee polyphenols [103].
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Coffee polyphenol extract, with chlorogenic acids as main polyphenols, as well as isolated
chlorogenic acids, improved FMD in two small trials (Table 2). Black tea (flavonoids, theaflavins,
thearubigins) intake has been shown to decrease dose-dependently AS and BP in healthy volunteers,
while green tea (mainly flavanols, like epigallocatechin-3-gallate) failed to show any alterations
in PWV or in inflammatory markers in type 2 diabetes (T2D) patients. Genotype differences
regarding catechol-O-methyltransferase (COMT) have been reported in a study with green tea (Table 2).
In contrast to cocoa, the counteracting effect of caffeine in tea reduced the potential beneficial effect of
the tea polyphenols [103].

8.2. Fruit, Wine, and Their Isolated Polyphenols

In general, men with increased cardiovascular disease (CVD) risk that consume flavonoid-rich
fruits and vegetables benefit with an increased endothelium-dependent microvascular reactivity, the
prevention of vascular stiffness, and reduced NO. The reduction of inflammatory biomarkers has
also been observed [106,107] (see below). Although some studies suggest effects of fruit intake on AS
(Table 3), it is clear that several factors limit the assessment of vascular and endothelial dysfunction
in nutritional studies with fruit juice intake [108]. Heterogeneity in methodology and study design,
limited data, bioavailability, and metabolism issues complicate interpretation [108].

Berry polyphenols (primarily flavonoids, isoflavonoids, anthocyanins, proanthocyanidins) have
been investigated in a few small-scale studies for their beneficial effects on several surrogate markers
of cardiovascular risk, including AS. Anthocyanins are probably the main bioactive compounds that
characterize berries [109]. Although some promising activities can be noted for berries (see Table 3),
the data are not sufficient to correlate berry polyphenol intake with improved AS. Bioavailability of
polyphenols has been stressed as an important factor to be elucidated to allow a better understanding
of this correlation [110]. Anti-inflammatory and antioxidant effects are frequently reported in an
overview of berry consumption in metabolic syndrome patients [109].

In a review on the effect of polyphenols in grape juice (monomeric and oligomeric flavan-3-ols)
on cardiovascular risk factors, a strong relationship between daily total polyphenol dose and change
in FMD was observed. Also, more specifically, for Concord grape juice, clinically significant effects on
FMD were found [111]. Grape extracts and wine seem to have some BP lowering effects, and a few
reports point to an improved FMD, although conflicting reports have also been published. An effect
on NO production and ET-1 synthesis has also been postulated [103] (Table 3).

8.3. Soy and Isoflavonoids

Evidence from trials on soy suggested a beneficial effect of soy (and isoflavones herein) intake
on AS measured through PWV and arterial compliance and this could, at least in part, explain
the low incidence of heart disease in populations with high soy intake [112]. This has been
confirmed by Lilamand and coworkers, observing a decrease in PWV in healthy adults after isoflavone
supplementation [15].

In spite of some diverging results, the importance of isoflavone metabolites in biological activities
of polyphenols should not be neglected. This is demonstrated by the effect of trans-tetrahydrodaidzein,
a metabolite typically formed after consumption of isoflavones (formononetin, daidzein), reducing
BP and AS in obese men and postmenopausal women, in a double-blind, randomized and
placebo-controlled trial with supplementation of trans-tetrahydrodaidzein [113]. Studies on soy
and isoflavanoids are summarized in Table 4.

8.4. Miscellaneous Dietary Polyphenols

For olives and olive polyphenols, curcuminoids, walnuts, onion, lemon balm, and a composed
polyphenol-rich beverage, isolated reports are listed in Table 5.
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Table 2. Cocoa, coffee, tea, and their isolated polyphenols in arterial stiffness.

Dietary
Intervention/Polyphenol Study Design Health Status Effects References

Flavonoid-rich dark chocolate
(single dose of 100 g)

17 young volunteers; randomized,
single-blind,
sham procedure-controlled,
cross-over design

Healthy

↑ resting and hyperemic brachial artery diameter;
↑ FMD;
↓ Aix;
No change in PWV

[114]

Cocoa
(0, 80, 200, 500, and 800 mg cocoa
flavonoids/day/10 g cocoa in five
periods of 1 week)

20 volunteers;
randomized, double-blind,
controlled, cross-over design

Healthy

↑ FMD;
↓ PWV;
↓ BP;
↓ pulse pressure;
↓ ET-1

[115]

Flavanol-rich dark chocolate vs.
flavanol-free white chocolate
(100 g/day for 3 days)

12 volunteers Healthy
Dark chocolate ingestion improved flow-mediated
dilation (p = 0.03), wave reflections, endothelin-1 and
8-iso-PGF(2α) in contrast to white chocolate effects

[116]

Flavanol-rich dark chocolate vs.
flavanol-free white chocolate,
(100 g/day for 15 days)

19 volunteers (11 M);
cross-over design

Hypertensive
patients with IGT

↓ systolic and diastolic BP;
↑ FMD;
↑ insulin sensitivity;

[117]

Flavonoid-rich vs.
flavonoid-poor dark chocolate

32 volunteers (16 M);
sleep deprivation, randomized
double-blind crossover design

Healthy

flavanol-rich chocolate promote:
↓ BP;
↓ pulse pressure;
↑ FMD;
mitigated the increase in pulse-wave velocity

[118]

Cocoa flavanol-containing
(450 mg) drink vs. cocoa
flavanol-free control drink
(twice a day for 14 days)

22 young (M) and 20 elderly (M)
volunteers; randomized,
controlled,
double-masked, parallel-group
dietary intervention trial

Healthy

↑ FMD in both groups;
↓ pulse wave velocity;
↓ total peripheral resistance-,
↑ arteriolar and microvascular vasodilator capacity;
↓ Aix in elderly

[119]

Cocoa beverage
(960 mg total polyphenols;
480 mg flavanols)

18 volunteers; randomized,
double-blind,
crossover study

T2D ↓ large artery elasticity [120]
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Table 2. Cont.

Dietary
Intervention/Polyphenol Study Design Health Status Effects References

Dark chocolate (37 g/day) and a
sugar-free cocoa beverage
(total cocoa 22 g/day, total
flavanols 814 mg/d, 4 weeks)

30 middle-aged volunteers (15 M);
randomized, placebo-controlled,
cross-over study

Overweight
↑ basal diameter and peak diameter of the brachial
artery and basal blood flow volume; ↓ Aix in only
women

[121]

(2)-Epicatechin (100 mg/d),
quercetin-3-glucoside
(160 mg/d) or placebo
(capsules for 4 weeks)

37 volunteers; a randomized,
double-blind, placebo-controlled,
crossover trial

Healthy no effect on FMD, arterial stiffness [122]

Dark chocolate (70 g, 150 mg
epicatechin) and pure
epicatechin capsules (2 × 50 mg
epicatechin) with 75 g white
chocolate

20 (M) volunteers; randomized
crossover study Healthy

dark chocolate and epicatechin significantly
↑ FMD;
↓ Aix

[123]

Chlorogenic acid
(450 mg or 900 mg) vs. 200 mg
(−)-epicatechin

16 volunteers;
cross-over study Healthy

no effect on BP;
no significant effect on peak FMD response;
↑ post-ischemic FMD response

[124]

Coffee polyphenol extract
(355 mg chlorogenic acids)

19 (M) volunteers;
randomized, acute, crossover,
intervention study

Healthy
↑ secretion of Glucagon-like peptide 1;
↑ postprandial hyperglycemia;
↑ FMD

[125]

Black tea
(0, 100, 200, 400, and 800 mg tea
flavonoids/day in 5 periods of
1 week)

19 (M) volunteers Healthy
↑ FMD;
↓ blood pressure;
↓ stiffness index

[126]

Green tea
(9 g/day for 4 weeks)

55 (31 M) volunteers;
randomized, cross-over T2D No effect on brachial-ankle PWV;

No effect on inflammatory markers [127]

Green tea
(836 mg catechins, acute)

20 volunteers;
2 different
catechol-O-methyltransferase
genotypes

Healthy
↓ digital volume pulse stiffness index (SI) in GG
subjects;
↑ BP and insulin response in GG subjects

[128]

↑ increased; ↓ decreased; flow-mediated dilation (FMD); pulse wave velocity (PWV); endothelin-1 (ET-1); aortic augmentation index (Aix); plasma malondialdehyde (MDA); impaired
glucose tolerance (IGT); Type 2 diabetes (T2D); male (M); blood pressure (BP); 8-isoprostane F2α (8-iso-PGF(2α).
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Table 3. Fruit, wine, and their isolated polyphenols in arterial stiffness.

Dietary Intervention Study Design Health Status Effects References

Apple with skin
(acute and 4 weeks)

30 volunteers;
randomized, controlled, cross-over Healthy ↑ FMD [129]

Red (anthocyanin-rich) or blond
(anthocyanin-poor) orange juice
(1 liter, acute)

18 volunteers (9 M);
Randomized, cross-over design Healthy ↓ Aix after red orange juice [130]

Grapefruit juice
(340 mL/day (210 mg naringenin glycosides),
for 6 months)

48 postmenopausal women;
double-blind, randomized,
controlled, cross-over

Healthy ↓ carotid-femoral PWV [131]

Orange juice or hesperidin supplement
(acute intake; both 320 mg hesperidin) 16 fasted volunteers (M) Healthy

no effect on endothelial function;
no effect on arterial stiffness;
no effect on BP

[132]

Pomegranate extract-containing drink
(<50 mg pomegranate polyphenols per
237 mL)

19 young volunteers (M);
randomized, controlled, crossover Healthy no effect on digital volume pulse-stiffness

index [133]

Pomegranate juice
(330 mL/day for 4 weeks) 51 adults volunteers (16 M) Healthy

no effect on PWV;
↓ systolic and diastolic BP;
↓mean arterial pressure

[134]

Mango fruit preparation Careless™
(single dose of 100 mg or 300 mg)

10 volunteers (F);
randomized, double-blind,
crossover pilot study

Healthy ↑ coetaneous blood flow;
No effect on endothelial function [135]

Cranberry juice cocktail
(500 mL/day (27% juice) for 4 weeks)

35 volunteers (M);
double-blind, cross-over Healthy

no effect on Aix;
↓ in Aix significant within-group
in abdominally obese M

[136]

Cranberry juice
(54% juice, 835 mg total polyphenols, and 94
mg anthocyanins, for 4 weeks)

15 volunteers;
acute pilot study
44 volunteers;
chronic placebo-controlled
crossover

Coronary heart disease

↑ brachial artery FMD and digital pulse
amplitude tonometry ratio in the pilot
study;
↓ carotid-femoral PWV for chronic
treatment

[137]
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Table 3. Cont.

Dietary Intervention Study Design Health Status Effects References

Blueberry
(300 g of blueberry)

16 smokers (M)
3-armed randomized-controlled Healthy

↓ peripheral arterial dysfunction;
no differences in digital augmentation
index

[138,139]

Blueberry
(300 g of blueberry)

24 volunteers (M)
(12 non-smokers and 12 smokers) Healthy

↓ peripheral arterial dysfunction (reactive
hyperemia index);
no change in digital augmentation index
dAix

[140]

Blueberry powder
(22 g freeze-dried, for 8 weeks)

48 postmenopausal (F);
randomized, double-blind,
placebo-controlled

Pre- and stage
1-hypertension

↓ systolic and diastolic BP;
↓ brachial-ankle PWV [141]

Strawberry powder
(40 g freeze-dried)

30 overweight or obese adults
(17 M) Healthy no effect on vascular function [142]

Blackcurrant extract
(low sugar fruit drinks containing 150, 300,
and 600 mg of total anthocyanins, acute)

14 (M) and 9 postmenopausal (F);
randomized, double-blind,
cross-over

Healthy no effect on arterial stiffness;
no effect on 8-isoprostane F2α [143]

Black raspberry
(750 mg/day, acute, and 12 weeks) 26 and 39 volunteers, respectively Metabolic syndrome

↓ augmentation index acutely;
↑ brachial artery FMD after 12 weeks of
treatment

[144,145]

Concord grape juice
(7 mL/kg/day, 70-kg person consumed
490 mL/day; 965 mg total polyphenols and
327 kcal, 2-weeks)

26 healthy smokers (10 M);
randomized, placebo-controlled,
double-blind, cross-over

Healthy ↑ values of FMD and PWV [146]

Grape seed extract
(150 mg twice daily, 6 weeks)

29 middle-aged (15 M);
single-center, randomized, two-arm,
double-blinded, placebo-controlled

Pre-
hypertension

↓ systolic and diastolic BP;
no significant changes in FMD [147]
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Table 3. Cont.

Dietary Intervention Study Design Health Status Effects References

Grape-wine extract
(capsules MegaNatural™ combined with
Provinols™, 4 weeks)

60 volunteers;
double-blind, placebo-controlled,
crossover

Mildly Hypertensive,
untreated

↓ 24-h ambulatory systolic and diastolic
BPs;
no effect on FMD

[148]

Red wine
(400 mL, ~13% (v/v) alcohol, 6 weeks)

45 postmenopausal women;
randomized parallel-arm Hypercholesterolemia

↓ Aix;
no effect on central hemodynamic
parameters

[149]

Resveratrol
(100 mg tablet, oligo-stilbene 27.97 mg/
100 mg/day, 12 weeks)

25 volunteers (15 M);
double-blind, randomized,
placebo-controlled

T2D ↓ systolic BP;
↓ cardio-ankle vascular index [150]

Resveratrol
(resVida™; 6 capsules, 30, 90, and 270 mg,
single dose)

19 volunteers (14 M);
double-blind, placebo-controlled

Overweight/obese/post-menopausal
untreated borderline
hypertension

↑ FMD response [151]

Resveratrol
(Resvida, 75 mg capsule/day, 6 weeks)

28 obese volunteers (12M);
randomized, double-blind,
placebo-controlled crossover

Healthy
↑ FMD response;
no effect on BP and arterial
compliance

[152]

↑ increased; ↓ decreased; flow-mediated dilation (FMD); aortic augmentation index (Aix); pulse wave velocity (PWV); blood pressure (BP); Type 2 diabetes (T2D); male (M); female (F).
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Table 4. Soy and isoflavonoids in arterial stiffness.

Dietary Intervention Study Design Health Status Effects References

Isoflavone, red clover-extracted
(500-mg tablets, 2 × 40 mg of
isoflavones/day, 6 weeks)

80 volunteers (46 M);
randomized, double-blind,
cross-over, placebo-controlled

Healthy

improved arterial stiffness;
↑ systemic arterial compliance;
↓ total peripheral resistance;
↓ central PWV

[153]

Isoflavone
(50 mg/day, as black soybean tea, 2 months)

55 volunteers (F); smokers and
nonsmokers Healthy

↓ cardio-ankle vascular index in
premenopausal;
no effect in postmenopausal;
no effect on BP and brachial-ankle PWV

[154]

Isoflavone-containing soya protein isolate
(50 g/d soya protein, 6 weeks)

20 volunteers (9 M);
randomized, placebo-controlled,
cross-over

Moderately elevated
brachial BP

↓ brachial diastolic BP;
no effect on Aix and PWV [155]

Flavonoid-enriched chocolate
(split dose of 27 g/day (850 mg flavan-3-ols
(90 mg epicatechin)) + 100 mg isoflavones
(aglycone equivalents)/day, 1 year)

93 postmenopausal volunteers;
double-blind, parallel-design,
placebo-controlled

T2D

no change in intima-media thickness of the
common carotid artery Aix or BP
improved pulse pressure variability;
equol producers had larger ↓ in diastolic
BP, mean arterial pressure, and PWV

[156]

Soy germ pasta
(80-g serving/day, naturally enriched in
isoflavone aglycons, 4 weeks)

62 volunteers (25 M);
randomized, controlled,
parallel study

Hypercholesterolemia improved arterial stiffness;
the best effect in equol producers [157]

Soy germ pasta
(one serving/day of (31–33 mg) total
isoflavones), 8 weeks)

26 volunteers (13 M);
randomized, controlled,
double-blind, crossover

T2D improved arterial stiffness;
↓ systolic and diastolic BP [158]

Isoflavone capsule
(80 mg aglycone equivalents of daidzein and
genistein, a SoyLife extract (40%) with a
typical soy germ ratio of genistein:daidzein:
glycitein (15:50:35), acute)

28 volunteers; equol producer
phenotype (14 M),
double-blind,
placebo-controlled crossover

Healthy
improved carotid-femoral PWV in equol
producers;
no vascular effects

[54]

Soy nuts snack
(70 g of soy nuts: 101 mg of aglycone
equivalents (55 mg of genistein, 42 mg of
daidzein, and 4 mg of glycitein), 4 weeks)

17 volunteers
(12 postmenopausal F, 5 M) Metabolic syndrome improved arterial stiffness (Aix) [159]

↑ increased; ↓ decreased; aortic augmentation index (Aix); pulse wave velocity (PWV); blood pressure (BP); Type 2 diabetes (T2D); male (M); female (F).



Nutrients 2019, 11, 578 19 of 43

Table 5. Miscellaneous dietary polyphenols in arterial stiffness.

Dietary Intervention Study Design Health Status Effects References

Olive leaf extract
(51 mg oleuropein; 10 mg hydroxytyrosol, acute)

18 volunteers (9 M);
randomized, double-blind,
placebo-controlled, cross-over

Healthy ↓ digital volume pulse-stiffness index;
↓ ex vivo IL-8 production [160]

Red yeast rice and olive fruit extract
(9, 32 mg hydroxytyrosol)

50 volunteers;
randomized, double-blind,
placebo-controlled

Metabolic syndrome
↓ SBP and DBP;
↓ LDL and oxidized LDL;
↓ lipoprotein-associated phospholipase A2

[161,162]

Olive fruit extract
(50 mg and 100 mg hydroxytytosol)

36 volunteers;
11-day, double-blind,
placebo-controlled

Risk for arterial stiffness ↓ Cardio-Ankle Vascular Index [163]

Polyphenols
(250 mL beverage: 361 mg of (poly)phenols,
120 mg vitamin C; twice/day, 4 weeks)

20 volunteers (10 M);
a randomized, double-blind,
placebo-controlled design

Healthy
No effect on the cutaneous vascular
response;
No effect on PWV

[164]

Curcumin capsules
(250 mg of curcuminoids, 3 capsules/twice a day,
6 months)

107 volunteers (50 M);
randomized, double-blinded,
placebo-controlled

T2D ↓ PWV [165]

Curcumin
(25 mg of highly absorptive curcumin dispersed
with colloidal nanoparticles, 6 pills/day, 8 weeks)

32 sedentary postmenopausal
women (F) Healthy ↓ FMD [166]

Walnut-enriched ad libitum diet
(56 g of shelled, unroasted English walnuts/day,
8 weeks)

46 volunteers (18 M);
randomized, controlled,
single-blind, crossover clinical

Overweight ↓ FMD, beneficial trends in systolic BP
reduction [167]

Onion skin extract
(162 mg/day quercetin, 6 weeks)

70 volunteers (35 M);
double-blinded,
placebo-controlled cross-over

Healthy ↓ 24 h systolic BP in the subgroup of
hypertensives [168]

Lemon balm extract
(3.3 g of lemon balm leaves extracted in 200 mL
of hot water, once daily, 4 weeks)

28 Japanese volunteers (14 M);
an open-label, parallel-group
comparative

Healthy ↓ in brachial-ankle PWV [169]

↑ increased; ↓ decreased; Flow-mediated dilation (FMD); pulse wave velocity (PWV); blood pressure (BP); systolic blood pressure (SBP); diastolic blood pressure (DBP); interleukin 8 (IL-8);
low-density lipoprotein (LDL); Type 2 diabetes (T2D); male (M); female (F).
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9. Impact on Mechanisms Contributing to AS

Vascular, antioxidant, anti-inflammatory, antiglycation, and autophagy inducing effects are the
most important mechanisms contributing to the pathophysiology of AS, that are addressed to evaluate
the impact of dietary phenolics. However, several of these mechanisms, such as oxidative stress and
inflammation, are closely interrelated, as oxidative stress can cause inflammation, which, in turn,
can induce oxidative stress. Both oxidative stress and inflammation cause injury to endothelial cells.
Endothelial dysfunction consecutively promotes a pro-inflammatory environment, resulting, among
others, in an increased expression of adhesion molecules. As a positive feedback loop, vascular
inflammation leads to endothelial dysfunction [170]. The antioxidant properties of polyphenols can
also contribute to antiglycation. Furthermore, transcription factors and signaling pathways involved
in oxidation and inflammation have been implicated in autophagy.

9.1. Vascular Effects

Endothelial function is regulated by NO (vasodilating) and endothelin (vasoconstricting).
Human trials have demonstrated vasoprotective effects mediated by NO, which is produced
by eNOS. Adequate production and bioavailability of eNOS-derived NO are necessary for the
maintenance of a healthy endothelium; reduced eNOS-derived NO bioavailability results in endothelial
dysfunction [171]. On the other hand, blood pressure relies on the renin-angiotensin-aldosterone
system (RAAS), producing the vasoconstrictive Ang II from angiotensin I (Ang I) by the
angiotensin-converting enzyme (ACE).

Flavonoids display antihypertensive effects by increasing NO production in endothelial cells,
as well as by direct inhibition of ACE [15]. Several dietary polyphenols increase the production
or bioavailability of endothelial NO, as seen for cocoa flavanols. Their vasodilatory response is
NO-dependent and can be reversed by blocking nitric oxide synthesis, as reported in vitro as well as
in human trials [171].

ET-1, on the other hand, is a potent vasoconstrictor peptide with pro-oxidant and
pro-inflammatory properties and plays a role in the development of endothelial dysfunction. ET-1
expression and production in endothelial cells are, among others, increased by Ang II-stimulation and
aging. ET-1 overexpression activates NADPH oxidase, and therefore ROS formation, causing oxidative
stress and forming a positive feedback loop of oxidative stress-mediated endothelial oxidative injury
and dysfunction. Moreover, oxidative stress also causes amplification of the ACE activity, subsequently
stimulating the angiotensin II receptor type 1 (AT-1 receptor) by Ang II, and thus inducing the
production of ROS by NADPH oxidase and amplifying the detrimental process [170].

Several acute and short-term trials have investigated the effects of flavonoid-rich foods and
beverages on FMD as a marker of endothelial function, reporting an increase in FMD of about
20–30% [172]. Phytoestrogens (isoflavonoids genistein, daidzein), flavonoids (e.g., artemetin), anthocyanins
(e.g., delphinidin) induce vasodilation by binding to estrogen receptors in physiologically relevant
concentrations, leading to increased eNOS activity and increased NO synthesis [37]. Inhibition of
ET-1 release in human umbilical vein endothelial cells (HUVECs), together with increased eNOS
expression has been demonstrated for delphinidin and cyanidin. For delphinidin glycosides, as for
other polyphenols, stimulation of endothelin B receptors and inhibition of ACE have also been reported
in vitro [37].

The specific mechanisms, by which cocoa flavanols improve vascular function are still under
investigation but could be linked to the modulation of NADPH oxidase, to maintain low levels of
superoxide radical anion not affecting the vascular endothelium. Increased activity of NADPH oxidase
is implicated in vascular dysfunction [171]. Cocoa supplementation has been shown to decrease both
SBP and DBP in several studies. In a 2014 review, Latham et al. concluded that cocoa flavanols’
beneficial cardiovascular effects are the result of increased NO bioavailability [173,174]. Antioxidant
activity can contribute to an enhanced endothelial function. NO degradation is modulated by free
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radicals, and therefore vascular function is also affected by antioxidant (and anti-inflammatory) actions,
as observed for cocoa [33].

Cocoa intake for 4 weeks significantly decreased postprandial SBP in obese subjects,
independently of body weight loss, while bioavailability of cocoa components was confirmed by
the analysis of 14 derived metabolites in plasma [175]. Blood pressure reduction by cocoa through
stimulation of eNOS activity was also observed by Ludovici and coworkers, in addition to an increase
in L-arginine bioavailability caused by reduced arginase activity, inhibition of ET-1 production and of
L-NAME [33]. Additionally, ACE-inhibition by procyanidin-rich chocolate has also been observed [33,174].
Oligomeric procyanidins are reported to stimulate endothelium-dependent vasodilation, suppress
ET-1 synthesis, and inhibit the activity of ACE, resulting in blood-pressure-lowering effects. However,
the bioavailability of those oligomers is an important factor for translation into in vivo effects [176].

A similar effect has also been observed for tea flavanols (−)-epicatechin, (−)-epigallocatechin,
and their gallates whose ACE inhibition in HUVEC cells was dose-dependent [174,177]. Interference
of flavonoids in blood pressure regulation by RAAS results in a lower production of superoxide anion
by NADPH oxidase [174].

Resveratrol has been shown to increase endothelial NO production, thereby improving endothelial
dysfunction and lowering BP in hypertensive rats, which is explained by calcium-dependent eNOS
activation [178]. Morin, a flavonol present in the Moraceae family, protects against endothelial
dysfunction through an Akt (protein kinase B) -dependent activation of eNOS signaling in a diabetic
mouse model [179].

Adenosine monophosphate-activated protein kinase (AMPK) is an important sensor of cell energy
status and can be activated by stressors, such as oxidative stress, hypoxia, and nutrient deprivation.
Targets of AMPK include enzymes of glucose and lipid metabolism, mitochondrial enzymes, and
eNOS [172]. EGCG is able to increase cytosolic calcium concentrations, contributing to NO production
by binding to calmodulin in the heart and vascular endothelium. Furthermore, it activates AMPK and,
consequently, reduces ET-1 expression [180].

Resveratrol ingestion in mice stimulates the activities of sirtuin 1 (SIRT1) and AMPK, both of
which influence the regulation of metabolism [181]. Resveratrol and related stilbenoids pterostilbene
and gnetol attenuate the increase in media-to-lumen ratio and wall component stiffness observed in a
rat model of spontaneously hypertensive heart failure. However, the authors could not demonstrate a
role of AMPK or extracellular signal-regulated kinases (ERK) herein [182]. In contrast, an attenuation
of the vascular geometry remodeling process and ERK-signaling by resveratrol, rather than a direct
effect on arterial wall stiffness, has been observed in spontaneously hypertensive rats [183]. Also,
in spontaneously hypertensive rats, whole grape extract promoted a tendency to reduce arterial wall
component stiffness, although not significantly. Reduced blood pressure and improved vascular
function and compliance were, however, observed, which were not only due to the grape resveratrol
but rather to other grape components [184]. A low-molecular grape seed polyphenol extract, rich
in flavanols, decreased plasma ET-1, up-regulating eNOS and SIRT-1 and down-regulating aortic
gene expression of ET-1 and NADPH in rats, indicating the vasoprotective effect of grape seed
flavanols [185].

Curcumin supplementation in young and old mice resulted in amelioration of age-associated
large elastic artery stiffening (PWV), NO-mediated vascular endothelial dysfunction, oxidative stress,
and increase in collagen and AGEs [186].

Urolithins, gut-derived ellagitannin metabolites, activated eNOS in human aortic endothelial
cells [187]. In the case of the daidzein metabolite equol, it activates eNOS via Akt and extracellular
signal-regulated kinase 1/2-dependent signaling and mitochondrial superoxide generation [188].
In line with this, in both porcine pulmonary arteries and in human pulmonary artery endothelial cells,
equol reversed ritonavir-induced endothelial dysfunction, including a reduction in the vasomotor
dysfunction, eNOS downregulation, and oxidative stress [189]. In vivo, refeeding of isoflavones to rats
on an isoflavone-deficient diet led to increased production of nitric oxide and endothelium-derived



Nutrients 2019, 11, 578 22 of 43

hyperpolarizing factor (EDHF), up-regulation of antioxidant defense enzymes, and lowering of blood
pressure [190].

9.2. Oxidant Status

The chemical structure of several polyphenols is ideal for scavenging of free radicals and reactive
oxygen species. The aromatic feature and highly conjugated system with multiple hydroxyl groups
make these compounds excellent electron or hydrogen atom donors, neutralizing free radicals and
other ROS. Therefore, dietary phenolics are powerful antioxidants in vitro [38]. Differences exist
depending on the number and location of the free hydroxyl groups—especially the presence of catechol
groups is important—and on the electron deficiency in anthocyanins. Besides direct scavenging of
ROS and reactive nitrogen species (RNS), polyphenols can react with the peroxidation products of
macromolecules, such as lipids, proteins, DNA, and RNA, or act as metal chelators.

Nevertheless, the promising in vitro antioxidant capacity cannot easily be extrapolated to an
in vivo situation due to the limited bioavailability of polyphenols [37]. The plasma concentration
of flavonoids is typically insufficient (less than 1 µmol/L) to exert significant antioxidant activities
via direct radical scavenging or reducing power, measurable by the existing in vitro assay methods.
The complex intrinsic antioxidant system also makes it difficult to validate the systemic antioxidant
effects of the poorly absorbed phenolic compounds in vivo [38].

Although polyphenols have been linked to a reduced risk for CVD, primarily indicated by
altered biomarkers of oxidative stress, a causal link is more difficult to prove [37]. Moreover, high
consumption of antioxidant polyphenols has a noxious pro-oxidant effect, thus stimulating oxidation
of biomolecules. On the other hand, moderate pro-oxidant effects could also turn out to be beneficial,
by stimulation of the intracellular antioxidant defense mechanisms, such as antioxidant enzymes [37].
Indeed, it has become clear that the antioxidant effect goes beyond direct interference with ROS [191].
Modulation of ROS production in mitochondria, NADPH oxidases, and uncoupled eNOS, together
with up-regulation of antioxidant enzymes, such as glutathione-S-transferase (GST), SOD, glutathione
reductase (GR), quinone oxidoreductase 1, Hmox-1, and glutamyl-cysteine ligase (GSL), is more
relevant [192]. Hmox-1 is a key regulator of endothelial function and is involved in vascular protection
against ROS-induced oxidative damage, and AMPK activation results in its expression through the
nuclear factor (erythroid-derived 2) (NFE2) - related factor 2 (Nrf2)/antioxidant response element
protein (ARE) pathway [193].

A proposed mechanism for ‘nutritional antioxidants’, like polyphenols, involves the paradoxical
oxidative activation of the Nrf2 signaling pathway (Figure 4). Nrf2 can be activated by ROS in the
cytoplasm, after which it is translocated to the nucleus and regulates ARE-mediated transcriptions
of various genes encoding the above-mentioned antioxidant enzymes [37,38]. Nrf2 is under constant
control of the redox-sensitive repressor protein Keap1 (Kelch-like ECH-associated protein 1) [194].

Low concentrations of phenolic compounds (or their metabolic products) and the quinones
formed under the influence of interactions with ROS are electrophiles that can interact with Keap1,
and thus lead to activation of the redox-sensitive Nrf2 [172,195]. The consumption or supplementation
of dietary polyphenols has indeed been shown to restore redox homeostasis inducing an antioxidant
response in target cells using the Nrf2/ARE pathway thus inducing detoxifying enzymes.

Resveratrol, for instance, demonstrates a wide range of biological effects, of which many are
related to its ability to activate the Keap1/Nrf2/ARE signaling system. Additionally, it inhibits
transcription factors NF-κB, activator protein 1 (AP-1), p53 and activates kinases MAPK, Akt, AMPK,
phosphoinositide 3-kinase (PI3K), as well as SIRT1. Also, flavonoids, including catechins like EGCG
and hydroxytyrosol from olives, have been shown to induce this antioxidant signaling system [194].
Modulation of such antioxidant signaling cascades by polyphenols recently has been recently evidenced
extensively in in vitro and animal models [37]. Flavonoids modulate different signaling cascades,
such as PI3K, Akt/PKB, tyrosine kinases, protein kinase C (PKC), and MAPK [174]. In addition,
flavonoids also modulate the expression of various genes through activation of a broad range of
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transcription factors [97]. Curcumin activates the Keap1/Nrf2/ARE system and induces the expression
of antioxidant genes [194]. The vascular protection and antioxidant effects of soy isoflavone diets are
attributed mostly to an up-regulation of eNOS expression and activity, increased NO bioavailability
associated with Nrf2 accumulation, and ARE dependent activation of antioxidant defense enzymes by
both the isoflavones and their microbial metabolites, including equol [102,196–198] (Figure 4). Cocoa
flavanols can directly interact with ROS but exhibit antioxidant effects indirectly through modulation
of crucial oxidative stress-related enzymes: induction of antioxidant enzymes and inhibition of
pro-oxidant enzymes like NADPH oxidase [199]. Anthocyanin-rich beverages increased SOD and
catalase, and decreased malondialdehyde, a biomarker of lipid peroxidation, without affecting
inflammatory biomarkers in healthy women [200]. Chlorogenic acid has been shown to protect against
hypochlorous acid (HOCl)-induced oxidative damage in mouse endothelial cells ex vivo, via increased
production of NO and induction of Hmox-1 [193]. Also, enterolactone induced Hmox-1 expression
through Nrf2 activation in endothelial cells [201]. Moreover, flavonols and isoflavones can regulate
aryl hydrocarbon receptor (AhR)-mediated signaling in cells, thus influencing Nrf-2 translocation [38].
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dietary polyphenols. Pathways stimulated, inhibited or modulated by polyphenols are indicated by
+, − or ~, respectively. AhR: aryl hydrocarbon receptor; ARE: antioxidant response element; eNOS:
endothelial nitric oxide synthase; IκBα: nuclear factor of kappa light polypeptide gene enhancer in
B-cells inhibitor, alpha; Keap1: Kelch-like ECH-associated protein 1; NADPH oxidase: Nicotinamide
adenine dinucleotide phosphate oxidase; NF-κB: nuclear factor kappa-light-chain-enhancer of activated
B cells; NO: nitric oxide; Nrf2: Nuclear factor (erythroid-derived 2)-like 2; ROS: reactive oxygen species.
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Additionally, dietary polyphenols can also suppress oxidative stress by interfering with
inflammatory signaling cascades controlled by NF-κB and MAPK. Activation of these cellular processes
leads to induction of regulatory immune responses. As a result, pro-inflammatory cytokines, including
interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ, are released [38].

9.3. Anti-Inflammatory Activity

Antioxidant and anti-inflammatory pathways influenced by dietary polyphenols are largely
intertwined and can affect similar biomarkers [38]. NF-κB is a central transcription factor in
inflammation (Figure 5), which stimulates the encoding of several genes, including those responsible
for producing cytokines, chemokines, immunoreceptors, cell adhesion molecules, and acute-phase
proteins. The activation of NF-κB is redox-sensitive and direct inhibition of NF-κB by polyphenols (e.g.,
resveratrol and curcumin analogs) is an important mechanism for their anti-inflammatory effects [37].
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AMPK: adenosine monophosphate (AMP)-activated protein kinase; AP1: activator protein 1; COX-2:
cyclooxygenase-2; iNOS: inducible nitric oxide synthase; IκBα: nuclear factor of kappa light
polypeptide gene enhancer in B-cells inhibitor, alpha; IL-1β: interleukin 1 beta; LOX: lysyl oxidase;
MAPK: mitogen-activated protein kinase; MMP: matrix metalloprotease; NF-κB: nuclear factor
kappa-light-chain-enhancer of activated B cells; NLRP3: Nod-like receptor protein 3; NO: nitric
oxide; ROS: reactive oxygen species; SIRT1: sirtuin 1; TLR1: toll-like receptor 1; TNF-α: Tumor necrosis
factor alpha; TNFR: tumor necrosis factor receptor.

Nucleotide-binding oligomerization domain, leucine-rich repeat containing gene family, and
pyrin-domain containing 3 (NLRP3) inflammasome is a key node that links the signaling cascades
between the antioxidant response and inflammation and has recently been shown to be modulated
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by polyphenols. Increased ROS activates NLRP3, which induces IL-1β, and via the toll-like receptor
(TLR)-1, it triggers NF-κB-activated and MAPK-induced pro-inflammatory signaling, producing
inflammatory cytokines, such as IL-1β, IL-6, IL-8, TNF-α, and IFN-γ [38]. Several reports on the
modulation of NLRP3 activation by polyphenols in cell systems and rat liver tissue (e.g., resveratrol,
procyanidin B2, chlorogenic acid) resulting in an anti-inflammatory effect, have been published
recently [202–204].

Anthocyanins also target the MAPK pathway [37]. Polyphenols, including flavonoids, have also
been reported to stimulate peroxisome proliferator-activated receptor γ (PPAR-γ) or SIRT-1 mediated
signaling, and to interfere with TNF-α-induced MAPKs and NF-κB pro-inflammatory signaling
transductions, resulting in the repression of inflammation [38]. In a small study in insulin deficient and
insulin resistant diabetic rat models, baicalein ameliorated blood pressure elevations and exhibited
both antiglycation (AGEs) and anti-inflammatory (NF-κB, TNF-α) mechanisms [205].

Curcumin is a potent multi-targeted polyphenol modulating multiple cell signaling pathways
linked to different chronic diseases. It has been shown to exhibit anti-inflammatory effects by
down-regulating various cytokines, such as TNF-α, IL-1, IL-6, IL-8, IL-12, monocyte chemoattractant
protein (MCP)-1, and IL- 1β, and various inflammatory enzymes and transcription factors [206].

Dietary polyphenols can also modulate pro-inflammatory NF-κB signaling through targeting the
RelB/AhR complex, which is also involved in redox management due to binding with the xenobiotic
responsive element. Dietary flavonoids are known to act as AhR modulators [38].

Cell adhesion molecules, including intercellular adhesion molecule-1 (ICAM-1), vascular cell
adhesion molecule-1 (VCAM-1), and endothelial selectin (E-selectin), are glycoproteins involved
in tissue integrity, cellular communication and interactions, and extracellular matrix contact. They
are increased in endothelial dysfunction, vascular remodeling, and obesity [25]. Polyphenols also
display anti-inflammatory properties by inhibiting adhesion molecule (VCAM, ICAM-1) production
by the endothelium. In vitro, fourteen phenolic acid metabolites and six flavonoids were screened
for their relative effects on VCAM-1 secretion by HUVECs stimulated with TNF-α. Protocatechuic
acid was the most active of the phenolic metabolites, while native flavonoids showed no activity
in HUVEC cells [207]. ICAM-1 expression was reduced in endothelial cells by urolithin A [208].
In vivo, however, conflicting results exist on the modulation of cell adhesion molecules (VCAM
and/or ICAM) after interventions with polyphenol-containing foods [192]. Resveratrol ameliorated
aortic stiffness (PWV) in mice with metabolic syndrome by activation of vascular smooth muscle
sirtuin-1, associated with a decrease in NF-κB activation and VCAM-1 [209]. VCAM-1, NO, and
malondialdehyde concentrations were lower in equol producing compared with non-producing
post-menopausal women after supplementation with soy isoflavones [210]. However, the difference
was only significant for malondialdehyde.

Expression of other pro-inflammatory mediators, such as cyclooxygenase 2 (COX-2), is suppressed
by various flavonoids and anthocyanins [37], for example, the beneficial effect of flavonoids on
intestinal inflammation has directly been related to the suppression of pro-inflammatory enzyme
expression, such as COX-2 and iNOS [36]. Polyphenols from red wine and black tea (quercetin, EGCG,
epicatechin gallate, and theaflavins) are able to inhibit COX-2 and lipoxygenase in a dose-dependent
manner in lipopolysaccharide (LPS)-activated murine macrophages [102]. LPS-induced inflammation
was attenuated via (among others) suppression of COX-2 expression also by phenolic metabolites,
such as urolithins or equol, in various models [211,212].

CRP and high-sensitivity CRP values were associated with AS in patients with metabolic
syndrome, renal transplant, diabetes mellitus, and rheumatoid arthritis [25]. Resveratrol significantly
reduced CRP while increasing Total Antioxidant Status values in smokers [213]. Resveratrol was
tested in various studies, sometimes combined with grape extract, and generally showed a decrease in
CRP, IL-1β, ICAM, TNF-α expression, and IL-10 in different populations [214]. Red wine phenolics
decreased serum levels of ICAM-1, E-selectin, and IL-6 in a randomized cross-over trial on male
volunteers [215].
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In a 2011 meta-analysis, Dong and coworkers concluded that there was insufficient evidence
for the significant reduction of CRP by soy isoflavones in postmenopausal women, in general.
However, soy isoflavones may reduce CRP significantly among postmenopausal women with
elevated CRP [216]. Several other inflammatory biomarkers have been investigated after isoflavone
consumption, but without consistent conclusions [214]. Urinary excretion of daidzein and its
metabolites O-desmethylangolensin and equol were negatively inversely associated with serum
CRP in an analysis involving 1683 participants [217].

Lignans, however, are not effective in reducing CRP in the general population but do show a
significant decrease in obese subjects [218]. Urinary total and individual phytoestrogens, including
lignans and enterolactone, were significantly inversely associated with serum CRP in a nationally
representative sample of 6009 subjects from the U.S. High urinary enterolactone, but not enterodiol
concentration was found to be inversely associated with obesity, abdominal obesity, high serum
CRP, high serum triglycerides, low serum high-density lipoprotein (HDL) cholesterol, and metabolic
syndrome in an analysis including 21,776 subjects [219,220].

Cocoa powder and epicatechin have been shown to decrease several inflammatory markers, such
as TNF-α, IL-6, IL-10, and also CRP. Flavonoid-rich fruit and vegetable intake reduced CRP, E-selectin,
and VCAM in men with increased CVD risk [106]. In contrast, pomegranate juice did not exhibit a
significant effect on CRP levels in a meta-analysis of five prospective trials [221].

Olive oil polyphenols are able to decrease inflammatory markers, such as thromboxanes,
leukotrienes, cytokines, CRP, and soluble adhesion molecules, in humans [222]. A traditional
Mediterranean diet, including polyphenol-rich virgin olive oil, decreased plasma oxidative and
inflammatory status and the corresponding gene expression in peripheral blood mononuclear cells
of healthy volunteers, indicating that the benefits associated with a Mediterranean diet and olive oil
polyphenol consumption on cardiovascular risk can be mediated, at least in part, through nutrigenomic
effects [223]. Catechins and curcumin, for instance, are found to regulate MMPs expression in diverse
models, including VSMC [102]. Also, red grape skin extracts and their polyphenols (trans-resveratrol,
trans-piceid, kaempferol, and quercetin) inhibit endothelial invasion, as well as the MMP-9 and
MMP-2 (gelatinases) release in stimulated endothelial cells and MMP-9 production in monocytes, at
concentrations likely to be achieved after moderate red grape skin consumption [224].

Moreover, in view of the anti-inflammatory activity of polyphenols (and/or their metabolites),
an effect on chronic inflammation is very likely. This is also discussed in a recent review, which
reports multiple inflammatory components targeted by polyphenols, thus leading to anti-inflammatory
properties. The effects of polyphenols on the immune system are associated with extended health
benefits for different chronic inflammatory diseases. Studies of plant extracts and compounds show
that polyphenols can play a beneficial role in the prevention and the progress of chronic diseases
related to inflammation, such as diabetes, obesity, neurodegeneration, cancers, and cardiovascular
diseases, among other conditions [225].

9.4. Antiglycation/AGEs

AGEs are the end products of the Maillard reaction, in which proteins or amino acids react with
reducing sugars. The crosslinking of vascular collagen by AGEs increases AS. Soluble receptors for
AGE (sRAGE) levels are inversely correlated with the urinary excretion of isoprostanes (8-iso-PGF2α),
a biomarker of lipid peroxidation, suggesting a link between vascular stiffness and oxidative stress [22].

Polyphenols can exhibit antiglycation function through their influence on glucose metabolism
(aldose reductase inhibition), antioxidant properties, protein and receptor binding, modulation of
gene expression and dicarbonyl (e.g., methylglyoxal = a highly reactive intermediate) trapping
properties [226]. A bulk of evidence exists for the in vitro antiglycation properties of polyphenols. Some
polyphenols have been shown to be even more effective than the reference compound aminoguanidine
in inhibiting glycation in vitro [12]. Xie and Chen reviewed in vitro and animal studies on the
anti-glycation activity of polyphenols, to extract a structure-activity relationship [227]. Lemon balm
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(Melissa officinalis) has been selected as the most active extract from 681 hot water extracts in a
pentosidine formation assay, with a higher potency than aminoguanidine. Rosmarinic acid has been
identified as the major active compound herein [169].

Redox-active transition metals, such as Cu 2+, Fe 2+, Mn 2+, and Zn 2+, catalyze carbonyl
formation in proteins. Inhibitors of AGE formation, which have been successful at decreasing arterial
stiffness, have known ability to chelate metals [11]. Pomegranate (Punica granatum) extract and its
polyphenolic constituents punicalin, punicagalin, ellagic, and gallic acid significantly suppressed AGE
formation in vitro and in a mouse model [228]. Also, rambutan (Nephelium lappaceum) extract exhibited
antiglycation activity in vitro, which correlated with its antioxidant activity. Main compounds
were geraniin and ellagic acid [229]. Similarly, glucitol-core containing gallotannins isolated from
maple (Acer) species inhibited AGEs, mediated by their antioxidant (radical trapping) potential [230].
For quercetin, researchers demonstrated that the antiglycation activity in vitro was due to its metal
chelating, methylglyoxal trapping, and ROS trapping properties [231].

In a recent review on polyphenols with antiglycation activity, Yeh et al. reported on the
antiglycation potential of different polyphenol classes. The number of –OH groups seems important
for the activity. Simultaneous use of multiple polyphenol types could add to their efficacy [232]. This
is also illustrated by the in vitro antiglycation activity of an olive leaf extract and two characterized
fractions. Both the inhibition of early and advanced stage glycation was observed. However, each
fraction separately was not able to show the same activity, indicating that compounds from both
fractions are necessary for the effect. Hydroxytyrosol in synergy with minor compounds with similar
polarity seemed responsible for the antiglycation activity in a hepatic cell line [233,234]. More in vivo
studies should clarify the relevance of dietary polyphenols in protection against AGE-depending
conditions like arterial stiffening.

9.5. Autophagy

Natural compounds with anti-inflammatory and antioxidant activity, such as polyphenols, are
potentially useful to prevent arterial stiffness by promoting autophagy. Mammalian target of rapamycin
(mTOR) is a central protein kinase that suppresses autophagy and is under control of kinase signaling
cascades, including the autophagy activating AMPK pathway [194].

Limited results are available for resveratrol, activating SIRT-1 and AMPK in endothelial and
smooth muscle cells in vitro, inducing smooth muscle cell differentiation and thus maintaining vascular
plasticity [27]. Also, in rhesus monkeys, resveratrol, which has been shown to activate endothelial
autophagy, reduced arterial aging [18]. Curcumin and analogs are effective stimulators of autophagy,
by modulating several transcription factors (NF-κB, Nrf2, AP-1, HIF-1). Green tea polyphenols
alleviated autophagy inhibition induced by high glucose in endothelial cells. Autophagy modulation
may be involved in the endothelial protective effects of green tea against hyperglycemia [235]. EGCG
was able to enhance autophagy-dependent survival through modulation of mTOR-AMPK pathways
in a human embryonic kidney cell line [236]. However, modulation of autophagy by EGCG seemed
to be dependent on cell type, stress condition, and concentration: low levels of EGCG increased
autophagy, while higher levels decreased this process [180]. EGCG increased the formation of LC3-II
and autophagosomes, and therefore stimulated autophagy in bovine endothelial cells [237].

Hydroxytyrosol was able to induce autophagy, and this was associated with a lower inflammatory
response in vascular adventitial fibroblasts [238]. The activation of the SIRT1 signaling pathway is
thought to play an important role in this process [238–240]. Hydroxytyrosol has been reported to
induce autophagosome formation, but at the same time to inhibit their degradation by lysosomes in
cancer cells; reports in endothelial cells or VSMC are currently lacking [194].

Additionally, oleuropein (OLE)-aglycone has been shown to induce autophagy through
AMPK/mTOR-mediated signaling in neuroblastoma cells and an OLE-fed mouse model of amyloid
beta (Aβ) deposition [241]. An increased autophagic flux was found to contribute to the
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anti-inflammatory potential of urolithin A, associated with impaired Akt/mTOR (mammalian target
of rapamycin) signaling in murine J774.1 macrophages [242].

10. Conclusions

AS is an important risk factor for cardiovascular morbidity and mortality and is reflected by
structural and functional changes in the vessel wall. It has received considerable interest as a relevant
target for patients with increased cardiovascular risk. Nutrition and food-related compounds can offer
a suitable strategy in the prevention or reversal of AS.

Considering the different mechanisms involved in the pathophysiology of AS, dietary polyphenols
offer an array of relevant activities, interfering with vascular, oxidative, inflammatory, glycation, and
autophagy pathways, and could therefore potentially be effective at counteracting or preventing
age-induced vascular stiffening. The elucidation of the exact mechanisms of action and targets for
native polyphenols, and more importantly for their metabolites, has largely been neglected and requires
further studies. In vivo beneficial effects of polyphenols on AS, and therefore protective effects against
cardiovascular risk, have been reported, although often findings have been inconclusive or even
inconsistent. Most evidence exists on cocoa and flavanols therein, isoflavones and anthocyanins.

However, available trials are predominantly small-scale studies with limited duration. Moreover,
they profoundly differ in tested compounds or composition of extracts or foods, dosage, intervention
schemes, population, endpoints, and markers. More randomized, placebo-controlled trials using
validated biomarkers, and with sufficient follow-up are needed. Additionally, the polyphenol
composition of food is a result of cultivation, processing, storage, and cooking parameters, implicating
a large variability. Often, no or inadequate polyphenol composition has been assessed. Furthermore, it
is difficult to identify the bioactivity of a single polyphenol, as clinical effects of foodstuffs are likely
to be the result of interactions between different polyphenols, and of polyphenols with other food
components, interfering with different molecular targets simultaneously.

Additionally, the extensive metabolism of polyphenols adds substantially to the potential bioactive
compound array. Most studies do not take into account bioavailability data and levels and activity
of polyphenol phase I and II and microbial metabolites, though this is of major importance. Detailed
monitoring of polyphenol bioavailability is, therefore, required. Apart from the biological activities
of those metabolites, intracellular deconjugation metabolism of phase II metabolites should also be
taken into account, releasing parent polyphenols in cells and tissues and provoking local activity.
Bidirectional influences between polyphenols and the intestinal microbiome magnify the heterogeneity
of data reported in epidemiological or clinical assays. Moreover, gut microbial composition and
metabolism itself influence cardiovascular risk, in general, and AS, in particular. Strategies involving
targeting the microbiome with probiotics or prebiotics could, therefore, be valuable in arterial stiffness
treatment. Also, polyphenols displaying prebiotic-like effects can potentially be used to modulate
intestinal microbiota.

Application of metabolomics approaches could identify all polyphenolic metabolites involved
in an observed effect and will help to elucidate mechanisms and targets of their activity in arterial
stiffness. However, it should be considered that even the use of valid biomarkers and metabolomics
can be biased by several factors, including those influencing microbial metabolism.
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Abbreviations

AP-1 Activator protein 1
AMPK adenosine monophosphate-activated protein kinase
AGEs advanced glycation end-products
ACE angiotensin converting enzyme
Ang II angiotensin II
AT-1 angiotensin II receptor type 1
ARE antioxidant response element protein
Aix aortic augmentation index
AS arterial stiffness
AhR aryl hydrocarbon receptor
CV cardiovascular
CAT catalase
COMT catechol-O-methyltransferase
COX-2 cyclooxygenase 2
CRP C-reactive protein
DBP diastolic blood pressure
eNOS endothelial nitric oxide synthase
E-selectin endothelial selectin
ET-1 endothelin-1
EGCG epigallocatechin gallate
EFSA European Food Safety Authority
ERK extracellular signal-regulated kinases
FMD flow-mediated dilation
GSL glutamyl-cysteine ligase
GPx glutathione peroxidase
GR glutathione reductase
GST glutathione-S-transferase
Hmox heme oxygenase
Hmox-1 heme oxygenase 1
HDL high-density lipoprotein
HUVECs human umbilical vein endothelial cells
HOCl hypochlorous acid
IGF-1 insulin-like growth factor 1
ICAM-1 intercellular adhesion molecule-1
IFN-γ interferon
IL-6 interleukin 6
LV left ventricular
LPS lipopolysaccharide
LOX-1 lectin-like oxidized low-density lipoprotein receptor 1
LOX lysyl oxidase
MMP matrix metalloproteinase
MAPK mitogen-activated protein kinase
MCP monocyte chemoattractant protein
L-NAME N(ω)-nitro-L-arginine methyl ester
Nrf2 NFE2-related factor 2
NADPH nicotinamide adenine dinucleotide phosphate
NO nitric oxide
NF-κB nuclear factor kappa B
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oxLDL oxidized low-density lipoprotein
PONs paraoxonase
PPAR-γ peroxisome proliferator-activated receptor γ
PI3K phosphoinositide 3-kinase
PKC protein kinase C
PWV pulse wave velocity
NLRP3 pyrin-domain containing 3
RNS reactive nitrogen species
ROS reactive oxygen species
RAGE receptor of AGE
RAAS renin-angiotensin-aldosterone system
SCFA short-chain fatty acids
SIRT sirtuin
sRAGE soluble receptors for AGE
SOD superoxide dismutase
SBP systolic blood pressure
TBARS thiobarbituric acid reactive substances
TRX thioredoxin
TLR toll-like receptor
TG triglyceride
TMAO trimethylamine-N-oxide
TNF tumor necrosis factor
T2D type 2 diabetes
VCAM-1 vascular cell adhesion molecule-1
VSMCs vascular smooth muscle cells
XO xanthine oxidase
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