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Next generation risk assessment is defined as a knowledge-driven system that

allows for cost-efficient assessment of human health risk related to chemical

exposure, without animal experimentation. One of the key features of next

generation risk assessment is to facilitate prioritization of chemical substances

that need a more extensive toxicological evaluation, in order to address the

need to assess an increasing number of substances. In this case study focusing

on chemicals in food, we explored how exposure data combined with the

Threshold of Toxicological Concern (TTC) concept could be used to prioritize

chemicals, both for existing substances and new substances entering the

market. Using a database of existing chemicals relevant for dietary exposure

we calculated exposure estimates, followed by application of the TTC concept

to identify substances of higher concern. Subsequently, a selected set of these

priority substances was screened for toxicological potential using high-

throughput screening (HTS) approaches. Remarkably, this approach resulted

in alerts for a selection of substances that are already on the market and

represent relevant exposure in consumers. Taken together, the case study

provides proof-of-principle for the approach taken to identify substances of

concern, and this approach can therefore be considered a supportive element

to a next generation risk assessment strategy.
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Introduction

In recent years, various efforts have been made worldwide to

contribute to innovating risk assessment of chemical substances,

including design of new concepts building on integration of

exposure and hazard assessment models and implementation of

new approach methodologies (NAMs). A key element in here is

the prediction of internal substance exposure concentrations in

humans and extrapolation of in vitro or in silico hazard

estimations to the human situation (National Research

Council 2007, 2012; Embry et al., 2014; Pastoor et al., 2014;

Berggren et al., 2017; Ball et al., 2022; Pallocca et al., 2022). The

common goal is to establish a knowledge-driven system that

allows for cost-efficient assessment of human health risks related

to chemical exposures, without additional use of experimental

animals. Generally, next generation risk assessment is considered

feasible given the advances made in science and technology,

exemplified by the development of models for rapid exposure

predictions (Biryol et al., 2017; Thomas et al., 2019), high-

throughput toxicokinetic modeling (Wambaugh et al., 2015;

Pearce et al., 2017; Wambaugh et al., 2018; Wambaugh et al.,

2019; Beal et al., 2022; Williams et al., 2022), and innovative

(high-throughput) in vitro approaches for toxicity testing

(Judson et al., 2010; Padilla et al., 2012; Richard et al., 2016;

Loo and Zink 2017; Zurlinden et al., 2020; Ciallella et al., 2022;

Klutzny et al., 2022). At the same time, it has been highlighted

that the increasing number of chemicals poses a problem that

cannot be solely addressed by next generation risk assessment,

because of the complexity of the interactions between chemicals

and biological systems (Fenner and Scheringer 2021).

Practical implementation of the concepts for next generation

risk assessment has proven to be challenging, because it requires

integration and assembly of elementary data with high levels of

uncertainty into robust predictions for human risk. Explorations

to this aim are accomplished in case studies (Judson et al., 2015;

Silva et al., 2015; Doe et al., 2016; Wolf et al., 2016; De Abrew

et al., 2019; Turley et al., 2019; Dent et al., 2021; Gilmour et al.,

2022). Case studies can be helpful, as they demonstrate how tools

and methods may be used to generate the information necessary

for chemical risk assessment, and reveal possibilities and

limitations to guide further development of methods and

protocols. Additionally, they allow for comparison of

conclusions with those of traditional approaches to risk

assessment. In a previous case study we explored how in silico

and high-throughput screening (HTS) approaches may be used

for predicting toxicological effects in humans (van der Ven et al.,

2020). In the present case study we build on that initial strategy

for predicting toxicological hazard, and aim to pinpoint how to

select substances to be subjected to HTS from the vast and ever

growing volume of existing and newly developed substances. For

that purpose of prioritization of chemical substances to undergo

hazard assessment, we choose to apply an exposure-driven

approach, combined with in silico methods to estimate

toxicological activity of selected substances. Prioritization is

aimed at identifying substances that may be of higher concern

and is not intended as replacement of the actual risk assessment.

Substances with higher priority do not necessarily pose a higher

health risk than substances of lower priority.

Frequently, exposure assessment is conducted using tiered

approaches to limit resources. Such a tiered approach usually

starts with simple deterministic, but conservative, models

requiring limited data input, followed by more

sophisticated probabilistic models, which can therefore be

more realistic. In its guidance on harmonized

methodologies for human health, animal health and

ecological risk assessment of combined exposure to

multiple chemicals, EFSA provided a nice example of such

a tiered approach in exposure assessment (European Food

Safety Authority 2019a); this example is summarized in

Table 1. It should be noted that the proposed tiering for

data input, i.e., concentration data and consumption data,

is flexible rather than fixed, depending on the data available.

Consequently, concentration data and consumption data do

not necessarily match in terms of tiers used for a risk

assessment. For example, exposure to pesticides could be

estimated using a combination of monitoring data (tier two

concentration data) and individual consumption data (tier

three consumption data), as has been done by EFSA in the risk

assessment of combined exposure to pesticides relevant for the

thyroid, the nervous system and acetylcholinesterase

inhibition (European Food Safety Authority et al., 2021).

Alternative methods to estimate exposure, particularly

useful for substances that have not yet been marketed,

include (high-throughput) models such as the Stochastic

Human Exposure and Dose Simulation (SHEDS) model

form U.S. EPA, field trial studies, and exposure modeling

based on known fate in the field of existing contaminants.

Key questions in the present case study were how to use

exposure data for prioritization of substances within large

databases of potential contaminants as explained above, and

whether such an approach is feasible for new substances

entering the market. For that purpose, we applied

toxicological hazard estimation as the second identifier in

our approach. EFSA in their guidance on grouping chemical

into assessment groups for cumulative risk assessment

proposed three prioritization methods (European Food

Safety Authority et al., 2021). While two methods are

specifically equipped for establishing mixtures, the risk-

based prioritization which uses the hazard quotient (HQ;

exposure divided by the health-based guidance value) is

particularly useful for single chemicals as intended in our

study. However, as this requires sufficient hazard data to

derive health-based guidance values, this methodology is

less feasible for new substances entering the market. For

those substances, the Threshold of Toxicological Concern

(TTC) concept, which is an estimation of toxicological
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activity based on chemical structure similarities, could

be used.

To test our prioritization approach, we focused on chemicals

in food, using a database of existing chemicals relevant for dietary

exposure that comprises particularly pesticide residues,

environmental pollutants and mycotoxins. This database was

used to calculate exposure estimates, followed by application of

the TTC concept. Substances were considered of higher priority

in case exposure estimates exceeded the threshold (HQ > 1), or in

case substances belong to exclusionary categories of the TTC

concept (e.g., metals). This selectionmarks the final prioritization

result. The thus identified ‘priority substances’ should be tested

for toxicological potential in a follow-up assessment, e.g.,

through using HTS prediction approaches and subsequent

testing in more complex test systems (Luijten et al., 2020; van

der Ven et al., 2020). To illustrate how this could work out, we

checked toxicological potency of the top priority substances in a

selection of such HTS models. The findings for the case study are

described and the applicability of this approach for new

substances is discussed.

Materials and methods

Substances with exposure data

The case study presented here employed an exposure-

driven approach, with a focus on chemicals in food. While

recognizing the obvious limitation of this approach (see

Discussion section for details), substances with available

exposure data were identified using relevant monitoring

data submitted to EFSA (European Food Safety Authority)

in EFSA’s Standard Sample Description one format (SSD1;

(European Food Safety Authority, 2010). For this, a database

developed in the Horizon2020 project “EuroMix” was used

(Crepet et al., 2019). This “EuroMix database” contains data

on pesticide and contaminant concentrations in food items

from 2010 to 2014 from eight European countries (Tier two

concentration data, Table 1). From these data, chemicals in

the SSD1 concentration database coded with substance codes

with the extension “PPP” (pesticides), “ORG” (organic

contaminants), “TOX” (toxins), “CHE” (other chemicals in

food, such as metals and nitrates) or “PAR” (miscellaneous

chemicals) were selected.

Estimation of dietary exposures

For food consumption, data for the Dutch population aged

7–69 years were used (Van Rossum et al., 2011) and coded

according to EFSA’s FoodEx1 system (European Food Safety

Authority, 2011). This dataset contains the dietary habits of

3,819 Dutch subjects collected on two non-consecutive days

over the period 2007 to 2010. Dietary habits were recorded

using the 24-h recall method or, in case of young children, via

the dietary record method. Results of the consumption survey

were weighted for small deviances in sociodemographic

characteristics in order to give results that are representative

for the Dutch population (Tier three consumption data, Table 1).

Chemicals are often measured in raw agricultural products rather

than food products as consumed. Therefore, to translate

concentrations in raw agricultural products into

concentrations in foods as consumed, we used the Dutch food

translation table, which describes consumed foods as their

corresponding percentages of raw agricultural commodities

(Boon et al., 2015); e.g., the % of raw, unprocessed, wheat in

bread). Further refinement of final concentrations in consumed

foods could be achieved through application of processing factors

to correct for food processing leading to changes in substance

concentrations (e.g., milling of wheat and or baking of bread).

Such processing factors were however not always present or

coded according to commonly used formats and therefore not

applied. Although this may lead to an under- or overestimation

of exposure, the current approach was considered appropriate for

the purpose of this case study, namely prioritization of

substances.

Calculations of exposure estimates for the substances of

interest (Supplementary Table S1) were performed using the

Monte Carlo Risk Assessment tool (MCRA; version 8.2; https://

mcra.rivm.nl; Tier two exposure estimate, Table 1). Ideally,

exposure estimates are calculated with a tool that

automatically generates exposure estimates for all substances

present in a concentration database, since single exposure

assessment of large numbers of substances is time consuming

TABLE 1 Example of tiering in exposure assessmenta.

Tier Concentration data Consumption data Exposure estimate

0 Permitted levels Portion sizes Semi-quantitative, Point estimates

1 Modelled and experimental data Food balance sheet, Food baskets Deterministic

2 Monitoring surveys Summary statistics Semi-probabilistic

3 Individual co-occurrence data Individual data Probabilistic

aExample taken from EFSA (European Food Safety Authority 2019a).
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and costly. At the time of conducting the analyses this feature was

not yet integrated in MCRA, but the cumulative dietary exposure

assessment module inMCRA could be used as a work-around. By

using a relative potency of one for all substances, exposure

estimates can be obtained for randomly compiled subsets of a

maximum of 200 substances. This work-around can lead to

slightly different exposure percentiles per substance than

achieved with single substance MCRA modeling. The

produced exposure estimates are therefore suitable for the

present case study, but would require additional review before

using them as actual exposures in the Netherlands.

As the TTC concept is only applicable for chronic exposure,

we performed chronic exposure assessments, using the observed

individual mean (OIM) model which calculates the intake per

day for each subject and averages the intake of the two recorded

days per subject (MCRA Reference Manual; mcra.rivm.nl).

Exposure calculations were performed for upper and lower

bound scenarios. In brief, in the lower bound scenario it is

assumed that substances in foods below the level of detection

(LOD) or level of quantification (LOQ) are absent, while in the

upper bound scenario non-detects at the level of detection (LOD)

or level of quantification (LOQ) are assumed to equal the value of

the LOD or LOQ. For this study, the upper bound approach was

preferred in view of the considerable reduction of the number of

entries (i.e., (groups of) chemicals or residues thereof) when

assigning representative structures, i.e., from 1,057 to 517 entries

(see Results).

Threshold of toxicological concern

The TTC concept was applied to the substances for which

exposure estimates were calculated. To this end different software

packages were used to evaluate the threshold applicable to each

substance. ToxTree was used to assign Cramer classes to the

substances (see step 3 below), the OECD QSAR Toolbox and

DEREK Nexus were used to evaluate the potential mutagenicity

of substances (step 2 below), and Accord for Excel was used in the

third step of the evaluation. These software tools all require a

chemical structure; therefore only those entries with a

representative structure coupled to an SSID1 code in the

EuroMix database were included in our evaluation. For these

substances, the TTCwas derived using the following approach: 1)

evaluation of the TTC exclusion criteria; 2) determination of the

presence of alerts for genotoxicity; 3) determination of the

presence of organophosphate or carbamate functionality in

the chemical structure; and 4) determination of the Cramer

class of toxicity. Each step is discussed in detail below.

Regarding the evaluation of the exclusion criteria for the TTC

concept (step 1) the list of substances with exposure estimates

was screened manually to determine whether any exclusion rule

applied. Substances that are inorganic, metal containing,

mixtures, bioaccumulating, or aflatoxin-like were excluded

from the TTC approach as no safe level of exposure can be

determined for such substances (European Food Safety

Authority and World Health Organization, 2016; European

Food Safety Authority, 2019b). Substances for which other

exclusion criteria apply, like proteins, nanomaterials and

steroids, were not present in the list. For substances excluded

from the TTC concept no safe threshold for exposure can be

assigned. In principle any exposure of such substances gives rise

to concern, and hence follow-up for these substances is required

to estimate their potential risk.

Regarding step 2, the evaluation of the genotoxic potential of the

substances, both the OECD QSAR Toolbox (version 4.3, http://

www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.

htm) and Derek Nexus (v2.2, knowledgebase 2018) software were

applied to screen for the presence of alerts for genotoxicity in the

chemical structures. Alerts from threemodules in theDEREKNexus

software were taken as indicators of genotoxic potential:

mutagenicity in vitro bacterium, chromosome damage in vitro

mammalians, and chromosome damage in vivo mammalians.

From the OECD QSAR Toolbox four endpoint specific profiles

were considered as indicators of genotoxic potential: two profiles

provided by the Instituto Superiore de Sanita (ISS) in Rome, Italy

named “in vitro mutagenicity (Ames) alerts by ISS” and “in vivo

mutagenicity (Micronucleus) alerts by ISS” and two profiles

provided by LMC University of Bourgas, Bulgaria named “DNA

alerts for AMES by OASIS” and “DNA alerts for CA and MNT by

OASIS.” Alerts for bacterial mutagenicity (Ames test, point

mutations in bacterial DNA) and chromosome damage (in vitro

and/or in vivo) were evaluated separately according to the rule that

two of the three models (DEREK, ISS or OASIS) for either Ames

mutagenicity, or chromosome damage should be positive (identify at

least one substructure alert). Overall, a substance was considered

genotoxic if the evaluation for Ames mutagenicity OR chromosome

damage was positive. Substances evaluated in this way as

(potentially) genotoxic were subsequently assigned the TTC of 0.

0025 μg/kg body weight/day.

Step 3, i.e., evaluation whether a representative chemical

structure contains an organophosphate or carbamate

functionality, was performed using the Accord for Excel add-

in (BioVia, https://www.3dsbiovia.com/products/datasheets/

accord-for-excel.pdf) and filtering the table of chemical

structures for substructures phosphate (O=P (-O-R1) (-O-R2)-

O-R3 or carbamate R1-O-C (=O)-N (-R1)-R2, with R1, R2, and

R3 defined as any non-hydrogen substituent). Substances that

were not assigned the TTC for genotoxic substances (step 2), but

did contain organophosphate or carbamate functionalities were

assigned a TTC of 0.3 μg/kg body weight/day.

Regarding step 4, the Toxtree software (v3.1, http://toxtree.

sourceforge.net) was applied using the decision tree “Cramer

Classes, with extensions” in order to assign a Cramer class

(Cramer et al., 1978) to each chemical structure. Structures

without an alert for genotoxicity or without organophosphate/

carbamate functionality and evaluated as Cramer class III (high
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toxicity) were assigned the TTC of 1.5 μg/kg body weight/day.

Substances belonging to Cramer class II (intermediate toxicity)

were given the TTC of 9 μg/kg body weight/day, whilst the

Cramer class I (low toxicity) substances were assigned a TTC

of 30 μg/kg body weight/day.

High-throughput in vitro screening

Substances were considered of higher priority in case

exposure estimates exceeded the threshold for the respective

chemical class or in case substances belong to exclusionary

categories of the TTC concept. From the substances that

exceeded the TTC, a subset was screened for toxicity alerts in

a selection of dedicated prediction models of ToxCast in vitro

high-throughput screens. For substances where TTC was

applicable, the subset of substances with the highest hazard

quotient (HQ, ratio exposure/TTC) subjected to screening

included 10, 2, and 2 substances for the TTC categories

0.0025, 0.3, and 1.5 μg/kg body weight/day, respectively. In

addition, substances from exclusionary categories of the TTC

concept with an estimated exposure ≥0.5 μg/kg body weight/day
were included. In the context of this study, screening for toxicity

alerts involved the use of publicly available results reported for

the different toxicity HTS prediction models in the respective

publications listed in Table 2, and it should be noted that HTS

data were not available for all prioritized substances.

Furthermore, the toxicity prediction models were derived

from the selection described in a previous manuscript (van

der Ven et al., 2020), excluding those without sufficiently

accessible underlying numerical data. Although complete

coverage of all toxicological endpoints is under development,

the applied toxicity prediction models probably represent a wide

variety of toxicological domains, at a wide range of biological

complexity (from cell functions to even whole organisms); for the

purpose of the present case study, these are deemed sufficient to

show that prioritized compounds can produce alerts in the

proposed strategy. The different toxicity prediction models

had different readouts and different approaches to scoring. To

enable potency comparison across these different values, the

results obtained for the substances of interest were normalized

relative to the most potent score per dataset, which was set to 100.

The original results for the toxicity prediction models, as well as

the normalization calculations and further details on the models

are described in Supplementary Table S4.

Results

Substances with exposure data

The first step in the exposure-driven selection of chemicals

was the identification of chemical substances that may occur in

food. Focusing on chemicals in food for which data can be

submitted to EFSA resulted in a list of over 2,700 substances.

From these, only those with available analytical data were

selected for the case study, because calculating dietary

exposure estimates requires concentration data in food. Using

the EuroMix database with concentration data, we identified

1,057 candidates for inclusion in the case study (Figure 1). It

should be noted that these are not all unique chemicals, since the

list also comprised groups of chemicals, such as ‘dioxins and

dioxin-like PCBs’, or residues of pesticides. The residue

definition of pesticides, given as “RD” (residue definition) in

the database, represents the sum of analyzed parent compounds

and metabolites. The toxicological evaluation (TTC and HTS

using prediction models) was done for the parent compound as

representative for the respective RD group. Regarding pesticides,

this may lead to a worst case high hazard quotient, when

considering that metabolites generally are less active in

comparison to their parent compound. Dietary exposures

estimates for the substances of interest were calculated using

the Monte Carlo Risk Assessment tool (see Methods). The

resulting estimates for dietary exposure in a chronic scenario

(upper bound) are listed in Supplementary Table S1. Not

surprisingly, nitrate, a chemical that is found in many foods

at relatively high levels, especially in green leafy vegetables, was

the chemical with the highest daily intake.

Threshold of toxicological concern

Representative chemical structures were assigned to the

1,057 entries for which an upper bound exposure

concentration was calculated (Figure 1). To this end the

coupling between Substance identity code (SSD1) and CAS-

registry number information as present in the EuroMix

Inventory database was used. This yielded a chemical

structure for 521 entries (of the 1,057; Figure 1). Completing

the set of chemical representative structures for all 1,057 would

definitely be possible, but was not deemed necessary for our

purpose (illustration of the prioritization concepts). Substances

that were not evaluated in this exercise (due to absence of a

representative structure, Supplementary Table S2, tab “TTC

evaluation”) are not to be considered as safe; they can be

considered awaiting further prioritization.

Application of the TTC concept was not possible for 128 of

the set of 521 entries, following the standard exclusion rules

(Figure 1). These substances were maintained in the case study

(Supplementary Table S3, second worksheet), but no safe

threshold for exposure can be assigned to these entries. For

the remaining 393 substances, a TTC was derived and compared

to the estimated levels of exposure in an upper bound scenario

(Supplementary Tables S2, S3). In total, 106 of the 393 substances

with a TTC showed estimated exposures exceeding the threshold

for a low probability of adverse health effect (Supplementary
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Table S3, first worksheet). Of these 106 substances with a HQ > 1,

the majority (95 substances) was assigned the lowest TTC based

on the presence of a structural alert for genotoxicity.

High-throughput in vitro screening

Using TTC as a pragmatic filter to identify substances of

higher priority yielded two lists: one for which TTC was applied

(exposure exceeding TTC), and one for which the TTC concept is

not applicable (Figure 1; Supplementary Table S3). The

prioritized substances were screened for their toxicological

potential using a selection of prediction models based on HTS

assays, to illustrate how follow-up assessment could work out. In

this illustrative assessment, the screening for toxicological alerts

was limited to substances with the highest HQ from the three

represented TTC classes in the first list (TTC applicable): 10, 2,

and 2 substances for the TTC categories 0.0025, 0.3, and

1.5 μg/kg body weight/day, respectively (Figure 1; Table 2).

These substances, for which the exposure estimates exceeded

the TTC (HQ > 1), variably overlapped with substances included

in reports for toxicity prediction models, and no HTS data were

even available for anthraquinone, pethoxamid, deoxynivalenol,

and dithianon (Table 2). The variable count of alerts per

substance in Table 2 thus at least in part represents lack of

inclusion in a HTS toxicity prediction model, and not a true

absence of toxicological potential per se. In addition, seven

substances from the second list (TTC not applicable), having

a mean exposure above the arbitrary limit of 0.5 μg/kg body

weight/day were explored. However, none of these was reported

in any of the toxicity prediction models studied. This means that

information on a possible toxicity alert from any of the seven

substances was lacking.

The selected HTS toxicity prediction models covered a

variety of toxicological domains, including developmental

toxicity, hepatotoxicity, endocrine perturbation and metabolic

disorder. Various screening paradigms were applied in the

selected models; however, most models used compiled scores

to represent the results of multiple assays (up to several

hundreds, see Supplementary Table S4) relevant to the studied

endpoint. One such a well-established multiparameter score in

this context is the Toxicological Priority Index (ToxPi) (Reif

et al., 2010). Other models, notably the zebrafish embryo model,

used multiple classifiers in a single test system (Padilla et al.,

2012). Results were also reported in different ways, either as

ToxPi score, percentage activity, rank, or active concentration

(lowest or 50% active concentration (AC50); Supplementary

Table S4). In Table 2, these different scores are represented in

a normalized way, to enable potency comparison across the

models (normalization calculations are given in

Supplementary Table S4).

To highlight some key observations, it can be concluded that

of the 10 substances for which results were reported from the

prediction models, seven substances (i.e., dimethoate, ethyl

carbamate, acrylamide, imazalil, thiram, chlorpropham, and

methomyl) appeared to have at least one major alert for a

toxicological effect and one substance (acifluorfen) showed

moderate potency (Table 2). The relatively modest activity of

FIGURE 1
Flow of consecutive steps in the next generation risk
assessment case study.
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TABLE 2 HTS results for substances with highest Hazard Quotients within each TTC classa.

aHighest HQs are the result of highest exposure levels in each TTC category;
bDomains: E, endocrine perturbation; M, metabolic disorder; D, developmental toxicity; C, cancer-related; H, hepatotoxicity;
cSubstances are ordered by TTC, then by HQ;
dHQ, Hazard Quotient = ratio Exposure/TTC;
eDimethoate, thiram, methomyl, and fosetyl aluminum are representative structures in Residue Definitions occurring in the exposure database, of respectively dimethoate (RD, RF-0139-001-PPP), dithiocarbamates (RD, SSD1 RF-0151-001-PPP),

methomyl/thiodicarb (RD, SSD1 RF-0293-001-PPP), and fosetyl aluminum (RD, SSD1 RF-0225-001-PPP). The toxicological in vitro screening assays had different readouts, as explained below. To enable potency comparison across these different values,

they were normalized relative to the most potent score per dataset, which was set to 100 (note that the original datasets were large, from 309 up to over 10,000 test substances, and that such high potency scores are not necessarily included in the presented

selection); logarithmic transformation was applied in case of concentration values (e.g. AC50s). The respective endpoints were
fcomposed, multiparameter scores (Toxcast’s Toxicological Priority Index, ToxPi), overall endocrine and steroidogenesis scores;
gscaled scores, given as percentage of the maximum score in the test system;
hinhibitory or activating concentrations (AC50s);
irank in an ordered potency list; or
jlowest effect level (LEL) in a dose range. NA, not active. Anthraquinone, pethoxamid, and deoxynivalenol were not included in either of the test sets. Original results, normalization calculations, and further details of the screening models are available in

Supplementary Table S4. Increasing color shading reflects increasing relative potency, supporting the numerical values for the screening models.
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the remaining two substances, i.e., azafenidin and fosetyl

aluminum (Table 2) may be due to the fact that these two

substances were hardly represented in the set of prediction

models used here. A notably active compound in the included

models was imazalil, which, in contrast to another well

represented substance, i.e., thiram, induced strong alerts in the

metabolic disorder domain. An illustrative example of variable

overlap among models is in developmental toxicity, where only

slight or moderate potency alerts were observed with eight

substances in the C. elegans model, whereas three of these

substances showed a strong alert in either or both of the

zebrafish embryo models.

Discussion

There is a growing demand for more hazard information

on an ever increasing number of chemical substances, e.g., in

chemical product development or in databases of identified

food contaminants. A rational approach to resolve this

challenge would be to reduce the number of chemicals that

would require risk assessment, e.g., through “chemical

simplification” as proposed recently (Fenner and Scheringer

2021) and to aim for a circular economy (Kümmerer, Clark,

and Zuin 2020). However, the high impact of such a paradigm

shift would imply a long term for implementation, and

therefore short-term, pragmatic strategies to alleviate the

pressure on risk assessment resources are needed. One such

a strategy is to prioritize substances for risk assessment, where

prioritization is a step that should precede the actual risk

assessment, without intending to waive risk assessment.

Prioritization should then lead to a focus on the highest

risk, spending resources on those substances where the

highest gains (in terms of risk) can be realized. Therefore,

the goal of the present case study was to explore how exposure

estimates can be combined with initial hazard estimation

(through the TTC), to identify chemicals that are of higher

priority to undergo a more extensive toxicological evaluation.

The latter should preferably be done using NAMs, but not

excluding more traditional toxicological methods. To test our

approach, we choose to focus on chemicals in food. By making

use of the EuroMix database as a data source, the case study

was limited to oral exposure, to defined groups of chemicals

(i.e., plant protection products, their residues and

environmental contaminants) and to a defined region

(i.e., Europe). Furthermore, the exposure estimates in the

case study were limited to the Dutch population aged

7–69 years. A further caveat to the final selection is

inherent to the applied prioritization criteria, as for

instance the set of substances excluded by the exposure

criterion may still contain (high-potency) toxicants, and

application of TTC could have been expanded by assigning

representative chemical structure information to more

substances. However, while considering these limitations,

the purpose of this study, that is to demonstrate proof-of-

principle for the methodology, can still be met.

The first step towards priority-setting is to estimate dietary

exposure levels. Here, exposure was estimated with intermediate

tier modelling: using exposure distributions based on individual

food consumption data combined with measured concentration

data in food. In principle, lower tiers using population statistics

such as PRIMO or GEMS data sheets together with maximum

(residue) levels could also serve as input, although these models

are not fit for high-throughput screening of large numbers of

substances. Since the aim of the case study was prioritization and

not an actual risk assessment, databases were not scrutinized for

completeness. Therefore, we did not check whether the EuroMix

database contains concentration data for all relevant foods in

which a certain chemical is expected to be present at a sufficient

sample size. We also did not use processing factors for all

substances and agricultural use data for pesticides. This could

be done in a refinement step for prioritized chemicals.

Furthermore, exposure estimates for all substances should

ideally be generated using automated screening of a

concentration database such as implemented in the high-

throughput version of the U.S. EPA Stochastic Human

Exposure and Dose Simulation Model (SHEDS-HT; (Isaacs

et al., 2014)). For MCRA, this feature has not been

implemented yet. Therefore, we used the cumulative exposure

assessment tool of MCRA as a work-around for a screening tool,

which may have caused deviations of the single substance

exposure percentiles. However, the most recent version of

MCRA (version 9.1; https://mcra.rivm.nl, accessed July 2022)

contains a prioritization tool, which allows screening of multiple

single chemical exposure assessments within a single run. This

greatly facilitates prioritization of chemicals.

The next step to identify substances of higher priority is

application of a hazard estimate, for which we used the TTC, to

derive a hazard quotient. The TTC estimates toxicological

thresholds for a wide range of substances based on their

chemical structures, and can be used to assess the likelihood

that a particular level of exposure to a new chemical would be of

low toxicological concern (European Food Safety Authority,

2019b). The most conservative threshold (0.0025 μg/kg body

weight/day) is assigned to substances that may be DNA-

reactive mutagens. Here, we applied modules available in the

OECD QSAR Toolbox and in Derek Nexus to screen for

genotoxic potential, covering DNA reactivity as well as other

genotoxic modes of action. Considering also in silico alerts for

chromosome aberration - and not only for Ames

mutagenicity—is likely to be the reason for the relatively high

number of substances with TTC for mutagenicity assigned

(~25%). It is a conservative approach, since the cancer TTC

value is derived from carcinogenicity studies of substances that

are likely to be carcinogenic by DNA-reactivity (Boobis et al.,

2017). The very low threshold (0.0025 μg/kg body weight/day)
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that is extrapolated from these studies to reflect the very low

acceptable risk on additional tumors for a life-time exposure (1:

1.000.000) is likely to be protective for substances with other

genotoxic modes of action. A study on the level of protection that

is (implicitly) accepted for non-genotoxic carcinogens by not having a

separate threshold for non-genotoxic carcinogens shows that the

higher TTC values (derived for the groups of organophosphates

and the three Cramer Classes) have to be associated with a

potentially much higher risk on additional tumors for a life-time

exposure due to non-genotoxic carcinogenicity mechanisms (~1:

1,000) (Braakhuis et al., 2018). Furthermore, the use of a battery of

in silico alert models, covering both DNA reactivity and other

genotoxic modes of action, increases the probability that an alert is

identified, and thus increases the number of false positive

identifications of genotoxicity. True genotoxicity of the as such

labeled substances in our work flow has not been evaluated.

However, as most of these are plant protection products approved

for EUmarket entry, they are not likely to be true genotoxicants, and a

higher TTC would be applicable, lowering their hazard quotient. In

that case, exposure of only 19 of the 87 labeled genotoxicants would

exceed the next lowest TTC level (0.3 μg/kg body weight/day,

applicable to organophosphates and carbamates), and exposure of

another five remaining substances would exceed the TTC level

associated with Cramer Class III (high toxicity; 1.5 μg/kg body

weight/day). Hence, 11 of the 17 substances identified as priority

substances inTable 2maybe of less concern than assumed in thiswork

flow. The most efficient way to resolve this issue for the present case

study would be to collect existing experimental data from appropriate

in vitro genotoxicity tests, including mutagenicity tests in bacteria and

mammalian cells, for the substances with genotoxicity alerts in the

applied in silico models. Future application of the proposed

prioritization strategy would benefit from a weight of evidence

approach combining in silico models for DNA-reactivity with

appropriate in vitro mutagenicity assays. Review of the cancer

potency database underlying the cancer TTC value, as proposed by

Boobis and co-workers (Boobis et al., 2017), supports the application of

Cramer class thresholds to all non-genotoxic compounds, including

non-genotoxic carcinogens (Batke et al., 2021).

Overall, the current TTC concept has limited applicability,

because it is not substance specific. The TTC concept does not

inform on the toxicological potential of a substance of interest, but

only provides risk thresholds for classes of structurally similar

substances. Furthermore, it reflects the risk for only those apical

endpoints that were included in the toxicity studies used to derive

the threshold values (theMunro database of toxicity studies; (Munro

et al., 1996)). A critique on the TTC concept is that systemic effects

currently of high concern, like neurotoxicity, immunotoxicity, and

endocrine disruption, were not included when deriving the

thresholds. The same applies to more acute effects like allergies,

hypersensitivity or intolerances; these are also not covered by the

approach (Bschir 2017). Although the thresholds are based on a

distribution of toxicities EFSA expected that other apical endpoints

(with the exception of endocrine disruption) will not shift the

distribution of NOAEL (No-Observed-Adverse-Effect-Level)

values to lower values (European Food Safety Authority, 2019b))

and references therein). The lack of information on various health

effects, including epigenetic multigeneration and teratogenic effects,

adds to the uncertainty of the TTC concept, but this applies equally

to the risk assessment of the majority of substances for which no

multigeneration or complete developmental toxicity study is

available. Another source of uncertainty is the lack of robust

knowledge about the mechanisms of low-dose or mixture effects

and non-monotonic dose-response relationships (Bschir 2017).

Overall, it can be concluded that the TTC system could be

refined, for which input is required from more recent chronic

toxicity data from a larger database of chemicals, with more

diverse structures, such as available in industry.

To illustrate how toxicological potential could be established in a

follow-up assessment, the final subset of prioritized substances was

screened for toxicological potential using a selection of HTS toxicity

prediction models. Comparison among these substances, e.g.

regarding potency or specificity, or association of TTC level with

produced results, is challenging because of uneven inclusion of

substances across HTS studies. A more comprehensive toxicological

evaluation, including a larger number of HTS prediction models, as

well as continued testing of substances, may improve this picture.

Still, it appears that some distinction can be made among substances

that are well-represented: e.g., imazalil is active in a broad, non-

specific manner, in contrast to thiram, which showed mainly potent

effects for development, or to acrylamide, which may have more

specific effects in themetabolic disorder domain. Regarding theHTS

toxicity prediction models, it seems that parallel approaches in a

given domain may produce variable results. This is for instance

observed for overall endocrine activity revealing no active

compounds in one prediction model (Filer et al., 2014) and

several hits in another model (Reif et al., 2010). Similarly, various

assays in zebrafish embryos produced variable results among

substances (Padilla et al., 2012; Truong et al., 2014; Reif et al.,

2016), indicating that the choice of the assessed endpoint (in the

same model) affects the distribution of relative potency of the

substances. It is therefore imperative to develop multiple

prediction models per toxicological domain, and to evaluate each

of these models for scientific confidence (Cox et al., 2014; Patlewicz

et al., 2015). Overall, it should be emphasized that in this case study

the retrieved alerts for toxicological potential are merely illustrative,

because only a limited number of HTS-based prediction models

were available and/or screened for activities of the prioritized

substances. A more comprehensive screening, including toxicity

prediction models based on both HTS assays and in silico

approaches, could produce more refined (priority) alerts. These

results could also be used as guidance for more complex follow-up

assays to confirm and quantify specific effects.

In the applied methodology, exposure was assessed for chemicals

for which analytical data were available. However, for new chemicals

entering the market those data will not be present. By making use of

field trial data as input for exposure modeling, this approach would
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also be applicable for new pesticides entering themarket. Alternatively,

models for predicting concentrations levels in food and other relevant

exposure sources such as air and dust, e.g., based on chemical and use

similarities, would be needed. In this way, prioritization can be

supportive to a next generation risk assessment strategy, because it

would provide guidance for selection of substances for further

toxicological screening, through NAMs in the first place, but not

excluding other methods for toxicity testing. Of course, alternative

approaches such as a priori HTS for toxicological potential remain

valid, and substances for which hazard alerts are thus detected are

already prioritized for follow-up assessment in that way. However, the

observation that no HTS data were available for four of the substances

that were prioritized by our paradigm underlines the importance of an

approach for prioritization that does not build on toxicological

screening in the first place.

On the other hand, priority alerts were detected in a

selection of substances that are already on the market and

represent relevant exposure in consumers. The approach

may therefore not only be applied to new substances, but

also for prioritizing existing substances for re-evaluation,

such as substances emerging from suspect screening

analyses of human biomonitoring samples for which the

toxicological dossier appears to be limited, or chemicals to

be grouped in assessment groups for mixture risk

assessment.

In this case study we applied a prioritization approach,

focusing on exposure to substances that have been registered

or are known to occur in food, such as food contact materials

(Van Bossuyt et al., 2017). The purpose was to explain the

possibilities and uncertainties of the employed approach, not

to present an all-inclusive prioritization or a comprehensive

toxicological evaluation of prioritized substances. Evidently,

the number of missed priority substances will be higher with

more and more restrictive selection criteria. More inclusive

variations of the employed approach could be made through

omitting any exposure bound, or even screen the entire

initial database in HTS prediction models. A rationale for

selection criteria should follow from a dedicated problem

formulation, and the presented approach could help to

define such criteria.

Overall, the method of prioritization of chemicals applied

in this case study has the potential to contribute in a new

strategy for risk assessment, considering that the final

evaluation requires an uncertainty analysis regarding

comprehensiveness of applied models, and regarding

addressing the original assessment question.
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