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ABSTRACT
Dimethylsulfoniopropionate (DMSP), an osmolyte produced by oceanic
phytoplankton and bacteria, is primarily degraded by bacteria belonging to the
Roseobacter lineage and other marine Alphaproteobacteria via DMSP-dependent
demethylase A protein (DmdA). To date, the evolutionary history of DmdA gene
family is unclear. Some studies indicate a common ancestry between DmdA and
GcvT gene families and a co-evolution between Roseobacter and the DMSP-
producing-phytoplankton around 250 million years ago (Mya). In this work, we
analyzed the evolution of DmdA under three possible evolutionary scenarios: (1) a
recent common ancestor of DmdA and GcvT, (2) a coevolution between Roseobacter
and the DMSP-producing-phytoplankton, and (3) an enzymatic adaptation for
utilizing DMSP in marine bacteria prior to Roseobacter origin. Our analyses indicate
that DmdA is a new gene family originated from GcvT genes by duplication and
functional divergence driven by positive selection before a coevolution between
Roseobacter and phytoplankton. Our data suggest that Roseobacter acquired dmdA
by horizontal gene transfer prior to an environment with higher DMSP. Here, we
propose that the ancestor that carried the DMSP demethylation pathway genes
evolved in the Archean, and was exposed to a higher concentration of DMSP in
a sulfur-rich atmosphere and anoxic ocean, compared to recent Roseobacter
eco-orthologs (orthologs performing the same function under different conditions),
which should be adapted to lower concentrations of DMSP.

Subjects Ecology, Evolutionary Studies, Genomics, Microbiology
Keywords Horizontal gene transfer (HGT), Molecular evolution, Molecular clock,
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INTRODUCTION
Dimethylsulfoniopropionate (DMSP) is an osmolyte synthesized by oceanic
phytoplankton and bacteria (Galinski, 1995; Yoch, 2002; Curson et al., 2017). This molecule
became abundant in the oceans approximately 250 million years ago (Mya), coinciding
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with the expansion and diversification of dinoflagellates (Bullock, Luo & Whitman, 2017).
Since then, it has played an important role in the biogeochemistry of sulfur cycle on
Earth (Lovelock, 1983). DMSP is the main precursor of the climate-relevant gas
dimethylsulfide (DMS; Reisch, Moran & Whitman, 2011). In marine ecosystems, DMSP is
rapidly degraded by different bacterial communities (González, Kiene &Moran, 1999), and
some strains seem to be very efficient and even become dependent on its degradation
(Tripp et al., 2008). In fact, DMSP supports up to 13% of the bacterial carbon demand in
surface waters, making it one of the most significant substrates for bacterioplankton (Kiene
et al., 1999; González, Kiene & Moran, 1999). Candidatus Pelagibacter ubique (SAR11),
dominant in the bacterioplankton and especially in surface waters, can only use sulfur
atoms derived organic molecules, such as DMSP (Tripp et al., 2008). In the case of Ruegeria
pomeroyi DSS-3, a model organism for DMSP studies, the turnover rate of DMSP
transformation depends on salinity conditions (Salgado et al., 2014).

The first step in the degradation of DMSP involves two competing pathways, cleavage
and demethylation. The DMSP cleavage pathway metabolizes DMSP with the release
of DMS (Kiene et al., 1999), a step catalyzed by a number of enzymes (Curson et al., 2011).
In the alternative pathway, DMSP is first demethylated by a DMSP-dependent
demethylase A protein (DmdA; Howard et al., 2006). Compared to genes in the
DMS-releasing pathway, dmdA is more frequently found in the genomes of oceanic
bacteria (Newton et al., 2010; Todd et al., 2009). The DmdA enzyme was originally
annotated as a glycine cleavage T-protein (GcvT) in the model bacteria R. pomeroyi
(Reisch, Moran & Whitman, 2011), although it forms a separate clade from the known
GcvTs (gcvT and Unchar. AMT) (Sun et al., 2011; Bullock, Luo &Whitman, 2017). Despite
their structural similarity which might indicate a common ancestry, DmdA and GcvT are
mechanistically distinct (Schuller et al., 2012). DmdA produces 5-methyl-THF from
DMSP as the result of a redox-neutral methyl transfer, while GcvT produces glycine to
5,10-methylene-THF from glycine (Reisch, Moran & Whitman, 2008).

Nearly all known DMSP-catabolizing bacteria belong to the phylum Proteobacteria with
DmdA orthologs found in most of the sequenced members of the Rhodobacteraceae
family, as well as bacterioplankton strains of SAR11, SAR324, SAR116 and in marine
Gammaproteobacteria (González, Kiene & Moran, 1999; González, 2003; Howard et al.,
2006; Bürgmann et al., 2007; Reisch, Moran & Whitman, 2008) like Chromatiales which
could have gotten DmdA gene by Horizontal gene transfer (HGT) as some studies suggest
(Howard et al., 2006; González et al., 2019 ). This phylogenetic distribution suggests
an expansion of dmdA through HGT events between different lineages of bacteria,
presumably through viruses (Raina et al., 2010). Since an episode of genome expansion
of Roseobacter, predicted early in its genome evolution, coincides with the diversification
of the dinoflagellates and coccolithophores around 250 Mya (Luo et al., 2013; Luo &
Moran, 2014), it has been suggested a co-evolutionary event between Roseobacter and the
DMSP-producing-phytoplankton (Luo et al., 2013; Luo & Moran, 2014; Bullock, Luo &
Whitman, 2017). Under this scenario, the enzymes of the DMSP demethylation pathway
could have evolved within the last 250 Mya, as phytoplankton responded to the marine
catastrophe at the end of the Permian, with the diversification of dinoflagellates that
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produce DMSP and the Roseobacter clade expanding by using DMSP as its main sulfur
source. Despite this hypothesis, there is a lack of knowledge about the main evolutionary
events that lead the adaptation to DMSP in Roseobacter.

The biosynthesis of DMSP has been reported in marine heterotrophic bacteria,
such as the Alphaproteobacteria, that is, Labrenzia aggregata (Curson et al., 2017),
Gammaproteobacteria and Actinobacteria (Williams et al., 2019). Moreover, bacteria seem
to be important producers of DMSP and DMS in coastal and marine sediments (Williams
et al., 2019). Since the common ancestor of heterotrophic bacteria and Roseobacter
originated in the Archean, more than 2 billion years ago (Kumar et al., 2017), the
Roseobacter and other Alphaproteobacteria might have been exposed to DMSP early
(Reisch, Moran & Whitman, 2011; Reisch et al., 2011). According to this hypothesis, the
DMSP demethylation and the cleavage pathways arose by the evolution of enzymes
that were already present in bacterial genomes and adapted in response to the wide
availability of DMSP. As mentioned earlier, Alphaproteobacteria in the SAR11 group
seems to thrive at the expense of organic sulfur compounds, such as DMSP, and had a
common ancestor that lived ca. 826 Mya, at the end of the Precambrian (Luo et al., 2013).
We would then expect a common ancestor of the DmdA gene family during the early
Proterozoic and that the functional divergence between DmdA and GcvT gene families
was driven by both functional constraints and widespread HGT, probably during the
Huronian snowball Earth, a period of planetary crisis where the greatest microbial
diversity took refuge in the shallow seas close to the equator (Tang, Thomas & Xia, 2018).

Here, we analyzed the evolutionary history of the DmdA gene family in marine
Proteobacteria by considering three evolutionary scenarios: (1) a recent common ancestry
of DmdA and GcvT, (2) a coevolution between Roseobacter and the DMSP-producing-
phytoplankton, and (3) an enzymatic adaptation for utilizing DMSP in marine bacteria
prior to Roseobacter origin. We first analyzed if convergent, independent or HGT-based
evolution can explain the presence of dmdA genes in different bacterial lineages SAR11,
SAR116 and Rhodobacteraceae. Then, we inferred the most recent common ancestor
(MRCA) of the DmdA gene family, the timing of its origin and any duplication events.
We also reconstructed the ancestral forms of DmdA enzymes to infer the most likely
ecological conditions where DmdA thrive. We provide insights into their function by
analyzing DmdA structural evolution. Finally, we examined how natural selection could
have driven the divergence of the DmdA gene family. Our results indicate that dmdA
appeared before the origin of the Roseobacter clade and the conditions of the late Permian
created by eukaryotic phytoplankton. Therefore, DmdA is an adapted version of enzyme
that evolved in response to the availability of DMSP.

MATERIALS AND METHODS
Data mining
Peptides and genes from DmdA gene family were collected from a set of 771 genomes
manually curated and hosted in the MarRef database (Klemetsen et al., 2018). The DmdA
orthologs and homologs sequences were obtained as described by González et al. (2019).
The DmdA homologs included were obtained using a HMM designed for DmdA
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orthologs (González et al., 2019), with a relaxed maximum e-value (E−50). A total of
204 sequences from 184 genomes were used to infer the evolutionary history of DmdA
gene family (Table S1).

Phylogenetic tree reconstruction and topology tests
The phylogenetic tree of the DmdA protein sequences included DmdA orthologs and
DmdA homologs (non-DmdA as in González et al. (2019)). The sequences were aligned
using MUSCLE (Clamp et al., 2004; Edgar, 2004). Regions poorly aligned or with gaps were
removed using TrimAl (Capella-Gutiérrez, Silla-Martínez & Gabaldon, 2009) with
parameters set to a minimum overlap of 0.55 and a percent of good positions to 60. Best-fit
evolutionary model was selected based on the results of the package ProtTest 3 (Darriba
et al., 2011) to determine the best-fit model for maximum likelihood (ML) and Bayesian
inference (BI).

For the maximum likelihood analysis (ML), PhyML v3.0 (Guindon et al., 2010) or
RAxML v7.2.6 (Stamatakis, 2006) were used to generate 100 ML bootstrap trees, using
the Le Gascuel (LG; Le & Gascuel, 2008) model with a discrete gamma distribution (+G)
with four rate categories, as this was the model with the lowest Akaike information
criterion and Bayesian information criterion score. For the Bayesian analysis (BI), trees
were constructed using the PhyloBayes program (Lartillot & Philippe, 2004, 2006; Lartillot,
Brinkmann & Philippe, 2007) with the CAT model that integrates heterogeneity of amino
acid composition across sites of a protein alignment. In this case, two chains were run
in parallel and checked for convergence using the tracecomp and bpcomp scripts provided
in PhyloBayes. As an alternative, we computed a phylogenetic tree using a BI implemented
in BEAST2 program which was run with relaxed clock model and Birth Death tree
prior (Bouckaert et al., 2014). Finally, we used R v3.6.1 (R Core Team, 2017) with phangorn
v2.5.5 (Schliep, 2011) to perform consensus unrooted trees.

We ran several topology tests to establish whether the trees generated using the ML
and BI methods provided an equivalent explanation for the two main groups, that is,
the non-DmdA and DmdA clades. For this analysis, the topologies were compared with
the TOPD/FMTS software v4.6 (Puigbo, García-Vallve & McInerney, 2007). A random
average split distance of 100 trees was also created to check if the differences observed were
more likely to have been generated by chance.

HGT test and GC content analysis
Two approaches were used to detect HGT. First, a phylogenetic incongruence analysis
(Ravenhall et al., 2015) through three topology tests, the Kishino-Hasegawa (KH)
(Kishino & Hasegawa, 1989), the Shimodaira-Hasewaga (SH) (Shimodaira & Hasegawa,
1999) and the approximately unbiased (AU) (Shimodaira, 2002), implemented in the
IQ-TREE software v1.5.5 (Nguyen et al., 2015). Two topologies were tested, the ML
topology obtained for the species tree of the genomes here analyzed, and the ML phylogeny
of DmdA. To construct the species tree, ribosomal protein 16 small subunit (RPS16)
sequences were collected from the MarRef database (Klemetsen et al., 2018), one for each
genome (Table S1).
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The GC content variation was studied to identify genes that have a different percentage
of GC content at the third position of codons with respect to the neighboring genomic
regions. The EPIC-CoGe browser (Nelson et al., 2018) was used to visualize the genomes
and sequences and look for genes that use different codons with respect to the rest of
the genomic dataset (data are available under permission as “ULL-microevolution” on
https://genomevolution.org/).

Molecular dating
We first tested for heterogeneities in the substitution rates of the genes using a likelihood
ratio test (LRT) (Felsenstein, 1981) with the ML-inferred tree. Likelihoods’ values were
estimated using baseml in PAML v4.8 (Yang, 2007) under rate constant and rate variable
models and used to compute the likelihood ratio test (LRT) statistic according to the
following equation:

LRT ¼ −2ðlogL1 � logL0Þ
where L1 is the unconstrained (nonclock) likelihood value, and L0 is the likelihood value
obtained under the rate constancy assumption. LRT is distributed approximately as a
chi-square random variable with (m-2) degrees of freedom (df), m being the number of
branches/parameters.

To conduct a molecular dating analysis with BEAST 2 (Bouckaert et al., 2014), two
independent MCMC tree searches were run for 50 million generations, with a sampling
frequency of 1,000 generations over codon alignment obtained, as we explain in the
next section. The GTR substitution model with a gamma shape parameter and a
proportion of invariants (GTR + G + I), was selected with PartitionFinder software v2.1.1
(Lanfear et al., 2016) based on the Bayesian Information Criterion (Darriba et al., 2012),
applied with a Birth Death tree prior (Gernhard, 2008) and an uncorrelated relaxed clock
log-normal. The molecular clock was calibrated using information from the TimeTree
database (Hedges, Dudley & Kumar, 2006;Hedges et al., 2015; Kumar et al., 2017). We used
the proposed dates of the MRCA of (1) the Alpha- and Gammaproteobacteria (2,480 Mya),
(2) the Halobacteriales (455 Mya) (Figs. S1–S3) (Hedges, Dudley & Kumar, 2006;
Hedges et al., 2015; Kumar et al., 2017), and (3) the SAR11 (826 Mya) (Luo et al., 2013).
A log-normal prior distribution on the calibrated nodes centered at the values mentioned
above was specified with 20 standard deviations and constrained to be monophyletic.
Convergence of the stationary distribution was checked by visual inspection of plotted
posterior estimates in Tracer v1.6 (Rambaut & Drummond, 2013) to ensure effective
sample sizes (ESSs) of parameters were >>200, as recommended by the authors. After
discarding the first 15% trees as burn-in, the samples were summarized in the maximum
clade credibility tree using TreeAnnotator v1.6.1 (Rambaut & Drummond, 2002) with a
PP limit of 0.5 and summarizing mean node heights. Means and 95% higher posterior
densities (HPDs) of age estimates are obtained from the combined outputs using Tracer
v1.6. The results were visualized using FigTree v.1.4.3 (Rambaut, 2009).
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Maximum likelihood tests of positive selection
To measure the strength and mode of natural selection during the evolution of DmdA
gene family, the ratio of non-synonymous (dN) to synonymous substitutions (dS)
(ω = dN/dS) was calculated in CodeML implemented in the suite Phylogenetic Analysis by
Maximum Likelihood (PAML package v4.8) (Yang, 2007).

CodeML requires an alignment of coding sequences, and a phylogenetic tree. DNA
alignment was achieved by MUSCLE (Edgar, 2004) implemented in MEGA-CC v7.0.26
(Kumar, Stecher & Tamura, 2016) and poorly aligned segments were eliminated with
Gblocks under defaults parameters (Castresana, 2000). The phylogenetic tree was built
using ML with PhyML v3.0 (Guindon et al., 2010) as described above and a nucleotide
substitution model selected by jModelTest (Darriba et al., 2012). DAMBE (Xia, 2001) was
also used to check for saturation of nucleotide substitutions using a plot of the number
of transitions and transversions for each pairwise comparison against the genetic distance
calculated with the F84 model of nucleotide substitution (Huelsenbeck & Rannala,
1997), which allows different equilibrium nucleotide frequencies and a transition
rate-transversion rate bias. Multiple sequence alignments with similar characteristics
(i.e., showing saturation of nucleotide substitutions) were then analyzed with CodeML
(Yang, 2007).

Three sets of models were used (site-specific, branch-specific and branch-site models)
to detect pervasive and episodic selection during the evolution of dmdA orthologs.
Likelihood-ratio tests (LRTs) were used to compare models, and significant results
(p-value < 0.05) were determined contrasting with a chi-square distribution (chisq)
(Anisimova, Bielawski & Yang, 2001).

In the site-specific analysis, we tested for variability of selection (type and magnitude)
across the codons of the gene using three pairs of nested models. The first pair includes
M0 (just one dN/dS ratio) and M3 (“K” discrete categories of dN/dS) and has four degrees
of freedom (df). The second pair of models considers M1a (just two classes of sites,
purifying (dN/dS < 1) and neutral selection (dN/dS = 1)) and M2a (the same as M1a
adding a third class of sites dedicated to positive selection (dN/dS > 1)), this has two df.
Finally, the third pair of models comprised M7 (a beta distribution that allows dN/dS
to vary among the interval (0, 1)) and M8 (adds an extra discrete category to M7 with
dN/dS > 1), with two df. Whereas M0 vs M3 tests for evidence of dN/dS variation across
sites, M1a vs M2a and M7 vs M8 tests for the presence of sites under positive selection
(dN/dS > 1).

Using three branch models (Yang, 1998), we tested for variation of selection over
evolutionary time. The null model (M0) assumes that all branches evolve at the same rate,
therefore, there is only one value of dN/dS for all the branches of the tree. The two-ratio
model allows two dN/dS values, one value for all the Roseobacter lineage (we called
this group A) and another for the rest of branches (group B). The free-ratio model, allows
one dN/dS value for each branch. Null and two-ratio model are compared by LRT with one
df but null and free-ratio model are compared with 36 df.
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For the last set of models, we identified sites that have been under positive selection at a
particular point of evolution using branch-site models, in which dN/dS can vary among
sites and among branches (Yang & Dos Reis, 2011; Zhang, 2005b). We computed two
models: a null model, in which the “foreground branch”may have different proportions of
sites under neutral selection to the “background branches”, and an alternative model in
which the “foreground branch” may have a proportion of sites under positive selection.
We compare these models for each terminal branch with a LRT of one df. For each
branch-site analysis, we applied the Bonferroni correction for multiple testing.

In site and branch-site tests, we identified sites under positive selection as those with
Bayes Empirical Bayes (BEB) posterior probability above 0.95 (Yang, 2005). We also
checked for convergence of the parameter estimates in PAML by carrying out at least
two runs for each tree and starting the analysis with different ω (0.2, 1, 1.2 and 2).
In addition, to test for convergent selection in several lineages, we ran at branch-site
analysis selecting as “foreground branches” all those under positive selection in a previous
analysis.

Analysis of functional divergence
Divergent selection is indicated by different ω values among paralogous clades. We tested
whether selective pressures diverged following duplication that led to dmdA and non-
dmdA genes (Bielawski & Yang, 2004). We compared the M3 model, which accounts
for ω variation among sites but not among branches or clades, with a model allowing a
fraction of sites to have different ω between two clades of a phylogeny (clade model D).
We also tested M0 and M3 models and we used a posterior BEB probability above 0.95
to identify sites evolving under divergent selective pressures. We checked for convergence
of the parameter estimates in PAML by carrying out at least two runs for the tree and
starting the analysis with different ω (0.1, 0.25, 2, 3 and 4).

Finally, we applied two branch-site models (as described above) to test dN/dS
differences on the branches representing the ancestral lineages of the DmdA and
non-DmdA clades (see “Results”). We considered the ancestral sequences from DmdA and
non-DmdA clades as foreground branches in two different models.

Reconstruction of ancestral DmdA sequence
To reconstruct the ancient conditions where dmdA gene prospered, we inferred the
ancestral sequences of the DmdA node using the FastML web server (Ashkenazy et al.,
2012) and then computed estimated physico-chemical properties on predecessor sequence
using Compute ProtParam tool from Expasy—SIB Bioinformatics Resource Portal
(Gasteiger et al., 2005). Moreover, we also reconstructed the ancestral sequence of the
non-DmdA node, as well as the ancestral sequence of both the DmdA, and the non-DmdA
families. FastML was run considering the alignment of proteins and the ML phylogenetic
tree for those DmdA orthologs or homologs inferred as we explained above. Posterior
amino acid probabilities at each site were calculated using the LG matrix and Gamma
distribution. Both marginal and joint probability reconstructions were performed. Protein

Hernández et al. (2020), PeerJ, DOI 10.7717/peerj.9861 7/27

http://dx.doi.org/10.7717/peerj.9861
https://peerj.com/


sequences resulting from marginal reconstructions were used to predict tertiary structure
(see below) as well as to identify family domains using Pfam v32 (Finn et al., 2010).

Protein tertiary structure analysis
Predicted three-dimensional structures of protein sequences were examined by Iterative
Threading ASSEmbly Refinement (I-TASSER) (Roy, Kucukural & Zhang, 2010; Yang et al.,
2015). First, I-TASSER uses local meta-threading-server (Wu & Zhang, 2007) to
identify templates for the query sequence in a non-redundant Protein Data Bank (PDB)
structure library. Then, the top-ranked template hits obtained are selected for the 3D
model simulations. To evaluate positively the global accuracy of the predicted model, a C-
score should return between −5 and 2. At the end, the top 10 structural analogs of the
predicted model close to the target in the PDB (Berman et al., 2000) are generated using
TM-align (Zhang, 2005a). The TM-score value scales the structural similarity between
two proteins and should return 1 if a perfect match between two structures is found.
A TM-score value higher than 0.5 suggests that the proteins belong to the same fold family.

We used PyMol v1.7.4 (DeLano, 2002) to visualize the 3D structure of the proteins and
to map the positively selected sites onto the 3D structure of DmdA (pdb: 3tfh).

RESULTS
Phylogenetic tree for DmdA family
We identified a total of 204 DmdA protein sequences out of 150 curated genomes (see
Table S1: Genomes and genomic diversity sheets), and reconstructed their evolutionary
relationships using BI (Fig. 1) and ML (Fig. S4). Unrooted trees in TOPD-FMTS showed
that split distances did not exceed 0.19, indicating that the phylogenetic reconstruction
is robust, with minor variations in alignment filtering and methods for inferring topologies
(Table S2).

The BI tree (Fig. 1) shows a main duplication between two lineages. The larger
phylogenetic group comprises genes mainly from Bacteroidetes, while the smaller group
includes genes mainly from Alphaproteobacteria. We focused on this smaller group as it
includes the DmdA sequences (Fig. 1; green color) and the closest homologs to DmdA
(Fig. 1; brown color).

Using phylogenetic analyses including DmdA orthologs and DmdA homologs close to
those (the limit to select the closer homologs was set to a maximum e-value of E−80),
we resolved the position of the first DmdA sequences isolated from two marine bacterial
species, R. pomeroyi (AAV95190.1) and Ca. P. ubique (AAZ21068.1). In addition, the
inclusion of DmdA homologs allowed to resolve a robust phylogenetic relationship of the
DmdA gene family (Fig. 2). We detected a clear separation between DmdA and putative
non-DmdA families. Indeed, the four DmdA family trees constructed using different
methods compared in TOPD-FMTS using split distances (Table S3) and unrooted trees
(Fig. S5) agreed with this result. The average split distance was 0.60, indicating that the
trees were neither identical (split difference = 0) nor completely different (1). A random
split distance was calculated to analyze whether the split distances were significantly
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different. Because the random split distance resulted in a value close to 1 (0.988), our
observations are unlikely to be given by chance.

To identify HGT and duplication events, we constructed a proxy for the species tree
of the genomes considered here by using a set of small subunit ribosomal protein
(see Material and Methods). Given this (proxy) species tree (Fig. S6), the positions of many
sequences on the DmdA tree are better explained as cases of HGT (Fig. S6; Fig. 3) with
high statistical support. Then we tested whether the topology for a common set of taxa
within the DmdA family (Fig. S7) similar to that of the species tree (Fig. S8). We found
significant differences (at an alpha of 0.01) between the topology of DmdA group and
that of the proxy species tree (Table S4); this incongruence between phylogenies is
conserved irrespective of the test used (KH, SH and unbiased tests). From these results,
we concluded that the phylogenetic relationships within each DmdA group were different
to those of the species tree, strongly supporting a HGT-based evolution of DmdA
family (Fig. S8). Moreover, we found many genes that use different codons from the
neighboring genomic regions. These genes are inferred as having been horizontally
transferred given their (G+C) wobble content (Table S1), supporting HGT as a plausible

20.0

Octadecabacter arcticus 238 (AGI72139)

Donghicola JLT3646 (WP_067545452)

Haloarcula CBA1115

Serinicoccus JLT9 (WP_083190660)

Planktomarina temperata RCA23 (AII85872)

Roseobacter denitrificans OCh 114 (ABG31871)
Jannaschia CCS1 (ABD55296)

Bdellovibrio bacteriovous 109J (AHZ86753.1)

SAR11 HIMB59 (AFS49512)

Dinoroseobacter shibae DFL12 (ABV94056)

Phaeobacter gallaeciensis P63 (ATF06366)

Lesisingera methylohalidivorans DSM 14336 (AHD01041)

Phaeobacter gallaeciensis P73 (ATE96857)

Marinobacter salarius R9W1 (AHI32422)

Marinovum algicola DG898 (WP_048536000)

SA11 HIMB59 (AFS48354)

Halopenitus persicus CBA1233 (WP_096389816)

Firmicutes

Octadecabacter arcticus 238 (AGI71500)

Sulfitobacter AM1 D1 (WP_071972920)

Haloarcula hispanica ATCC 33960 (AEM59334)

Thermococci

Halolamina aestuarii HB3 (WP_071941841)
Haloquadratum walsbyi DSM 16790 (CAJ51984.2)
Haloquadratum walsbyi C23 (CCC39909)

Phaeobacter gallaeciensis P75 (ATF01986)

Candidatus Pelagibacter ubique HTCC1062 (AAZ21068)

Roseobacter litoralis Och 149 (AEI94210)

Phaeobacter gallaeciensis P11 (ATE93322)

Phaeobacter gallaeciensis P129 (ATF18780)

Bacteroidetes

Ruegeria pomeroyi DSS-3 (AAV95190)

Ruegeria TM1040 (ABF64177)

Octadecabacter arcticus 238 (AGI71303)

Aciduliprofundum boonei T469 (ADD08280)

Ilumatobacter coccineum YM16.304 (BAN00949)

Hoeflea IMCC20628 (WP_047029467)

Cyanobacteria

SAR11 HIMB5 (AFS47662)

Oceanicoccus sagamiensis NBRC 107125 (ARN72671)

Octadecabacter temperatus SB1 (WP_049834197)

Ruegeria pomeroyi DSS-3 (AAV94935)

SAR11 HIMB59 (AFS48343)

Marinobacter CP1 (WP_053112835)

Candidatus Thioglobus singularis PS1 (WP_053820730)

Ruegeria TM1040 (ABF63906)

Roseibacterium elongatum DSM19469

SAR11 HMB5 (AFS46782)

Octadecabacter antarcticus 307 (AGI68776)

Tateyamaria omphalii DOK1-4 (WP_076627280)

Haloarchaeon HSR6 (WP_083426146)

Candidatus Puniceispirillum marinum IMCC1322 (ADE38317)

Phaeobacter gallaeciensis P128 (ATF22889)

Roseibacterium elongatum DSM 19469 (AHM05061)

Candidatus Thioglobus singularis GG2 (WP_053819980)

Phaeobacter gallaeciensis DSM 26640 (AHD10058)

Granulosicoccus antarcticus IMCC 3135 (ASJ73090)

SAR11 HIMB5 (AFS47213)

SAR11 HIMB59 (AFS48830)

Spiribacter salinus M19-40 (AGM40509)

Woeseia oceani XK5 (WP_068612299)

Roseibacterium elongatum DSM 19469 (AHM03102)

Thermotogae

Oceanicoccus sagamiensis NBRC 107125 (ARN75954)

Corynebacterium sphenisci DSM 44792 (WP_075692798)

Myxococcus fulvus HW (AEI66485)

Candidatus Puniceispirillum marinum IMCC1322 (ADE40415)

Spiribacter salinus M19-40 (AGM41104)

Halomonas elongata DSM 2581 (CBV41552)

Candidatus Thioglobus singularis PS1 (WP_053819980)

Caldithrix abyssi DSM 13497 (WP_006930628)

Phaeobacter gallaeciensis JL2886 (WP_065273401)

Candidatus Puniceispirillum marinum IMCC1322 (ADE39159)

Candidatus Pelagibacter ubique HTCC1062 (AAZ22069)

Planktomarina temperata RCA23 (AII87408)

Acidobacteria bacterium Mor1 (ANM32074.1)

Candidatus Thioglobus singularis GG2 (WP_065353845)

1

1

0,99

0,95

1

0,7

1

1

1

0,76

1

0,53

1

0,08

1

1
0,95

0,43

0,95

1

0,55

0,76

0,99

1

0,36

0,8

1

0,62

0,36

1

0,98

1

1

0,76

1

0,61

0,08

1

0,8

1

0,31

0,57

0,61

1

1

1

0,96

1

0,99

1

0,16

0,75

1

0,64

1

1

0,98

0,77

1

1

0,8

1

1

0,82

0,93

0,99

0,94

1

1

1

1

0,99

1

1

1

1

0,54

1

0,16

0,38

0,33

Figure 1 Phylogenetic tree based on 20 DmdA orthologs protein sequences and 184 DmdA homologs using BEAST2 and the same parameters
set for molecular dating but with 100 million generations.DmdA sequences are indicated with green color and closer homologs (the limit to select
the closer homologs was set to a maximum e-value of E−80) with brown color. Tip labels include a maximum e-value of E−50.

Full-size DOI: 10.7717/peerj.9861/fig-1

Hernández et al. (2020), PeerJ, DOI 10.7717/peerj.9861 9/27

http://dx.doi.org/10.7717/peerj.9861/supp-6
http://dx.doi.org/10.7717/peerj.9861/supp-6
http://dx.doi.org/10.7717/peerj.9861/supp-7
http://dx.doi.org/10.7717/peerj.9861/supp-8
http://dx.doi.org/10.7717/peerj.9861/supp-29
http://dx.doi.org/10.7717/peerj.9861/supp-8
http://dx.doi.org/10.7717/peerj.9861/supp-26
http://dx.doi.org/10.7717/peerj.9861/fig-1
http://dx.doi.org/10.7717/peerj.9861
https://peerj.com/


mechanism of genomic variability which introduces more variation than vertical gene
transfer (VGT) and that contribute to DmdA evolution (Fig. S8).

Structural modeling
The structure for DmdA orthologs inferred on the protein sequences by I-TASSER were
threaded onto the known structure of DMSP-DmdA (PDB accession: 3tfhA) with a
C-score <= 2 (Table S5). However, the predicted models for DmdA homologs were
threaded onto two types of known structure; DmdA orthologs, and the structure of the
mature form of rat dimethylglycine dehydrogenase (DmgdH) (PDB accession, 4ps9sA)
with a C-score < 2 except for the sequence with accession number AEM59334.1, which
showed a C-score > 2 (Figs. S9a and S9b; Data S1).

We clustered sequences with a putative DmgdH structure in a separate group using
principal component analysis (Fig. S9c). There is a clear 3D-structure coincidence between
DmdA clade (green color in Fig. S9a) and the majority of lineages from non-DmdA clade
(brown color in Fig. S9a), as well as a conserved folate-binding domain (Fig. S9b: 99S,
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178E and 180Y). However, in the alignment we found a pattern of conserved residues
coherent with the phylogenetic results (Figs. S9a and S9b), where non-DmdA clade is
formed by three subclades, one of them with DmgdH tertiary structure. Indeed, a key
residue for DMSP specific interaction is shown in clades with DmdA tertiary structure
(Fig. S9b: W171), but not in a clade with DmgdH tertiary structure (Fig. S9b: F171).

Molecular dating
The log likelihood test (LRT) detected heterogeneity in the substitution rates of dmdA
orthologs and dmdA homologs genes (Fig. 2) (log L0 = −29,827.108; log L1 = −29,546.053;
degrees of freedom = 46; chisq = 562.11; P < 0.001), thus rejecting the hypothesis of a
strict molecular clock. This finding validates the use of a relaxed molecular clock approach
to estimate the node ages through Bayesian analysis (see “Methods” for details).
We observed that the marginal densities for each run of the divergence time estimate
analysis were nearly identical, pointing that the runs converged on the same stationary
distributions. In all runs the marginal densities for the standard deviation hyperparameter
of the uncorrelated log-normal relaxed clock model were quite different from the prior,
with no significant density at zero, and with a coefficient of variation around 0.2.
Analyses using three different calibrated prior dates showed no discrepancies in the final
divergence time estimates (Table S6).

The time estimates for the MRCA of each gene family (Table S6; Fig. 4) indicate that the
MRCA of DmdA gene family occurred in the late Archean, around 2,400 Mya, after a gene
duplication event. Also, a duplication within the DmdA lineage generated a separated
SAR11 and Roseobacter DmdA lineage in the early Precambrian ca. 1,894 Mya (Fig. 4:
red arrow). Ca. P. ubique HTCC1062 within the SAR11 cluster and R. pomeroyi DSS-3
within the Roseobacter cluster, resulted from a duplication around 300 Mya (Fig. 4:
blue arrow). However, a higher number of duplication events took place in the second
cluster (Fig. 4: green color).

We detected two duplication events within the putative non-DmdA clade (Fig. 4; brown
color); showing that the gene families were originated through old duplication events.
One duplication involving the DmgdH family (Fig. 4: light yellow color; Table S5) occurred
ca. 1,480 Mya and another duplication ca. 1,000 Mya (Fig. 4: green arrow), involving a
gene family with tertiary structure similar to Ca. P. ubique DmdA The other duplication
event took place during the Huronian glaciation, around 2100 Mya (Fig. 4: violet arrow).

Reconstruction of ancestral DmdA sequence
Our analysis was focused on the reconstruction of the ancestral sequences of the DmdA
clade, the non-DmdA clade as well as the ancestral sequence of both the DmdA and
non-DmdA clades. FastML inferred the 100 most likely ancestral sequences of the
DmdA family. We observed that the same sequences were always inferred. Indeed, the
difference in log-likelihood between the most likely ancestral sequence at this node
(N1; Fig. S10) and the 100th most likely sequence was only 0.105, indicating that both
sequences were almost as likely to reflect the “true” ancestral sequence. That ancestral
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protein contains both PF01571 (GCV_T) and PF08669 (GCV_T_C) domains, found in the
DmdA orthologs and it is nearly identical to Ca. P. ubique HTCC1062 DmdA sequence.
Moreover, PSI-BLAST search confirmed that the ancestral sequence in node 1 close to
DmdA genes hosted in EMBL-EBI databases (Fig. S11) and the structure for Ca. P. ubique
apoenzyme DmdA was the closest analog to our predicted models (Table S5; Data S1).
Inferred physico-chemical properties are identical between Ca. P. ubique and the DmdA
ancestral sequence (Table S7).

On the other hand, the ancestral sequence inferred for non-DmdA family (N1; Fig. S12)
and the ancestral sequence previous to functional divergence (N1; Fig. S13) contains
only the PF01571 domain. That domain was located onto the known structure of
T-protein of the Glycine Cleavage System (PDB accession: 1wooA) with a C-score= 1.25
(Table S5; Data S1) in the case of the ancestral DmdA and non-DmdA sequence. However,
the ancestral sequence for non-DmdA was better threaded onto the known structure
of mature form of rat DmgdH (PDB accession: 4p9sA) with a C-score= 0.76 (Table S5;
Data S1).
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Detection of positive selection on dmdA sequences
To infer how natural selection has influenced the evolutionary history of DmdA gene
family, we used an alignment of the 20 sequences clustered as dmdA orthologs (Fig. S14).
The phylogenetic tree for these sequences was constructed by ML using the symmetrical
model (SYM) with a discrete gamma distribution.

The average dN/dS value for the dmdA gene was 0.085, suggesting that this gene evolved
under strong negative (purifying) selection. Then, we analyzed dN/dS variation across
the codons in the gene, comparing M0 and M3 models through a LRT. The M3 model fits
the data better than the M0 model (chisq = 775.387, p-value < 0.01). All codons in the gene
are under strong purifying selection with dN/dS < 1 (Fig. 5), which indicates that this
sulfur pathway is important for the cells. In accordance with this, the LTRs designed to
detect codons under positive selection were not significant (M1 vs. M2, chisq = 0 and
p-value = 1, and M7 vs. M8, chisq = 1.459 and p-value = 0.482). Hence, we did not detect
sites in dmdA subjected to positive selection (Fig. S15).

We tested the variation in the intensity of selection over evolutionary time. A two-ratio
model comparing the Roseobacter with the rest of lineages (Fig. S16) fits the data, as
the LRT was 23.777 and p-value < 0.01 (Table S8). dN/dS value in Roseobacter (ω1: 0.0767)
was significantly lower than in the remaining branches (ω2: 0.1494), suggesting stronger
purifying selection on dmdA in Roseobacter. When we tested the intensity of selection
over evolutionary time using the free-ratio model (Table S8), we found changes in the
selection pressure from the branches which defines the separation of SAR11 from
Roseobacter DmdA gene families (Fig. S17: branches from nodes 21 to 23). In particular,
we observed a dN/dS value > 1 in the branch connecting nodes 21–23. We also identified
some more recent branches (connecting nodes 25–26 and 28–29) for which dN/dS >>
1 was estimated (Fig. S17).

Finally, we applied the two branch-site models to test for sites under selection on the
individual lineages associated with dmdA (Fig. S18). Four sequences (WP_047029467,
AHM05061.1, ABV94056.1, AFS48343.1) had a significant LRT after correcting for
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Figure 5 Posterior probabilities for dN/dS categories under the M3 model. Grey, red and blue bars depict the three dN/dS categories (values
for each category are provide in the key). Sites that are mostly grey denote codons under strong purifying selection, whereas those predominantly
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multiple testing (Table S9), corresponding to episodic positive selection on these lineages
(Fig. S18). It should be highlighted that three selected sites are shared by at least two
lineages (Table S9; Fig. 6). One shared site is located next to the GcvT domain (152 K;
Fig. S19), and two shared sites are close to conserved positions (17E; 87Y; Fig. S19).
The residue 87Y is adjacent to the conserved interaction site with THF (88Y; Fig. S19).
Interestingly, since the selected lineages are separated in the tree, the adaptive mutations
seem to have occurred through three parallel independent changes (Fig. S20).

Functional divergence during the molecular evolution of DmdA
sequences
We tested whether DmdA and non-DmdA gene families were subject to different
functional constrains after gene duplication (Fig. S5). We estimated the one-ratio model
(M0) that yielded a value ω = 0.053 (Table S10), indicating that purifying selection
dominated the evolution of these proteins. The discrete model (M3) was applied to these
sequences (Table S10) and the LRTs comparing M0 and M3 indicated significant variation
in selective pressure among sites (Table S10; Fig. S21).

Figure 6 Tertiary structure of DmdA (PBD: 3tfh belongs to Ca. P. ubique) with sites under episodic
positive selection. Sites under positive selection are shown in chain B (white color) as spheres with
oxygen in red, nitrogen in blue, hydrogen in white and sulfur in yellow. THF binding sites are shown as
yellow sticks. Full-size DOI: 10.7717/peerj.9861/fig-6
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The M3 model was compared with Model D, which accommodates both heterogeneity
among sites and divergent selective pressures. The LRT was significant and supported
the model D (Table S10), implying statistical evidence for functional divergence between
DmdA and non-DmdA. Parameter estimates under Model D with k = 3 site classes
suggested that 23.6% of sites were evolving under strong purifying selection (ω = 0.006),
while 26.7% of sites were evolving under weaker selective pressure (ω = 0.04). Interestingly,
a large set of sites (49.6%) were evolving under divergent selective pressures, with
weaker purifying selection in the DmdA-clade (ω = 0.169) than non-DmdA-clade
(ω = 0.100). We identified 77 sites evolving under divergent selective pressures between
DmdA and non-DmdA (Table S10). Nineteen sites were located within the alpha helix
(red tube in Fig. S22) of the secondary structure prediction and sixteen were located in the
beta sheet (green arrows in Fig. S22). According to the global dN/dS estimates, for all
divergent positions, dmdA sequences seem to be more conserved than non-dmdA
sequences. Moreover, this data were only compatible with recombination breaking linkage
disequilibrium within the gene set that we observed with the HGT analysis.

Finally, we were interested in finding out if adaptive evolution has occurred in the
lineages immediately following the main duplication event (Fig. S23). We applied two
branch-site models to test for sites under selection on the ancestor associated with the
DmdA and non-DmdA clades (Table S9). The LRT was significant for both ancestral
branches (LRT > 7 and p-value < 0.05). Nonetheless, the foreground ω for class 2 sites
tended to infinity (ω = 999) in both cases, indicating lack of synonymous substitutions
(dS = 0) in these sites. We also performed two-ratio models to estimate global ω on
these branches, but both estimates tended to infinity (Table S11), suggesting lack of
synonymous substitution in the divergence of DmdA and non-DmdA ancestors.
Therefore, although the fixation of only non-synonymous substitutions following gene
duplication might indicate strong positive selection driving functional divergence of
DmdA and non-DmdA families, we cannot confirm it with the applied tests.

DISCUSSION
In this study we evaluated three scenarios for the evolutionary history of the DmdA gene
family in marine bacteria. The results for each one are discussed separately.

First scenario: a recent common ancestry between DmdA and GcvT
In relation to the first scenario, we found that contrary to our initial expectations, DmdA
and GcvT do not seem to have a recent common ancestry, in constrast to DmdA and
non-DmdA. The clear separation between DmdA and putative non-DmdA gene families
that originated in the Archean ca. 2,400 Mya after a gene duplication, supports a common
recent ancestry for DmdA (Fig. 7A) and non-DmdA (Fig. 7B). Our tertiary structure
analyses indicate that they share a putative GcvT protein as their ancestor sequence
(EC 2.1.2.10). Indeed, our results agree with other studies in the case of DmdA (Reisch,
Moran & Whitman, 2008). Then, this clade seems to have been originally a GcvT (Fig. 7),
as Bullock, Luo & Whitman (2017) suggested.
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The DmdA clade is a member of aminomethyltransferase (AMT/GCV_T) family with
DMSP-dependent demethylase tertiary structure, while non-DmdA clade includes an
ancestor with a tertiary structure that better matches the dimethylglycine dehydrogenase
oxidorreductase (DmgdH, EC 1.5.99.2) (Fig. 7B) and members with DmdA tertiary
structure. To establish structural convergence as the reason of this DmdA structure
coincidence between DmdA and non-DmdA members, we used a phylogenetic approach
based on reconstructing ancestral sequences of the two clades, and then to model the
ancestral proteins. We determined different structural features between ancestral sequence
reconstructed from DmdA and non-DmdA families. In the first case, the ancestral
sequence reconstructed coincides with a DmdA tertiary structure (Fig. 7A), as well as with
a DmdA sequence with physico-chemical properties inferred in this study (Table S7) and
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agree with previous ones (Reisch, Moran & Whitman, 2008). However, the non-DmdA
ancestral sequence reconstructed is a DmgdH that seems to be kept in the clade called
DmgdH (Fig. 7B), as well as in some members of DmdA clades (DmdA_1 and DmdA_2
within non-DmdA clade) where the majority of sequence gained DmdA structure
(Fig. 7B). Therefore, DmdA structural features seem to have emerged independently in
both clades: DmdA and non-DmdA. This finding is interesting, since known cases of
structural convergence of proteins are rare (Zakon, 2002). Experimental assays expressing
and screening the activity of the ancestral proteins at different conditions will be required
to corroborate the structural convergence.

Since GcvT does not share the most recent common ancestry with DmdA (as we
observe in Fig. 7), we examined the functional divergence between DmdA and non-DmdA
clades to explain how natural selection could have driven the divergence of the DmdA gene
family. We found 77 codon sites evolving under divergent selective pressures between
DmdA and non-DmdA gene families. Structural divergence seemed to be imposed on the
protein during sequence divergence, since 19 sites were located within the alpha helix of
2D structure and 16 in the beta sheet (Fig. S22). Nonetheless, essential regions of the
enzymes as active sites seem to be under strong purifying selection, suggesting preservation
of the ancestral function. The observation that DmdA sequences have more divergent
sites than non-DmdA sequences suggest that non-DmdA conserves the ancestral function,
whereas DmdA evolved to acquire new functions in different environments, probably as a
response to the Huronia ice ball Earth (Zhang, 2003).

Second scenario: coevolution between Roseobacter and
DMSP-producing-phytoplankton
In the second scenario, our results do not support the hypothesis of a co-evolution scenario
between Roseobacter and DMSP-producing-phytoplankton (Luo et al., 2013). On the
contrary, we found an ancestor sequence of DmdA cluster similar to DmdA from a strain
of Ca. P. ubique that diverged after a more recent duplication event (Fig. 7A; Fig. S10),
before the dinoflagellate radiation in the late Permian (Fig. 4). This finding indicates
that the enzyme activity has not changed in the course of DmdA evolution and is in
Roseobacter because their genome expansion (250 mya) provided a new trait to use DMSP
produced by phytoplankton during its diversification. Indeed, we found that most of
the codons in DmdA clade are under purifying selection, probably due to the importance
of this pathway for sulfur acquisition. Nonetheless, we also detected episodic positive
selection in four sequences affecting a few sites, suggesting that adaptive evolution
fine-tuned the function of DmdA in Roseobacter and other types of Alphaproteobacteria
(like HIMB59 and Hoeflea). Furthermore, positively selected residues were located around
the GcvT domain and close to the residue involved in conserved interaction with THF
(Fig. 6), reinforcing the idea of adaptive evolution in response to the external environment.

During the study of this scenario, we suspected that dmdA was acquired by HGT in
Roseobacter and SAR11 (Fig. S8). This agrees with Luo et al. (2013) and Tang et al. (2010)
which found that the expansion of dmdA resulted from HGT events. According to our
phylogeny, the ancestral dmdA sequence originated as a result of HGT (in individuals not
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connected by inheritance that acquired the dmdA ancestral sequence) from other marine
heterotrophic bacteria, that during the Archean adapted to the presence of DMSP.
However, after the HGT events, some dmdA sequences have acquired similar residue
changes by independent (parallel) evolution, reinforcing the idea of functional/ecological
constrains (Siltberg-Liberies, Grahnen & Liberies, 2011). Therefore, Rhodobacteraceae
can live in an environment where DMSP is the main source of sulfur because they acquired
the dmdA ancestor sequence by HGT, prior to having been exposed to the environment
in which the DmdA protein proved useful, as Luo & Moran (2014) suggested. We did
not find any signal of positive selection in the Roseobacter group, but in contrast we found
episodic evolution between SAR11 sequences. Yet, as we already mentioned, DMSP is part
of an ancient pathway in Alphaproteobacteria (Bullock, Luo & Whitman, 2017) and this
could explain the ancient origin of DmdA.

On the other hand, Roseobacter orthologs analyzed in this study were functionally
annotated as DmdA (González et al., 2019), as they were predicted to originate from the
same DmdA ancestor. However, we identified orthologs within DmdA gene family as
Sánchez-Pérez et al. (2008) proposed in their study regarding related genes that perform
the same cellular function, but apparently under different ecological conditions, as we
found differences in predicted isoelectric point values (pI) (Table S7). Nandi et al. (2005)
results also support that orthologs with very variable pI values may be taken as markers
to predict the organism’s ecological niche. We suggest the name “eco-orthologs”,
similar to the ecoparalogs describe by Sánchez-Pérez et al. (2008) in their study of the
halophilic species Salinibacter ruber. The pI values of a protein provide an indication of its
acidic nature on the surface, corresponding to its optimal activity and stability at high
salinity (Oren et al., 2005; Sánchez-Pérez et al., 2008). Therefore, proteins that differ in
their acid residue content on their surface, and consequently in their predicted pI values
and halophilicities are considered eco-orthologs (Nandi et al., 2005; Oren et al., 2005;
Sánchez-Pérez et al., 2008). We observed the highest pI values in the DmdA ancestor
sequences, as well as in Ca. P. ubique DmdA (Fig. 7A; red color). Therefore, we deduce that
the DmdA ancestor was adapted to a higher salinity, which could have modulated the
selection of the DMSP enzymatic degradation routes as in bacteria such as the model
organism R. pomeroyi DSS-3 (Salgado et al., 2014). Interestingly, R. pomeroyi degrades
more DMSP by the demethylation pathway under high salinity conditions, releasing a
higher amount of MeSH (Howard et al., 2008;Magalhães et al., 2012; Salgado et al., 2014).
The success of the dmdA gene could be explained if we consider that the environment
evolved from higher to lower salinity conditions. Under this environment, dmdA would
have been kept without important changes in its structure, sequence, function and Km

value and even would be essential for the degradation of the large amounts of DMSP
produced by phytoplankton. Indeed, it would be interesting to evaluate Km values among
ancestral proteins of DmdA and their descendants to support the key role of Km during
DmdA evolution. In addition, since dmdA seems to be part of a conserved operon
(González et al., 2019), its evolution might be linked to genes such as dmdB, dmdC and
dmdD that encode part of the enzymes for the rest of the pathway.
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Given our data, we propose that the ancestor of the pathway that evolved during the
Archean was exposed to a higher concentration of DMSP in a sulfur-rich atmosphere and
in an anoxic ocean, compared to recent eco-ortologs which should adapt to lower
concentration of DMSP (Fig. 7A: blue color). Indeed, the ancestral eco-orthologs from
which recent eco-orthologs derived (Candidatus Puniceispirilum marinum IMCC1322,
ADE38317.1 and the Roseobacter clade) could have undergone episodes of adaptation
(the branch showed positive selection in branch-models) which would explain the change
in protein stability (Pál, Papp & Lercher, 2006). As consequence, the protein could have
experienced slight reductions or loss of function.

Third scenario: pre-adapted enzymes to DMSP prior to Roseobacter
origin
In this evolutionary scenario, the Roseobacter clade was pre-adapted to the conditions
created by eukaryotic phytoplankton of the late Permian, including dinoflagellates that
released vast amounts of DMSP (Bullock, Luo & Whitman, 2017; Luo & Moran, 2014).
Our analyses indicate that the Roseobacter ancestor was already adapted to a high DMSP
before the Roseobacter clade arose (Luo et al., 2013). Therefore, we support Reisch,
Moran & Whitman (2011) and Reisch et al. (2011) hypothesis that DMSP demethylation
pathway enzymes are an adapted versions of enzymes that were already in bacterial
genomes and that evolved in response to the availability of DMSP. Since the first step in
DMSP demethylation is a reaction catalyzed by DMSP demethylase encoded by dmdA
gene (Dickschat, Rabe & Citron, 2015), DMSP adaptation could have been evolved in this
gene that originated in the Archean, a time where several lineages of bacteria produced
DMSP as an osmolyte or antioxidant in the presence of the early cyanobacteria, or as a
cryoprotectant in the Huronian glaciation. In bacteria, a methyltransferase gene, dysB,
is up-regulated during increased salinity, nitrogen limitation, and at low temperatures
(Curson et al., 2017), conditions already predicted to stimulate DMSP production in
phytoplankton and algae (Bullock, Luo & Whitman, 2017; Ito et al., 2011). Afterward,
those roles may have helped to drive the fine adaptation of existing enzymes for DMSP
metabolism, and those adaptations came handy in the late Precambrian glaciations that
allowed the radiation of algae and animals.

CONCLUSIONS
In conclusion, we found that Roseobacter adaptation to DMSP occurred via
functional diversification after duplication events of the dmdA gene and adaptations
to environmental variations via eco-orthologs of intermediate divergence. Our findings
suggest that the DmdA ancestor evolved to play a key role in the ocean sulfur cycle due to
a shift in salinity concentration, which involved a change in DMSP synthesis.
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