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Abstract

There are currently a large number of ‘‘orphan’’ G-protein-coupled receptors (GPCRs) whose endogenous ligands (peptide
hormones) are unknown. Identification of these peptide hormones is a difficult and important problem. We describe a
computational framework that models spatial structure along the genomic sequence simultaneously with the temporal
evolutionary path structure across species and show how such models can be used to discover new functional molecules, in
particular peptide hormones, via cross-genomic sequence comparisons. The computational framework incorporates a priori
high-level knowledge of structural and evolutionary constraints into a hierarchical grammar of evolutionary probabilistic
models. This computational method was used for identifying novel prohormones and the processed peptide sites by
producing sequence alignments across many species at the functional-element level. Experimental results with an initial
implementation of the algorithm were used to identify potential prohormones by comparing the human and non-human
proteins in the Swiss-Prot database of known annotated proteins. In this proof of concept, we identified 45 out of 54
prohormones with only 44 false positives. The comparison of known and hypothetical human and mouse proteins resulted
in the identification of a novel putative prohormone with at least four potential neuropeptides. Finally, in order to validate
the computational methodology, we present the basic molecular biological characterization of the novel putative peptide
hormone, including its identification and regional localization in the brain. This species comparison, HMM-based
computational approach succeeded in identifying a previously undiscovered neuropeptide from whole genome protein
sequences. This novel putative peptide hormone is found in discreet brain regions as well as other organs. The success of
this approach will have a great impact on our understanding of GPCRs and associated pathways and help to identify new
targets for drug development.
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Introduction

G protein coupled receptors (GPCRs) probably represent the

largest gene family, making up 3% of the mammalian genome [1].

These proteins are made up of several subfamilies, including Class

A rhodopsin-like, Class B secretin-like, Class C metabotropic

glutamate/pheromone-like, and other nonmammalian receptors.

Within each class, there is a very large number of smaller

subclassifications, such as a family of receptors for peptide

hormones within rhodopsin-like receptors. There are approxi-

mately 1,000 GPCRs, the vast majority of which are olfactory

receptors, with more than 650 GPCRs in the rhodopsin family

alone [2]. A large number of these receptors have been identified

only by computational methods, while others have been cloned

and transfected into cells; however, the cognate neurotransmitter

and the receptor functions for many GPCRs are currently

unknown. Any receptor for which the native neurotransmitter is

unknown is considered an orphan receptor. Of all the orphan

receptors that remain, some percentage represents receptors for

peptide hormones.

This large family of proteins is important not only from a basic

science perspective, but because of their extracellular sites of action

and importance as first messengers for cellular signaling, GPCRs

have become a primary target for drug development. In fact, over

30% of all pharmaceuticals act either as agonists or antagonists of

GPCRs [3]. Many pharmaceutical companies are identifying,

cloning, and patenting new orphan GPCRs, with the hope that

orphan receptors will ultimately lead to new drug development

and new pharmaceutical agents.

Although the identification of putative GPCRs can be

accomplished relatively easily, the discovery of the endogenous

ligands that activate these receptors is far more difficult. These

ligands can exist as small molecules, lipids, peptides, or proteins

[4,5]. Many, such as ATP, may have important functions other

than activating a GPCR. Even within a class of hormones, there

are seldom obvious clues that identify a new candidate. This is
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particularly true within the family of peptide hormones, as they are

processed from a larger species known as preprohormones [6].

Peptide hormones, or neuropeptides, are a string of amino acids

ranging from approximately 3 to 50 residues. They are found

within a larger protein (a preprohormone), and the production of

the actual hormone usually follows specific rules. Preprohormones

are secreted proteins, and each has a signal sequence that is

necessary for the transport of the protein out of the Golgi complex

into a secretory vesicle for processing and secretion where the

signal sequence is removed, revealing the prohormone [7]. In

general, hormones are surrounded by a pair of basic residues, i.e.

Arg-Arg, Arg-Lys, Lys-Arg, or Lys-Lys, which are found directly

adjacent to the putative hormone. These double basic residues act

as recognition sites for processing enzymes, usually serine proteases

that cleave the prohormone to liberate the active peptide [7,8]. In

many cases, there is more than a single active peptide within one

precursor protein [6].

Even with these common features, the identification of a peptide

hormone from a DNA or protein sequence is very difficult. Even

though all of the GPCRs are obviously related based upon DNA

or protein sequence, the neuropeptides that bind to the receptors

are only obviously related within discrete families of prohormones.

For instance, the family of opioid-like peptides has four members.

These prohormones, proopiomelanocortin (POMC), proenkepha-

lin, prodynorphin, and pronociceptin (proN/OFQ), share similar

genomic structures and a very slight similarity of protein sequence,

most notably the Y(F)GGF of enkephalin, b-endorphin, dynor-

phin, and N/OFQ [9,10]. However, if one were to conduct a

BLAST search in Genbank for DNA sequences similar to

proenkephalin, one would not find any other neuropeptide.

Simple search strategies within Genbank are not adequate for

identifying novel neuropeptides, especially those not belonging to

known neuropepeptide families.

There is an additional feature of neuropeptides that may more

clearly differentiate them from other types of molecules.

Neuropeptides are usually well conserved among various species

(rat, mouse, human), while the intervening sequences, presumably

because they are simply discarded, are not well conserved [11].

Here we describe a novel Hidden Markov Model (HMM)-based

computational framework, the Match Profile HMM (MPHMM)

method for neuropeptide identification based upon an approach

that models spatial structure along the genomic sequence

simultaneously with the temporal evolutionary path structure across

species, and show how such models can be used to discover new

functional molecules via cross-genomic sequence comparisons.

This computational tool was used to identify a novel prohormone,

NPQ, containing up to four potential neuropeptides [12]

Results

Computational Modeling of Preprohormone Evolution
by a Hierarchical Grammar of Evolutionary Probabilistic
Models

Hierarchical grammars of MPHMM modules.

Hierarchical grammars of evolutionary HMMs, such as phylo-

HMMs or MPHMMs are probabilistic models that take into account

the way substitutions take place in the evolutionary path at specific

sites along the genome, and the specific patterns of change from one

site to the next. Figure 1 shows a hierarchical grammar of

evolutionary HMM modules for a preprohormone. At the

functional-level hierarchy, the model is specified in terms of its

functional elements, which are signal sequences, cleavage sites, and

preserved and diverged regions. The underlying evolutionary HMM

modules carry out the local multiple alignments with respect to the

phylogenetic relationship warranted by the context. This kind of

hierarchical alignment is significantly more informative than a

conventional multiple sequence alignment in that it provides a

segmentation that has to satisfy higher-level constraints. For example,

for the peptide hormone problem, the most important feature of a

cross-genome alignment turns out to be the difference between the

substitution rates of the functional and the nonfunctional

subsequences around (predominantly double basic residue) splicing

sites.

There are several formalisms for describing probabilistic

evolutionary algorithms in the literature. We follow the exposition

[13] used for the phylo-HMMs. Let us define the computational

structure of a hierarchical grammar of functional-evolutionary

model modules (MPHMMs or phylo-HMMs) by the four-tuple

H~ P,G,a,bð Þ, where P~ p1,p2,:::,pnf g is a set of functional

component states (for functions such as a signal sequence, a

splicing site, or a peptide) with the set of associated functional

element models, G~ G1,:::,GMf g, with the model Gj accounting

for the part of the sequence alignment at the component state pj .

a~ ajk

� �
, 1ƒj,kƒMð Þ, and b~ b1,:::bMf g are the matrix of

component state transition probabilities and the vector of initial

probabilities, respectively. In this formulation, for the sake of

descriptive efficiency, we are describing the basic two-level

hierarchy of models, which can, in our implementation, entail

more levels. In the lower level of the hierarchy, each component

model is a vector output HMM with an alphabet consisting of the

four-tuple, Gj~ Sj ,Mj ,Aj ,bj
� �

, where Sj is a set of states associated

with the functional component module. For example, a simple

double basic residue cleavage site HMM would have two states

that emanate multiple alignments of Arg and Lys residues. The set

of associated functional element models, Mj~ M
j
1,:::,Mj

m

n o

account for the amino acid sequence with Aj and bj as the matrix

of lower level state transition probabilities and the vector of initial

probabilities, respectively. This structure also supports hierarchical

grammars of phylo-HMMs [13]. In that case, Gj~ Qj ,pj ,tj ,nj
� �

,

where Qj is the substitution matrix defined with respect to the

alphabet of amino acids, pj is a vector of equilibrium frequencies,

Author Summary

Peptide hormones, or neuropeptides, are made up of a
string of amino acids ranging from approximately 3 to 50
residues. These peptides are processed from a larger protein
called a prohormone and activate a class of proteins called
G-protein-coupled receptors (GPCRs). Neuropeptides signal
neurons and other cells leading to changes in cellular
biochemistry and potentially gene expression. There are a
number of ‘‘orphan’’ GPCRs, i.e., receptors that have been
discovered either by genomic sequence or by cloning, in
which its respective peptide hormone is unknown. We have
devised a computational method that models patterns in
protein sequence simultaneously with evolutionary differ-
ences across species in order to identify previously
unknown peptide hormones. We have used this computa-
tional methodology to identify a previously unknown
putative prohormone that contains up to four potential
neuropeptides, and we have characterized this prohormone
with respect to location in rat brain and various human
tissues. This computational technique will be useful for the
identification of additional neuropeptides and help to
characterize orphan GPCRs. Because roughly half of all
pharmaceuticals act through activation or inhibition of
GPCRs, this technique should lead to the identification of
additional pharmaceutical targets and ultimately clinically
used drugs.

Computational Neuropeptide Discovery
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tj is the binary phylogenetic tree with the set of branch lengths nj .

For phylo-HMMs, Felsenstein’s ‘‘pruning’’ algorithm [14] is used

for the phylogenetic model optimization rather than Viterbi for

our model.

In this two-level hierarchical approach, there are two types of

alignments, (i) functional alignments at the high level,

C~ C1,:::,CLð Þ, and (ii) state module alignments at the lower

level, X k~ X k
1 ,:::,X k

Lk

� �
, k~1,:::,L. To illustrate this point,

Figure 2 shows a hierarchical alignment for prepronociceptin from

five species (human, chimp, mouse, rat, cow), where the boxes

depict the functional element sequence. The resulting sequence

alignments within functional elements are also shown.

A path through the functional element sequence is a sequence of

states w~(w1,:::,wL), and a path through a component module is a

sequence of states t~ t1,:::,tLð Þ. Given the above setting, we

compute the joint probability of a functional level path and

alignment, which is given by

P w,C Hjð Þ~bw1
P C1 Gw1

��� �
P
L

i~2
awi{1wi

P Ci Gwi

��� �
,

where, in turn, each of the functional module state alignments is

given by

P t,Xj Gj

��� �
~bj

t1
P X

j
1 lj

t1

��� �
P
L

i~2
aj

ti{1ti
P X

j
i lj

ti

��� �
:

The likelihood of the model P C Hjð Þ~
P

w P w,C Hjð Þ is found by

summing over all possible paths, and the maximum likelihood

path is the path that maximizes P w,C Hjð Þ. The computation of

Figure 1. Prohormone hierarchical grammar of evolutionary MPHMM modules.
doi:10.1371/journal.pcbi.1000258.g001

Figure 2. Hierarchical functional-element multiple alignment of Pronociceptin across human, chimpanzee, mouse, rat, and cow.
doi:10.1371/journal.pcbi.1000258.g002
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these quantities and the state posterior probabilities are facilitated

by the Markovian structure that allows standard dynamic

programming based solutions through the use of Viterbi and

forward-backward algorithms.

Component MPHMM modules. MPHMMs account for

the structural constraints of a preprohormone sequence by

modeling separate modules in a combined manner by a modular

profile HMM for each genome. The two modular HMMs for the

two genomes are then coupled by several pairwise HMMs on a

module-by-module basis across the two genomes in order to model

differential evolutionary rates of functional and nonfunctional

sequences. We name the overall framework Hierarchical

Grammar of Hmms of Evolutionary Regions (HIGHER).

The structural topology of the modules comprises a signal

sequence module, nonfunctional preprohormone module, splicing

site module, and the functional hormone module in various

possible combinations. Specifically, the signal sequence HMM

module is shown in Figure 3a. This is essentially a topology similar

to the HMM topology used by Nielsen et al. [15,16], which models

a general signal sequence with the requisite sites and results in a

similar detection performance as that of SignalP [17].

There are two possible topologies for splicing site modules, as

shown in Figure 3b, for two adjacent basic residues, and for a

single basic residue [18]. Two consecutive basic residues is the

simplest splicing site model, consisting strictly of two K or R

residues in sequence, and is sufficient for the majority of known

peptides. A single basic residue splice site occurs for an important

number of peptides, though, and the model shown in Figure 3b, in

which a single residue of K or R occurs in a context with a specific

residue profile, can be trained with synthetic data generated based

on sequences published by Devi [18].

The relative homology between hypothesized peptide hormone

and divergent sections is modeled through the use of pairwise-

HMMs, or their straightforward generalizations to multiple

alignments of N sequences in which all 2N subsets occupy a

separate state. Figure 3c depicts the structure of the pairwise-

HMM for aligning two sequences. The relative difference between

the homologies of the hypothesized and divergent regions

produces the most informative feature from the alignment of

multiple sequences to determine if the aligned sequences constitute

a preprohormone by satisfying both the structural and the

evolutionary constraints.

Computational processing steps. Two-dimensional

statistical models that make extensive use of graphs, such as

phylo-HMMs and HIGHER, are usually quite costly to compute.

Estimation of models based on alignments of a multitude of

genomes (more than five for example) requires considerable

resources in terms of both CPU power and data. This fact limits

their applicability as general filters or data mining tools that

operate on large repositories of sequences for discovery. In our

processing of all the protein sequences that were available to us, we

had to address this difficulty, for which we used the hierarchical

structure to our advantage by first forming initial raw alignments

based on parsing of sequences with our functional element

grammar, and aligning based on functional element identity alone.

Then, the resulting sequences were realigned by the HIGHER

model in order to obtain the fine alignment as well as the

discriminatory features. More specifically, processing of the

Figure 3. HIGHER MPHMM modules. (a) Signal sequence, (b) cleavage site, and (c) peptide/divergent region modules.
doi:10.1371/journal.pcbi.1000258.g003
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sequences followed three main steps: two multiple alignment steps;

(i) raw multiple alignment via functional element detection, and (ii)

fine multiple alignment via fitting of the MPHMM, and (iii) a final

discrimination step where a score is generated from the multiple

alignment. After the sequences were processed and scored,

alignments were generated, and the biologists were provided

with the list of hits in a graphical user interface. This interface was

used to browse the list of hits with a more discriminatory viewing

tool that includes constraints to filter the list of hits, e.g. according

to region, lengths or maximum divergence.

Summary of processing steps

1. Functional element transcription of protein sequences

from several genomes using the detector HMM modules and

the preprohormone grammar. See Table 1 for modules and

their abbreviations.

Example alignment :

startzSSzDRzCSdzPRzCSszDRzend

2. Multiple functional element alignment of protein

sequences (Figure 4)

3. Fit HIGHER model to the multiple sequence alignment

4. Browse the matches via the user interface Sequence-

Matcher in the feature space to evaluate the hits (see http://

www.cslu.ogi.edu/people/sonmezk/hormone).

Availability of Human-Mouse Search Results,
SequenceMatcher, and the HIGHER Tools

The extended list of matches, the GUI SequenceMatcher, and

the HIGHER tools will be made are available at http://www.cslu.

ogi.edu/people/sonmezk/hormone. Initially, we will enable the

visualization of our ENSEMBL and CELERA runs via the GUI.

The next version will allow evolutionary HMM searches specified

by the user. The HIGHER codebase will also be made available at

the website once it is ready for release.

Search of SwissProt Database. As a proof of principle, we

present results on SwissProt 41, a database containing a large number

of known hormones. Because the functions of all of the proteins in

SwissProt are known, this search does not produce novel peptide

hormones, but it produces a detection metric for the performance of

the search paradigm. Note that the structural profile HMMs for the

signal sequence and the splicing sites have not been trained with these

proteins, and in HIGHER we do not train sequence structure models

for hormones, so our SwissProt set constitutes an independent test set.

For one specific threshold, we were able to identify 45 out of 54

preprohormones known to be in SwissProt with 44 false alarms

(Table 2). In terms of detection performance, this corresponds to a

point on the receiver operating characteristic (ROC) curve with

sensitivity of 83%, and specificity of more than 99.9% (44 false hits on

a SwissProt set with 122,564 proteins).

Search of the Celera Database. We then collected the full

list of known and putative proteins from mouse and human

genomes using the Celera Discovery System (CDS) database.

These two sets of proteins were matched using HIGHER and the

resulting output examined for known and potentially novel peptide

hormones. Each potential match was examined using the CDS

that lists families to which these unknown proteins might belong.

BLAST searches were also conducted on both the predicted

protein and the mouse and human gene, using both CDS and

Genbank. A gene family was evident for many of the potential

matches, suggesting that these proteins did not represent novel

neuropeptides. For a smaller number of matches, the function of

Figure 4. Multiple alignment of functional element sequences across genomes.
doi:10.1371/journal.pcbi.1000258.g004

Table 1. Modules and their abbreviations.

Functional Element Symbol

Signal sequence SS

Cleavage site (double basic) CSd

Cleavage site (single basic) CSs

Peptide hormone region PR

Divergent region DR

doi:10.1371/journal.pcbi.1000258.t001
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the protein was unknown. We consider these to be potential novel

preprohormones.

One novel protein identified is the perfect example of our

hypothetic neuropeptide model, shown in Figure 5. Between

double basic residues, the homology is high. Outside these residues

the conservation is quite low. The protein sequence of the human

and rat were predicted from gene finding programs. These

proteins have no apparent homology to any other proteins, and no

known biological function. Of the four potential neuropeptides

(highlighted in yellow, beginning at the end of the signal sequence

and ending at the fourth set of basic residues), the most likely

candidate would be the NPQ peptide NWTPQAMLYLKGAQ-

NH2, although we should emphasize that one or more of the

others (APQRLLE, FISDQS, and KDLSDRPLPE) are also likely

to have biological activity. This amidated 14 amino acid peptide

(we expect the G before the RR to be a substrate for the amidating

enzyme peptidylglycine a-amidating monooxygenase, PAM [19])

is fully conserved among human and mouse. A further search of

homologies for this protein found strong conservation for the

amidated 14 amino acid peptide as far back as fugu. The fact that

this portion of the protein is so highly conserved, including

amidation and processing sites, strongly suggests the importance of

this peptide sequence.

One interesting mutation in the rat gene is not found in the

human, mouse, bovine, porcine or fugu protein. The rat protein

has a mutation in the GRR at the C-terminal portion of the NPQ

peptide. A single nucleotide change produces the sequence Gly-

His-Arg. This complicates the processing of the rat gene product.

It is possible that an endopeptidase may function at a His-Arg

bond, and if so, it would become a substrate for carboxypeptidase

E (CPE) [20], and the processed peptide would end Gln-Gly-His,

without the amidation of the more abundant analog.

ESTs for preproNPQ have very recently appeared in GenBank

indicating that the human protein can be found in brain, ovary,

kidney and lung cancer cells. Our preliminary investigation of

preproNPQ using RT-PCR shows the presence of its transcripts in

Table 2. Matches Found in Swiss-Prot Database.

Hormones
Sequence
Matching ‘‘Hits’’ Hormones

Sequence
Matching ‘‘Hits’’

ACTH x MCH (melanin concentrating hormone)

ADM (adrenalmedulin) x Motilin x

Agouti-related peptides x MSH (melanocyte stimulating hormone) x

Amylin x Neuromedin U x

ANP (atrial natruretic peptide) Neurotensin x

Apelin Neurturin x

Calcitonin x Nociceptin x

CART (cocaine and amphetamine regulated
transcript)

x NPY (neuropeptide Y) x

CCK (cholecystokinin) x Orexins x

CGRP (calcitonin gene related protein) x Oxytocin x

CNP (C-type natriuretic factor) x PACAP (pituitary adenylate cyclase activating
polypeptide)

x

Cortistatin PPY (pancreatic hormone) x

CRF (corticotropin releasing factor) x PHI (same precursor with VIP) x

Dynorphin x PrRP (prolactin-releasing peptide)

b-Endorphin x PTH (parathyroid hormone) x

Endothelin 1 x PTH-RP (parathyroid releasing hormone)

Endothelin 2 x PYY (peptide YY) x

Endothelin 3 x Secretin x

Enkephalin x Somatostatin

Galanin x Substance K ( = neurokinin A)

Gastrin x Substance P x

Glucagon x TEGT (testis enhanced gene transcript) x

GRF (growth hormone releasing factor) x TRH (thyroid releasing hormone) x

GRP (gastrin releasing peptide) Vasopressin x

Guanylin VIP (vasoactive intestinal peptide) x

LHRH1 (luetinizing hormone releasing hormone) x PSP94 (prostate secretory protein) x

False Positives
Other signaling molecules: FGF-3,5,7,10,17,18; GDNF; CD8,28; PDGF-2; TGF; VEGF (vascular endothelial growth factor); HBNF-1; MIP; NGF (nerve growth factor); Cytokine
A21, IFN-a (interferon alpha); IGF binding protein 1B,2,3; IL7 (interleukin 7).
Other: MAGF (microfibril associated protein), MINK (K-channel), K-channel related peptide, L-type Ca2+ channel, gamma subunit, myelin Po protein, Dif-2, Eosinophil,
Syntaxin 1B (vesicle docking), Syntaxin 2, TMP21 (vesicle trafficking protein), Coagulation factor III, PGD2 synthase, syndecans, FKBP12 (FK506 binding protein), Folate
receptor, ERp29, COMT, Connexin 32, Cytostatin.
doi:10.1371/journal.pcbi.1000258.t002
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human, mouse, and rat brains (Data not shown). We have cloned

and sequenced the human, mouse, and rat cDNAs, and have

verified the single nucleotide change that leads to the GHR

sequence in the rat preproNPQ gene. Northern analysis using a

human tissue blot (Clontech) showed the presence of preproNPQ

mRNA in brain and pancreas, but most prominently in the kidney

(Figure 6). Therefore, NPQ may be one of many peptides (such as

vasopressin) found in both brain and kidney.

We have also conducted studies to determine regional

localization in brain by in situ hybridization (Figure 7). An initial

mapping study of preproNPQ mRNA demonstrated that its

expression in the brain is restricted to the mesopontine

tegmentum. At its caudal extent preproNPQ mRNA is confined

to the Barrington’s nucleus, which can be identified by its

expression of corticotrophin releasing factor (CRF) mRNA

(Figure 7B, arrow). As illustrated in Figure 7A–C, regional

distribution of preproNPQ mRNA overlaps closely with that of

CRF, suggesting possible cellular co-localization of these two

mRNAs. In contrast, preproNPQ signal is distinct from that of

tyrosine hydroxylase (TH) (Figure 7D–F), which is selectively

expressed in locus coeruleus (Figure 7E, arrow). PreproNPQ

mRNA is also closely related to, but does not overlap with, choline

acetyltransferase (ChAT) (Figure 7G–I), which is expressed within

the laterodorsal tegmental nucleus (Figure 7H, arrow). At this level

of the neuraxis preproNPQ mRNA is located quite a bit lateral to

the majority of the midline serotonergic neurons, as determined by

examination of mRNA distribution of the synthetic enzyme

tryptophan hydroxylase 2 (TPH2) (Figure 7J–L), though there is

some overlap with the laterally displaced TPH2-positive neurons

(Figure 7L).

At the level of the caudal periaqueductal gray (PAG),

preproNPQ mRNA expression is restricted to the ventrolateral

quadrant of this structure (Figure 8) with some scattered signal in

the underlying reticular formation. Caudal ventrolateral PAG is a

heterogeneous brain region that contains dopaminergic, choliner-

gic and serotonergic neurons. To determine whether preproNPQ

mRNA signal overlaps with any of these populations, in situ

hybridization (ISHs) for TH, ChAT and TPH2 were carried out.

ISH for TH showed a weak but specific signal within the

ventrolateral PAG (Figure 8B, arrow) that overlapped with

preproNPQ signal (Figure 8A–C). ChAT mRNA was closely

related to the preproNPQ signal but did not appear to overlap

with it (Figure 8D–F). Likewise, laterally-displaced TPH2 mRNA

was in close proximity to preproNPQ mRNA (Figure 8G–I).

Discussion

Because devising computer-generated methods of identifying

peptide hormones has been difficult, biochemical methods have

been the most relied upon. Although they are time consuming and

expensive, these methods work if one has some preliminary

information or basic assumptions. Substance P was discovered

based upon the physiological actions of brain extracts [21], while

the peptide hormones met- and leu-enkephalin were discovered

based upon a preexisting receptor [22]. Hughes and Kosterlitz

used a smooth muscle bioassay for opiate receptors to isolate two

peptides from bovine brain that were subsequently found to bind

to the opiate receptors [22]. It was only several years later that

these two peptides were found to be generated from a single

prohormone [23]. Mutt and colleagues used a chemical assay to

identify carboxy terminal amidated peptides, and in this way

discovered neuropeptide Y (NPY) and peptide YY [24]. The

purification and sequencing of N/OFQ (formerly nociceptin/

Figure 5. Amino acid sequence of preproNPQ. Sequences shown were obtained from GenBank. The human and rat sequences were verified by
nucleotide sequencing as described in Materials and Methods. Putative neuropeptides highlighted. They begin at the end of the signal sequence and
end at the fourth set of basic residues. Residues that are not conserved between human and other species are in bold.
doi:10.1371/journal.pcbi.1000258.g005

Figure 6. Northern Blot Analysis of preproNPQ mRNA. Ambion’s
First Choice Human Blot was prehybridized and probed with human
NPQ cDNA prepared from the human DNA clone in pOTB7 vector from
ATCC (Cat # 6710068, Manassas, VA). This clone contained the putative
sequence for human NPQ. Random-prime labeling was performed
using 32P-dCTP and Klenow DNA polymerase was conducted as
described in Materials and Methods. 1. Brain, 2. Placenta, 3. Skeletal
muscle, 4. Heart, 5. Kidney, 6. Pancreas, 7. Liver, 8. Lung, 9. Spleen, 10.
Colon.
doi:10.1371/journal.pcbi.1000258.g006
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orphanin FQ) was possible because of the availability of CHO cells

transfected with NOP (N/OFQ peptide) receptors (formerly called

ORL1) and the knowledge that the endogenous ligand would

inhibit cAMP accumulation, as do the endogenous ligands for m, d,

and k opioid receptors, the other receptors in that family [25,26].

Other examples of ‘‘reverse pharmacology’’ have followed, i.e.

[27], and each has led to great strides in the understanding of

human physiology.

Even though neuropeptides have very few apparent similarities

as a class, computational tools can be used to characterize and

even potentially identify new members of this class of signaling

molecules. Bakalkin and colleagues have examined the bioinfor-

matics of neuropeptides [28,29]; they have computed the amino

acid composition and relative amino acid arrangements in the

neuropeptide portion and compared them to the intervening

portions of a prohormone. Using this statistical method, they have

found an increased content of certain residues, as well as an

increased occurrence of certain pairs of residues, as compared to

proteins and non-regulatory peptides.

Although these biochemical and bioinformatics approaches can

provide useful information about neuropeptides and potentially

identify new neuropeptides, if the cognate receptor is unknown,

they will not be able to provide a general format for the

computational identification of this class of hormones. Such a

general format can be achieved using more sophisticated

computational tools such as Hidden Markov Models.

Hidden Markov models were originally developed for speech

recognition [30] and have long come to form the basis of the state

of the art in that field. Estimation and hypothesis testing

algorithms for HMMs have been well studied, and a wealth of

experience makes it possible to train and test large-scale models

from large amounts of data. Development of automatic speech

recognition systems has motivated one of the key aspects of the

presented approach in that there is a direct analogue between

using hierarchical sentence, word, and phone hidden Markov

models in speech recognition and the hierarchical modeling of

functional elements in this work. A prohormone may be viewed as

a sentence formed in a certain grammar using specific words, i.e.

functional elements, which in turn are modeled by a sequence of

phones, i.e. amino acids.

It is useful to differentiate between two usages of HMMs in

biological sequence analysis: (1) Pairwise-HMMs [31] are a

stochastic generalization of the sequence alignment algorithms

and may be regarded as probabilistic model based counterparts of

existing techniques, such as BLAST [32]. Their distinguishing

characteristic is that as models they generate alignments of two

sequences, their hidden states corresponding to insertions,

deletions or substitutions. (2) Profile HMMs [33,34] have proven

to be a major breakthrough in biological sequence analysis,

enabling modeling of protein families with a high degree of

Figure 7. In situ hybridization of preproNPQ mRNA. Expression
of preproNPQ mRNA in the rat brain at the level of Barrington’s nucleus
and locus coeruleus. In situ hybridizations (ISHs) for preproNeuropep-
tide Q (NPQ; A, D, G, and J), corticopin-releasing factor (CRF; B), tyrosine
hydroxylase (TH; E), choline acetyltransferase (ChAT; H), and tryptophan
hydroxylase 2 (TPH2; K) were carried out on adjacent 10 mm-thick
sections of the rat brain. ISH autoradiograms were digitized; images
were then inverted and pseudocolored according to the following
scheme: NPQ – green, CRF – red, TH – cyan, ChAT – white, and TPH2 –
blue. To determine whether NPQ signal overlapped with any of the
other signals, the sections were aligned and overlaid with each other (C,
F, I, L). Arrow in panel A indicates location of NPQ mRNA, while arrow in
panel B indicates location of CRF mRNA; note the mixing of red and
green (to yield yellow) in panel C (arrow) that suggests co-localization
of NPQ and CRF. Arrow in panel E indicates locus coeruleus and its TH-
positive neurons. Panel F shows that TH and NPQ signals are spatially
very close without overlap. Arrow in panel H indicates the cholinergic
laterodorsal tegmental nucleus, while panel I illustrates close spatial
relationship between ChAT and NPQ mRNAs. At this level of the
neuraxis there is little overlap between TPH2 mRNA (blue signal in
panel K, which represents serotonergic neurons) and NPQ (L).
doi:10.1371/journal.pcbi.1000258.g007

Figure 8. In situ hybridization of preproNPQ mRNA. Expression
of preproNPQ mRNA at the level of the caudal ventrolateral
periaqueductal gray (PAG). ISH autoradiograms were digitized and
pseudocolored according to the same scheme as in Figure 7. NPQ
signal was visible in the ventrolateral quadrant of the PAG as well as
within the underlying reticular formation (A, D, G). ISHs for TH (B), ChAT
(E) and TPH2 (H) were carried out on adjacent sections. Arrow in panel B
indicates location of dopaminergic TH-positive neurons of the
ventrolateral PAG that appear to overlap with a subset of NPQ mRNA
(C). There is also close spatial relationship between NPQ and ChAT (F)
and NPQ and TPH2 (I). Abbreviations are the same as in Figure 7.
doi:10.1371/journal.pcbi.1000258.g008
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functional accuracy. For over a decade they have formed the basis

of the most widely used applications of sequence modeling in

molecular biology [35]. Profile HMMs, as models, generate a

single sequence with a set of hidden states corresponding to the

genomic structure of the molecule.

The basic computational units in this work are Match-profile

HMMs (MPHMMs) [12,36], which combine the capabilities of the

two types of HMMs in that they can be viewed as using a profile

HMM structure in modeling the sequence structure and a pairwise

HMM (or a multiple-genome generalization thereof) in modeling

the evolutionary characteristics of variation across species. In

particular, the composite structure by which the preprohormone

evolution is modeled is a hierarchical grammar of MPHMMs.

Hierarchical grammars of MPHMMs are probabilistic models

that take into account the manner in which substitutions take place

in the evolutionary path at specific sites along the genome and the

specific patterns of change from one site to the next. This kind of

hierarchical alignment is significantly more informative than a

conventional multiple sequence alignment (e.g., a la ClustalW) in

that it provides segmentation of functional context. For example,

for the peptide hormone problem, the most important feature of a

cross-genome alignment turns out to be the difference between the

substitution rates of the functional and the nonfunctional

subsequences around (predominantly double basic residue)

splicing sites.

There are several approaches in the literature for addressing

similar problems. Phylogenetic HMMs, or phylo-HMMs, are

probabilistic models that combine HMMs and phylogenetic trees

in order to explain the spatial (genomic) and temporal (evolution-

ary) characteristics of a sequence, an excellent review of which is

provided by Siepel and Haussler [13]. The first introduction of

phylo-HMMs was motivated by the need to improve phylogenetic

models that allow for variation in the substitution rate across sites

[37,38]; subsequently the problem of secondary structure

prediction was addressed [39,40]. Recently there is increased

interest in these models as cross-genomic data become available in

large quantities, and approaches that are informed by evolutionary

pressures become enormously useful [41–45]. In particular, they

have been applied to cross-genome gene prediction [46,47].

Another similar structure is the evolutionary HMM [48,49] that

accounts for the phylogenetic information using generalizations of

pairwise-HMMs, in a way similar to our approach. Evolutionary

HMMs do not model the genomic structure in a targeted manner,

as we do through the use of hierarchical grammars, and the spatial

part of the model is used to track shifts in phylogenetic parameters.

Recently, a paper describing a different HMM-based method

for the genomic identification of neuropeptides was published

[50]. This paper used a single species method containing the

peptide features we describe here, including a signal sequence,

peptide, and prohormone cleavage site. The main difference of

our approach from the published work is the use of cross-species

comparisons through evolutionary models. In fact, there is prior

work on discovery based on genomic structure alone. The problem

of computational peptide hormone discovery based on genomic

structure alone proves to be difficult. For example, an attempt to

build models by specifying rules via deterministic grammars within

the inductive logic grammar framework is described by Muggleton

et al. [51]. In their manuscript, by enforcing the existence of signal

sequences and splicing sites through a deterministic context-free

grammar, a sieve for possible prohormone sequences is proposed.

Even without the insight provided by evolutionary forces, the

resulting method is able to eliminate unlikely candidates, but due

to the ubiquitous existence of double basic residues throughout

protein sequences, its selectivity turns out to be poor. In our

approach, it is because of the signature of stochastic evolutionary

pressures on the protein sequences that small functional peptide

islands can be identified in the midst of a sea of diverged

sequences.

In addition to our proof of principle using the Swiss Prot

database, we have identified a number of potential preprohor-

mones and their proposed processed neuropeptides. There were

many unknown secreted proteins identified directly from the

sequence matching protocol that fit the simple criterion of a pair of

basic residues surrounding 4–50 amino acids. Visual examination

of each possibility often detected reasons to decrease the likelihood

that a particular protein was in fact a prohormone. There were

three proteins for which we determined the presence of transcripts

in the brain, and only one that was further characterized. Because

preproNPQ, contains four potential biologically active agents, and

because one of these was amidated, we considered this our most

likely prohormone, with the most likely neurpeptide being the 14

amino acid amidated NPQ peptide (Figure 5). This peptide is

conserved in mouse, dog, cow, and human sequences. It is

conserved, except for a single amino acid change, as far back as

fugu. The mRNA coding for this protein is found in brain, with

higher levels in kidney.

Anatomical localization of preproNPQ mRNA with ISH

demonstrated that its distribution is restricted to a very specific

site in the brain (Figures 7 and 8). Our studies indicate that

preproNPQ-containing cells overlap in their distribution with cells

that express CRF in Barrington’s nucleus, as well as those that are

serotonergic and dopaminergic in the ventrolateral PAG. These

results raise the possibility that preproNPQ may be co-localized in

the same neurons with these neurotransmitters. Furthermore, this

peptide is distributed closely to the cholinergic neurons of the

mesopontine tegmentum raising the possibility that NPQ peptides

may also interact with the cholinergic system.

The functional significance of these findings will require

additional behavioral and physiological investigations, but it is

reasonable to speculate that NPQ peptides may be involved in

regulating a number of diverse functions. These likely include

regulation of urinary, gastrointestinal and general autonomic

functions, since Barrington’s nucleus contains neurons that send

polysynaptic projections to the bladder, colon, spleen and kidney

[52,53]. CRF-containing neurons in the Barrington’s nucleus have

been proposed to play a role in mediating stress-induced colonic

alterations [54]. Based on the close overlap between CRF and

preproNPQ, it seems feasible that NPQ peptides may play a role

in the pathophysiology of stress-induced gastrointestinal distur-

bances.

Along the same lines of modulation of stress responses,

dopaminergic (TH-positive) neurons of the ventrolateral PAG

have been shown to project to the CRF-containing area of the bed

nucleus of the stria terminalis (BNST) [55,56], where these

projections have been proposed to modulate CRF-initiated startle

response [55]. Since we found close overlap between preproNPQ

ISH signal and that for TH in the ventrolateral PAG, it is tempting

to speculate that one of the NPQ peptides may play a role in

regulating CRF-induced stress responses. The biological activity of

the NPQ peptides is now under investigation.

Using a different HMM-based method for the genomic

identification of neuropeptides, Mirabeau et al. identified two

putative prohormones and processed peptides [50]. One peptide

that was termed Spexin is identical to NPQ. They found spexin to

co-localize with insulin in secretory granules, when transfected into

rat pancreatic cells. ISH studies detected spexin mRNA only in the

submucosal layer of the esophagus and stomach. Spexin mRNA

was not reported in the brain. Finally, they showed that the
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amidated 14- amino acid peptide induced contractions of the rat

fundus muscle of the stomach. This is an interesting observation,

since our findings indicate that the rat almost certainly does not

make amidated peptide because of the single amino acid change

found within the C-terminal cleavage site (see Figure 5).

Demonstration of functional activity of this compound in the rat

stomach suggests that the C-terminal portion of NPQ is likely not

involved in binding to its still unidentified receptor.

The computational method that led to the discovery Spexin

identified another peptide that the authors named augurin [50].

Augurin is an uncharacteristically long peptide, 78 amino acids

within a prohormone of length 148 amino acids. In terms of

scoring, we are heavily penalizing peptides that are long with

respect to their flanking non-functional sequences, and in the

viewer, we have a filter that eliminates altogether any hit with

length greater than 50% of the whole protein length. An

experiment that modified our scoring and filters to test whether

our model also works for augurin, verified that augurin was indeed

detected by HIGHER as an instantiation of the following structure

startzSSzDRzCSdzPRzend

in our grammar.

There are other neuropeptides, which were not identified using

our MP-HMM techniques. There are several potential reasons for

other missing neuropeptides, the first and probably most

important of which relates to the dataset used. The datasets of

known and hypothetical proteins do not contain all the

preprohormones. Although the genomes of mouse and human

have been sequenced, the complement of predicted proteins is

constantly changing and is different in the different databases.

Another reason for not identifying prohormones is that the MP-

HMM methodology utilized is statistical in nature and will not

necessarily identify 100% of the target proteins. There are also

many prohormones that do not have the classical profile of pairs of

basic residues surrounding the neuropeptide. We are currently

implementing a single basic residue algorithm based upon known

splicing characteristics [18] that should lead to the identification of

additional neuropeptides.

Conclusion
We have presented a computational framework that is capable

of accounting for protein structure and cross-species evolutionary

divergence simultaneously. By aligning low-level evolutionary

HMM modules within a high-level functional-element grammar, it

is possible to build precise models of the effects of evolutionary

pressures on genomic structures. In particular, we have applied

this technique to modeling of prohormones across species with the

goal of identifying novel prohormones and associated peptide

hormones based on their evolutionary divergence profiles and

genomic structures. This technique has resulted in high accuracy

detection in a known dataset and led to putative hormones in a set

of hypothetical proteins. Biochemical validation of the findings has

resulted in the initial characterization of the prohormone

preproNPQ, containing four potential previously undiscovered

neuropeptides.

Materials and Methods

Polymerase Chain Reaction (PCR) of cDNA from Brain
Using Species-Specific Primers

In order to determine if the putative transcript named preproneur-

opeptide Q (preproNPQ) is found in the brain, we performed PCR

using rat, human and mouse specific primers with their correspond-

ing cDNAs. The sequences of the primers used were: Rat Forward

Primer 59-GAAGGGGCCGAGCATCCTGG-39 and Reverse

Primer 59-CACCAGTAAAAGCGTCTGTCTTC-39; Mouse For-

ward Primer 59-GGACAGGGTCGGAACATGAAG-39 and Re-

verse Primer 59-GTGTTTTCACCAGTTGAAGAGTC-39; Hu-

man Forward Primer 59-ACGCAGAACATGAAGGGACTCAGA-

39 and Reverse Primer 59-CCAGTATATTTTCACCAGT-

TAAGC-39. Advantage Genomic Polymerase Mix enzyme (BD

Biosciences Clontech, CA) was used for PCR, according to

manufacturer’s instructions. Approximately 200–300 ng cDNA was

used for each 50 ml reaction, along with 10 mM of specific forward

and reverse primer, 2.2 ml magnesium acetate and dNTPs (10 mM).

The annealing temperature was set at 53uC, and after 25 cycles of

amplification, the PCR products were run on a 1.5% agarose gel and

visualized using ethidium bromide. A positive control PCR reaction

was also performed at the same time, using rat brain cDNA and

specific primers for the prepronociceptin gene, and the reaction

product was run on the gel.

In Situ Hybridization in Rat Brain Slices Using Rat NPQ
Probe

Tissue collection. Rats (n = 4) were killed via rapid

decapitation using a guillotine. The brains were extracted, flash

frozen in 2-methylbutane at 230uC, and stored at 280uC. Brains

from each animal were cryostat sectioned coronally to a thickness

of 10 mm at 220uC and thaw-mounted onto Superfrost slides

(Fischer Scientific, Pittsburgh, PA). Slides were collected in sets of

10, and adjacent sections were placed on consecutive slides. This

strategy allowed us to perform in situ hybridization (ISH) for

different mRNAs on adjacent sections. The radioactive signal from

these adjacent sections was digitally overlaid to determine regional

localization of preproNPQ mRNA.

In situ hybridization (ISH). Slides were removed from

280uC and placed in 4% paraformaldehyde at room temperature

for 1 hour. Slides were washed 3 times in 26 SSC (300 mM

NaCl/30 mM sodium citrate, pH 7.2) for 5 min, washed in 0.1 M

TEA with 0.25% (vol/vol) acetic anhydride (pH 8.0) for 10 min,

dehydrated through a series of alcohol washes (50%, 75%, 90%,

95% 62, 100% 62 EtOH, for 30 seconds each), and air dried.

Radioactive probes for preproNPQ, tyrosine hydroxylase (TH;

synthetic enzyme for dopamine and norepinephrine), tryptophan

hydroxylase 2 (TPH2; synthetic enzyme for serotonin), choline

acetyltransferase (ChAT; synthetic enzyme for acetylcholine), and

corticotropin-releasing factor (CRF) were prepared from E. coli

containing pBluescript SK cloning vectors (Stratagene, San Diego,

CA), which were grown at 37uC for 16 hours in a shaker. The

preproNPQ probe was designed to be 340 nucleotides in length.

Those for TH, TPH2, ChAT and CRF were 274, 1030, 520, 762

nucleotides in length, respectively, and were based on publicly-

available sequences downloaded from NCBI Entrez Gene (http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD = search&DB =

gene).

To verify that the inserts were of predicted lengths, DNA was

extracted and the inserts were excised with appropriate restriction

enzymes. The products were separated by gel electrophoresis on a

2% agarose gel and visualized with ethidium bromide. Probes

were also sequenced using dideoxynucleotide sequencing at the

University of Michigan’s DNA Sequencing Core. Sequenced

products showed perfect alignment with predicted sequences.

For radioactive cRNA probe synthesis, DNA was extracted and

then linearized. The reaction mix for both sense and anti-sense

RNA probes contained the following: 4 ml of 35S-UTP (10 mCi/ml;

Amersham Biosciences, Piscataway, NJ), 3 ml 35S-CTP (10 mCi/

ml; Amersham Biosciences), 2.0 ml 56 transcription buffer, 1.0 ml
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0.1 M DTT, 1.0 ml each of 10 mM ATP and GTP, 2.0 ml

linearized plasmid DNA, 0.5 ml RNase inhibitor, and 1.5 ml T3

RNA polymerase, in a total reaction volume of 25 ml. The mixture

was incubated at 37uC for 2 hours. After this period, 1 ml of

RNase-free DNase was added to the mixture and allowed to

incubate for an additional 15 min at room temperature. Each

probe was then purified using column-based chromatography

(BioRad Micro Bio-Spin Chromatography column, BioRad,

Hercules, CA), and its radioactivity was quantified using a liquid

scintillation analyzer. Following its preparation, each probe was

diluted in hybridization buffer (50% formamide, 20% filtered

water, 15% 206 SSC, 2% 506 Denhardt’s solution, 2% tRNA,

10% 0.5 M sodium phosphate buffer, 10% dextran sulfate) and

applied to dehydrated slides. A cover slip with 50–70 ml of

hybridization buffer, 1–26106 DPM of radioactive probe, and

DTT at a final concentration of 10 mM, was placed on each slide.

Hybridization trays were prepared by lining the bottom of each

tray with filter paper, which was saturated with 50% formamide

buffer, and the slides were placed within. All trays were sealed and

placed at 55uC overnight. Approximately 18 hours later, cover

slips were removed and the slides were washed three times in 26
SSC for 5 min each. Next, slides were incubated in RNase A

(200 mg/ml in 10 mM Tris-HCl, pH 8.0/0.5 M NaCl) at 37uC
for 1 hour, then washed in a series of salt washes with increasing

stringency: 26SSC, 16SSC and 0.56SSC at room temperature

for 5 min each, followed by a one-hour incubation in 0.16SSC at

65–70uC. Finally, slides were dipped in distilled water and

dehydrated through graded ethanol solutions: 30 seconds each

in 50%, 75%, 90%, 95% 62, and 100% 62.

To determine the distribution of radioactive cRNA in situ, slides

were apposed to radiosensitive film (Kodak Biomax; Eastman

Kodak, Rochester, NY). Slides and the film were sealed within the

cassette and stored in complete darkness. Following a 5–19-day

exposure (exposure time depended on abundance of each mRNA

species), films were developed using a Kodak X-OMAT 2000A

processor (Eastman Kodak).
Image processing. ISH autoradiograms were digitized using

a flatbed scanner (Microtek ScanMaker 1000XL, Microtek,

Carson, CA) at 1600 dpi. Digital images were then inverted and

each ISH signal was assigned a color as follows: TH – cyan, TPH2

– blue, preproNPQ – green, CRF – red, and ChAT – white. To

determine regional co-localization of preproNPQ with the other

mRNAs, images were then overlaid and aligned in Adobe

Photoshop CS2 (Adobe Systems, San Jose, CA). Regional co-

localization of signals was determined by mixing of the assigned

colors. Illustrations were prepared in Photoshop and Adobe

Illustrator CS2 (Adobe Systems). The signal was sharpened and

brightness and contrast were adjusted for presentation purposes.

Northern Blotting Using Human RNA Blot Probed with
Human NPQ cDNA

In order to determine if the preproNPQ transcript could be

detected in various human tissues, we used Ambion’s First Choice

Human Blot (a nylon membrane bound with 3 mg RNA from

various human tissues, Ambion Inc, TX). The blot was

prehybridized and probed with human NPQ cDNA prepared

using the above preproNPQ human primers and the human DNA

clone in pOTB7 vector from ATCC (Cat # 6710068, Manassas,

VA). This clone contained the putative sequence for human

preproNPQ, and the primers were used to isolate a 370 bp

preproNPQ sequence that was used as the cDNA probe for

hybridization to the RNA. Random-prime labeling of approxi-

mately 20–30 ng DNA was performed using 32P-dCTP and

Klenow DNA polymerase, and after purifying the labeled probe

on a G-50 column, the labeled DNA probe was hybridized to the

nylon membrane overnight at 42uC. The membrane was washed

and exposed to film.
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