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Abstract: Energy homeostasis in the central nervous system largely depends on astrocytes, which
provide metabolic support and protection to neurons. Astrocytes also ensure the clearance of extracel-
lular glutamate through high-affinity transporters, which indirectly consume ATP. Considering the
role of the AMP-activated protein kinase (AMPK) in the control of cell metabolism, we have examined
its implication in the adaptation of astrocyte functions in response to a metabolic stress triggered by
glucose deprivation. We genetically modified the astrocyte-like C6 cell line to silence AMPK activity
by overexpressing a dominant negative mutant of its catalytic subunit. Upon glucose deprivation,
we found that C6 cells maintain stable ATP levels and glutamate uptake capacity, highlighting their
resilience during metabolic stress. In the same conditions, cells with silenced AMPK activity showed
a reduction in motility, metabolic activity, and ATP levels, indicating that their adaptation to stress
is compromised. The rate of ATP production remained, however, unchanged by AMPK silencing,
suggesting that AMPK mostly influences energy consumption during stress conditions in these cells.
Neither AMPK modulation nor prolonged glucose deprivation impaired glutamate uptake. Together,
these results indicate that AMPK contributes to the adaptation of astrocyte metabolism triggered by
metabolic stress, but not to the regulation of glutamate transport.

Keywords: ATP; astrocyte; metabolic stress; glucose deprivation; glutamate transporter

1. Introduction

Despite their high energy expenditure, neurons possess a limited reserve of energy
substrates. They largely depend on the metabolic support provided by neighboring cells,
in particular astrocytes, the adaptive properties of which appear to be critical to cope with
energy demands during periods of intense synaptic activity [1,2]. Expressing a variety
of receptors, transporters, and channels, astrocytes dynamically sense and respond to
alterations in their microenvironment and the activity of nearby neurons. Ideally positioned
at the blood–brain barrier and equipped with a robust enzymatic machinery for efficient
glucose [3], glycogen [4], and lipid metabolism [5], astrocytes show the metabolic plasticity
needed to support changes in nervous activity [1,6].

Astrocytes are also known as key supportive partners in the regulation of nervous
transmission, as they buffer extracellular neurotransmitters, in particular glutamate. This
is achieved through the activity of membrane high-affinity glutamate transporters that
take up extracellular glutamate [7,8]. This efficient uptake is driven by the co-transport
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of Na+, which is pumped out of the cell by the Na+/K+-ATPase [9]. At low extracellular
concentrations, glutamate is rapidly taken up, converted to glutamine, and transferred back
to neurons to reconstitute presynaptic glutamate vesicles [10,11]. In addition, glutamate
can also be used as an energetic fuel for both neurons and astrocytes [12]. In particular,
at high extracellular concentrations, astrocytes efficiently use glutamate as an energetic
substrate to produce ATP and support its uptake [13]. In contexts of intense excitatory
activity, the astrocytic consumption of ATP is also compensated by a concomitant metabolic
adaptation of astrocytes that promotes glucose uptake and glycolysis [14–16]. Thereby,
besides their role in the clearance of glutamate, astrocytic glutamate transporters also act as
sensors of neuronal activity, supporting the tight coupling between glutamate transmission
and metabolism [1].

Recognized as the fuel gauge of the cell, adenosine monophosphate-activated protein
kinase (AMPK) is the best documented cellular energy sensor [17,18]. Widely conserved
among eukaryotes, AMPK is a heterotrimeric complex containing a catalytic alpha subunit
(α) and two regulatory subunits, beta (β) and gamma (γ) [19–22]. This enzyme is mostly
known for its ability to sense variations in the adenine nucleotide ratio (AMP/ATP) that
reflects the energy status of cells. AMPK is activated by an imbalance in energy levels,
which can be the consequence of various cellular insults, such as energetic substrate
deprivation or hypoxia. In response to a stimulus, AMPK then regulates a wide array of
cellular pathways, activating ATP-producing mechanisms while inhibiting ATP-consuming
processes, and hence reestablishing energy homeostasis [23,24]. As a central actor in the
control of cell metabolism, AMPK appears to be a key enzyme in tissues with high metabolic
demands, such as the liver, heart, and muscle, but also in tumor cells, known for their
altered metabolism [25]. Compared to these tissues, the expression and role of AMPK in
astrocytes has so far received little attention. Early studies on cultured glial cells and brain
samples suggested that the predominant AMPK activity in the brain parenchyma resides
in astrocytes [26]. Later, Turnley and colleagues reported on the predominant expression of
the AMPKα2 subunit in activated astrocytes within the cortex of dysmyelinated transgenic
mice [27]. Further in vitro studies have identified the expression of both AMPKα isoforms
in cultured astrocytes [28], where they contribute to the regulation of several aspects of
astrocyte metabolism. Notably, AMPK activation in astrocytes increases glucose uptake and
glycolysis, and has been suggested to increase its oxidation as well [29]. Recently, AMPK
has also been shown to contribute to the regulation of astrocytic glycogen stores [30].

While a role for AMPK has been proposed in neurodegenerative disorders [31,32],
the pivotal role of astrocytic AMPK for neuronal transmission and overall brain function
has only recently been addressed. Indeed, Muraleedharan et al. showed that selective
deletion of AMPK in astrocytes—but not in neurons—results in important neuronal loss and
reduction of cortical thickness. In their study, AMPK-null astrocytes showed compromised
glucose uptake, glycolysis, and lactate production, indicating that AMPK regulates the
astrocyte–neuron lactate shuttle [33,34].

We hypothesized that AMPK is crucial for the adaptive properties of astrocytes upon
cellular insult; hence, we sought to further characterize the involvement of AMPK in the
control of astrocytic functions, and in particular, the regulation of glutamate uptake. We
therefore used the C6 astrocytoma cell line [35], as a reliable astrocyte-like cell model that
has been used for decades to study astrocyte biology [36–38]. We genetically modified this
cell line to allow manipulation of AMPK activity through the overexpression of a dominant
negative AMPKα1 isoform. The consequence of silencing AMPK activity on the metabolic
phenotype of C6 cells, as well as their capacity to take up glutamate, was investigated
in standard culture conditions, but also in response to a metabolic stress triggered by
glucose deprivation.
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2. Materials and Methods
2.1. Generation of the Inducible AMPK-DN System

Dr. Rider (UCLouvain, Belgium) kindly provided the pcDNA3 vector containing a
myc-tagged sequence encoding the dominant negative mutant (D157A) of the rat AMPKα1
subunit [39]. This sequence was subcloned in the pTRE2hyg vector (TakaraBio, Kusatsu,
Japan), under the control of a tetracycline-inducible promoter.

2.2. Cell Transfection and Selection

C6 cells expressing the reverse Tet-responsive transcriptional activator (rtTA) were
obtained as previously described [40] and were cultured in DMEM (Dulbecco’s Modified
Eagle’s Medium 41965, ThermoFisher Scientific, Waltham, MA, USA) supplemented with
10% foetal bovine serum, 50 µg/mL penicillin-streptomycin, and 2.5 µg/mL amphotericin
B (ThermoFisher Scientific), in a humidified atmosphere (5% CO2, 37 ◦C). C6-rtTA cells
were transfected with the pTRE2hyg-AMPK-DN construct through the method of calcium
phosphate precipitation [41]. After selection with hygromycine (300 µg/mL; InvivoGen,
San Diego, CA, USA), clones were isolated and tested for AMPK-DN expression by myc
detection after supplementing the culture medium with doxycycline (DOX; Takara Bio).
The DOX induction protocol was then set at 2 µg/mL for 24 h.

2.3. Glucose Deprivation Protocol

The high-glucose (25 mM) culture medium (DMEM 41965, ThermoFisher Scientific)
was replaced with low-glucose (0.1 mM) or glucose-free medium (DMEM 11966, Ther-
moFisher Scientific) for 3 and 6 h. Low-glucose medium was obtained by mixing high-
glucose and glucose-free media.

2.4. Total RNA Extraction and Real-Time Quantitative PCR (RT-qPCR)

Total RNA was extracted from cells using the TriPure isolation reagent (Sigma-Aldrich,
Saint Louis, MO, USA) and reverse-transcribed using the iScript cDNA synthesis kit (Bio-
Rad Laboratories, Hercules, CA, USA). Real-time PCR amplifications were performed
on the Bio-Rad CFX Connect™ real-time PCR detection system (Bio-Rad Laboratories).
Thirty-five cycles of amplification were carried out in a total volume of 20 µL, containing
27 ng of cDNA template, 0.5 µM of the appropriate primers, and the iTaq Universal SYBR
Green Supermix, following the manufacturer’s instructions (Bio-Rad Laboratories). The
absolute quantification of Prkaa1 and Prkaa2 sequences (respectively encoding for AMPKα1
and AMPKα2) was carried out using plasmid constructs containing the corresponding rat
sequences as reference, and results were expressed as copy number per 10 ng of cDNA. For
relative quantification, the analysis was performed using the delta-delta Ct method, where
the amplified level of the targeted genes was normalized to that of the housekeeping gene
glyceraldehyde 3-phosphate dehydrogenase (Gapdh). The sequences of the primers used in
the RT-qPCR reactions are indicated in Table 1.

Table 1. RT-qPCR primer sequences.

Gene Forward Sequence (5′–3′) Reverse Sequence (5′–3′)

Prkaa1 TTAAACCCACAGAAATCCAAACAC CTTCGCACACGCAAATAATAGG
Endogenous Prkaa1 ATGCGCAGACTCAGTTCCTG GTCCAGTCAACTCGTGCTTG

Prkaa2 GTGGTGTTATCCTGTATGCCCTTCT CTGTTTAAACCATTCATGCTCTCGT
Gapdh GTCTCCTGTGACTTCAACAG AGTTGTCATTGAGAGCAATGC

2.5. Western Blot

C6-rtTA-AMPK-DN cells were seeded into six-well plates at a density of 200,000 cells/
well. Cells were scraped in ice-cold lysis buffer (50 mM Tris-HCl, 150 mM NaCl, 1 mM
EGTA, 5mM EDTA, 0.1% sodium dodecyl sulfate (SDS), 0.5% sodium deoxycholate, 1%
Igepal NP40) containing protease inhibitor cocktail (Halt™ Protease and Phosphatase In-
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hibitor, ThermoFisher Scientific) and a phosphatase inhibitor (PhoSTOPTM, Sigma-Aldrich).
The protein concentration was determined using the Pierce™ BCA Protein Assay Kit (Ther-
moFisher Scientific). Equal amounts of protein (12 µg) diluted in a loading buffer (60 mM
Tris-HCl pH 6.8, 10% glycerol, 5% β-mercaptoethanol, 2% SDS, and 0.01% bromophenol
blue) were separated through SDS-polyacrylamide gel electrophoresis and transferred
onto a nitrocellulose membrane. To avoid unspecific immunoprobing, membranes were
blocked for 1 h in a Tris-buffered saline solution containing 0.05% Tween-20 (TBS-T) and
5% bovine serum albumin (Carl Roth). Immunoprobing was carried out overnight at
4 ◦C with primary antibodies recognizing the following proteins: phospho-ACC (1:2000;
#3661S, Cell Signaling), ACC (1:1000; #3662S, Cell Signaling), c-Myc (1:1000; sc-789, Santa
Cruz), AMPKα (1:5000; #2532S, Cell Signaling), and GAPDH (1:1,000,000; G9545, Sigma).
After washing with TBS-T, membranes were incubated for 1 h at room temperature with
the respective peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch,
Cambridgeshire, UK). Immunoreactivity was detected using Clarity enhanced chemilu-
minescence reagent (Bio-Rad Laboratories). Quantification of the signals was performed
using ImageJ software (version 1.46r, Wayen Rasband, US National Institutes of Health,
Bethesda, MD, USA).

2.6. D-[3H]-Aspartate Uptake

The activity of glutamate transporters was evaluated by uptake assays using radiola-
beled D-aspartate as substrate (D-[3H]-aspartate), a transportable non-metabolized analogue
of L-glutamate that does not interact with glutamate receptors. Cells were seeded into
24-well plates at a density of 30,000 cells/well. Multi-well plates were placed at the surface
of a 37 ◦C water bath. The culture medium was removed, and the cells were rinsed three
times with preheated Na+-containing Krebs buffer (25 mM HEPES pH 7.4, 4.8 mM KCl,
1.2 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM MgSO4, and 120 mM NaCl). D-[3H]-aspartate
(specific activity of 12.2 Ci/mmol, Perkin Elmer) was added to the cells at a final concentra-
tion of 50 nM. After 20 min, the uptake was stopped by three rinses with ice-cold Na+-free
Krebs buffer (25 mM HEPES pH 7.4, 4.8 mM KCl, 1.2 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM
MgSO4, and 120 mM choline chloride), and cells were lysed with ice-cold 0.1 N NaOH. Ra-
dioactivity measurements were performed by mixing aliquots of the lysates with the liquid
scintillation solution Microscint 40 and using the TopCount NXT Microplate Scintillation
and Luminescence Counter (Perkin Elmer). Counts per minute were converted to pmol
of D-[3H]-aspartate transported per min based on the specific activity of the radiolabeled
substrate and the duration of the assay. In addition, aliquots of the lysates were used
for protein quantification by the Bradford method using the BioRad Protein Assay Dye
Reagent (BioRad Laboratories). The specific (glutamate-transporters-dependent) activity
was calculated by subtracting the D-[3H]-aspartate uptake measured in the presence of
the non-selective glutamate transporter inhibitor L-threo-3-hydroxyaspartic acid (100 µM
LTHA, Tocris). Results were expressed as pmol of D-[3H]-aspartate transported per min
per mg of protein.

2.7. MTT Assay

C6-rtTA-AMPK-DN cells were seeded into 96-well plates at a density of 10,000 cells/well.
Following the appropriate treatments, to assess the cell metabolic activity, medium was
replaced by 100 µL of 0.5 mg/mL 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT; Sigma Aldrich) diluted in the culture medium with the same glucose
concentrations. After a 2 h incubation period at 37 ◦C, the supernatant was discarded, and
the reaction was stopped by adding a mixture of isopropanol/HCl 0.04 N. Absorbance
was measured with a microplate reader (Victor X-3 Multilabel Plate Reader, Perkin Elmer,
Waltham, MA, USA). For DOX-treated and non-treated cells, absorbance values in glucose-
deprived conditions were converted as the percentage of the respective control condition
(25 mM of glucose) and expressed as the difference with the latter.
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2.8. ATP Assay

To measure the total ATP content of C6-rtTA-AMPK-DN cells, a luciferase-based
method was used. Briefly, cells were seeded into opaque-walled 96-well plates at a density
of 10,000 cells/well. Following the appropriate treatments, 100 µL of the CellTiter-Glo®

Reagent (Promega, Madison, WI, USA) was added to the wells. After gentle mixture and
an incubation period of 10 min, relative luminescence units (RLU) were measured with
the Victor X-3 Multilabel Plate Reader. For DOX-treated and non-treated cells, absorbance
values in glucose-deprived conditions were converted as the percentage of the respective
control condition (25 mM of glucose) and expressed as the difference with the latter.

2.9. XF Real-Time ATP Rate Assay

Cells were seeded at a density of 5000 cells/well in Seahorse-dedicated XF 96 Cell
Culture Microplates (Agilent Technologies, Santa Clara, CA, USA). DOX treatment was
initiated after overnight rest for 24 h, followed by exposure to different concentrations of
glucose for 5 h. The XF Real-Time ATP Rate Assay (Agilent Technologies) was performed
according to the manufacturer’s instructions. Briefly, cells were washed twice and incubated
for 1 h with a complete DMEM-based XF medium (Agilent Technologies) containing 1 mM
sodium pyruvate, 2 mM glutamine, and 0, 0.1, or 10 mM glucose (with and without DOX),
in a non-CO2 incubator at 37 ◦C. After the overnight two-step hydration protocol of the
sensor cartridge, ports A and B were loaded with the metabolic modulators oligomycin
(15 µM) and rotenone/antimycin A (5 µM), to assure that the cells were exposed to a final
concentration of 1.5 and 0.5 µM of the respective compounds. The Seahorse XFe96 flux
analyzer (Agilent Technologies) was used to measure the oxygen consumption rate and the
extracellular acidification rate, using the default protocol of the XF Real-Time ATP Rate
Assay (three measurements in cycles of 5 min and automatic injection of oligomycin and
rotenone/antimycin A after 18 min and 36 min, respectively). Data were normalized by
automatic cell counting after staining with Hoechst 33342 (8 µM, 30 min incubation in
the dark, Sigma-Aldrich), using the Cytation 1 (BioTek). Data quality control and initial
analyses were performed using the Seahorse Analytics software (Agilent Technologies).

2.10. Migration Assay

C6-rtTA-AMPK-DN cells were seeded into 12-well plates at a density of 100,000 cells/well.
After reaching confluence, cell monolayers were wounded using a 20 µL micropipette
tip, washed with phosphate-buffered saline, and incubated with the appropriate fresh
culture medium containing either 25 or 0 mM glucose. Pictures were first taken 8 h after
wounding and then every 2 h over a period of 12 h, using the EVOS FL Auto 2 microscope
(ThermoFisher Scientific). The area of the wound was quantified using ImageJ software,
and the migration rate (µm/min) was calculated as described previously [42].

2.11. Statistics

Data were obtained from at least three biological replicates (independent experiments
conducted on cells from different passages) and were expressed as means with the standard
error of the mean (SEM). When mentioned in the figure caption, technical replicates within
each experiment were also performed. Statistical analyses were conducted using GraphPad
Prism (GraphPad Software, version 5.03, San Diego, CA, USA). When comparing two
data sets, differences between groups were evaluated using paired Student’s t-tests. When
comparing more than two groups, one-way ANOVA followed by a Dunnett’s post-hoc test
was used. Two-way ANOVA followed by a Bonferroni’s multiple comparisons test were
used in two-factor analyses. In all statistical analyses, a value of p < 0.05 was considered
as significant.
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3. Results
3.1. Expression of an AMPK Dominant Negative Mutant in C6 Cells

The influence of manipulating AMPK activity on the metabolic adaptation of C6
cells was studied in a cellular model that allows tight control of the expression level of a
dominant negative mutant of the AMPKα1 subunit (α1DN). In detail, the cDNA sequence
encoding the myc-tagged α1DN was introduced in C6 cells engineered to carry the Tet-On
expression system (C6-rtTA cells). A stable cell clone, referred to as C6-rtTA-AMPK-DN,
was selected, and the efficacy of the inducible system was examined by RT-qPCR.

The mRNAs encoding for AMPKα1 and α2 were first quantified in C6-rtTA cells to
characterize the endogenous expression of these isoforms. Plasmid constructs carrying
either the Prkaa1 or the Prkaa2 coding sequences were used as standard for absolute
quantification, and PCR primers targeting these coding sequences were designed. As
shown in Figure 1A, C6-rtTA cells are characterized by a predominant expression of the
α1 isoform compared to the α2 isoform (>20-fold difference). In C6-rtTA-AMPK-DN cells,
the expression of the α1 isoform was considerably increased when exposed to doxycycline
(DOX) for 24 h (30-fold increase) (Figure 1B), confirming the efficacy of the inducible
system. In the same condition, the expression of the α2 isoform was not changed (Figure 1C;
58 and 63 copies/ng cDNA for control and DOX-induced cells, respectively). In order
to demonstrate that the induction protocol was without influence on the endogenous
expression of the α1 isoform (Figure 1D), PCR primers targeting the Prkaa1 cDNA within
the non-coding sequence were used (Table 1 for primer sequence). Indeed, this sequence is
absent from the α1DN construct used for cell transfection.
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Figure 1. AMPKα mRNA expression in C6-rtTA and C6-rtTA-AMPK-DN cells. (A) The expression
profile of AMPKα isoforms in C6-rtTA cells was quantified by RT-qPCR. Plasmid constructions carry-
ing either the Prkaa1 or Prkaa2 coding sequences were used as standards for absolute quantification.
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(B,C) The mRNA expression of Prkaa1 (endogenous and mutated combined) (B) and Prkaa2 (C) was
evaluated in C6-rtTA-AMPK-DN cells with or without DOX-induction. (D) The relative expression
of the endogenous AMPKα1 isoform was evaluated in C6-rtTA-AMPK-DN cells induced or not with
DOX, by using PCR primers targeting a non-coding sequence within the α1 sequence (cf. Table 1 for
primer sequences). Data shown represent the mean ± SEM from four biological replicates. Statistical
analyses were performed by paired Student’s t-tests (A,C,D) or one-way ANOVA followed by a
Bonferroni’s multiple comparison test (B) (ns: non-significant; *** p < 0.001).

The expression of the α1DN was further validated by immunoblotting after exposing
C6-rtTA-AMPK-DN cells to DOX for 24, 48, or 72 h. As shown in Figure 2A, in the absence
of DOX, no myc-tag immunoreactive signal could be detected at the expected molecular
weight of AMPKα (62kDa). Exposure of the cells to DOX caused a concentration-dependent
increase in the expression of the myc-tagged AMPK-DN, at all time-points tested. For the
following experiments, the DOX-induction protocol was set at 2 µg/mL for 24 h.
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Figure 2. Validation of the inducible system. (A) C6-rtTA-AMPK-DN cells were exposed to increasing
concentrations of DOX for 24, 48, and 72 h and the expression of the myc-tagged α1DN was evaluated
by immunoblotting. (B,C) To assess for the stability of the α1DN, cells were either exposed to
10 µg/mL of cycloheximide (B), or the culture medium was renewed to remove DOX after 24 h
(C). Cells were collected every 2 h, and the expression of the myc-tagged α1DN was evaluated by
immunoblotting. Histograms show means ± SEM normalized to GAPDH expression. Blots shown
are representative of three independent experiments. Blots in panel C were cropped to remove
nonessential experimental conditions. Statistical analyses were performed by one-way ANOVA
followed by Dunnett’s multiple comparison test (* p < 0.05, ** p < 0.01, *** p < 0.001).

To evaluate the stability of the α1DN upon induction with DOX, C6-rtTA-AMPK-
DN cells were treated with cycloheximide (10 µg/mL), an inhibitor of protein synthesis.
Considering the potential toxicity of this compound, the incubation period was limited
to a maximum of 10 h. As shown in Figure 2B, after only 2 h of incubation with cyclo-
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heximide, the expression of the myc-tagged AMPK-DN was decreased by almost 60%,
reaching its lowest level after 8 h. In line with these observations, removing DOX from
the culture medium after the 24 h induction protocol also elicited a rapid reduction of the
myc-immunoreactivity (Figure 2C). Taken together, these results indicate the rather short
half-life of the α1DN, which was taken into consideration when designing the following
experiments. In particular, it was ensured that DOX was present in the culture medium at
all times, even throughout the glucose deprivation protocol.

3.2. Validation of the Doxycycline-Inducible AMPK-DN System

To determine the efficacy of the DN approach to silence AMPK activity, C6-rtTA-
AMPK-DN cells cultured in the presence or absence of DOX were treated for 3 h with
two distinct pharmacological AMPK activators: 5-aminoimidazole-4-carboxamide-1-β-
D-ribofuranoside (AICAR; Toronto Research Chemicals; 0.5 mM dissolved in the culture
medium) and compound A-769662 (1 µM; TOCRIS; pre-dissolved in DMSO—final con-
centration of DMSO in the culture medium of 0.001%). The expression of the α1DN upon
induction was systematically verified by immunoblot and detection of the myc-tag im-
munoreactivity at the expected molecular weight of AMPKα, and by evaluating total
AMPKα expression using an antibody that recognizes both the endogenous and mutated
proteins. The AMPK activity was then assessed by immunoblot analysis of the phospho-
rylation of acetyl-CoA carboxylase (ACC), a well-known downstream target of AMPK,
at serine 79 residue (Figure 3). In cells cultured in the absence of DOX, both AICAR and
A-769662 elicited an increase in the pACC/ACC ratio (4.5-fold and 4.8-fold, respectively),
thus reflecting a robust increase in AMPK activity.
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Figure 3. Silencing efficacy of the dominant negative mutant of AMPKα1. C6-rtTA-AMPK-DN cells,
induced or not with DOX (2 µg/mL; 24 h), were exposed to the pharmacological AMPK activators
AICAR (0.5 mM) and A-769662 (1 µM) for 3 h. AMPK activity was assessed by immunoblot analysis
of the phosphorylation of its downstream target ACC. Phosphorylated ACC and total ACC were im-
munoblotted on separate gels, and their expression level was normalized to GAPDH. (A) Histograms
show means ± SEM. (B) Blots shown are representative of six independent experiments. Statistical
analyses were performed by two-way ANOVA followed by Bonferroni’s multiple comparison test
(* p < 0.05, ** p < 0.01).

Following DOX treatment, the basal levels of ACC phosphorylation remained un-
changed, indicating that the overexpression of the mutated AMPK had no effect on the
constitutive activity of AMPK. In contrast, in response to AICAR and A-769662, even
though an increase in the pACC/ACC ratio was observed, it was shown to be 48 and
36% lower (respectively) compared to DOX-free conditions. Taken together, these results
indicate that the overexpression of the α1DN ensures a partial but significant silencing of
the activity of AMPK, when challenged with pharmacological activators.
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3.3. AMPK Silencing Limits the Metabolic Adaptation to Glucose Deprivation in C6 Cells

To characterize the impact of the partial silencing of AMPK on the metabolic plasticity
of C6 cells under glucose deprivation, C6-rtTA-AMPK-DN cells were exposed to low-
glucose (0.1 mM) or glucose-free media for 3 or 6 h. Immunoblots in Figure 4A show that
severe or total glucose deprivation increased at least by five-fold the activity of AMPK in
C6-rtTA-AMPK-DN cells not exposed to DOX. After a 6 h incubation period in the absence
of glucose, cells expressing the α1DN showed reduced AMPK activity (37% reduction
in the pACC/ACC ratio as compared to non-induced cells) (Figure 4). It is noteworthy
that such reduction was not detected after only 3 h of glucose deprivation where a strong
AMPK activation was observed. Studies have shown that the activation of AMPK in diverse
models upon glucose deprivation is maximal after 2–3 h, before a progressive decline [43,44].
Quantification of the pACC/ACC ratio constitutes a highly sensitive readout of AMPK
function. This might limit its use to estimating changes in the activity of AMPK by the
DN, once triggered by a robust stress. Hence, a more efficient silencing of AMPK could be
required to detect an influence on the pACC/ACC ratio after 3 h of glucose deprivation.
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Figure 4. AMPK activity upon glucose deprivation in C6 cells. C6-rtTA-AMPK-DN cells induced or
not with DOX (2 µg/mL, 24 h) were submitted to severe (0.1 mM) or total (0 mM) glucose deprivation
for 3 (A,B) and 6 h (C,D). Phosphorylated ACC and total ACC were immunoblotted in separate
gels and their expression level was normalized to GAPDH. (A–C) Histograms show means ± SEM.
(B–D) Blots shown are representative of seven independent experiments. Statistical analyses were
performed by two-way ANOVA followed by Bonferroni’s multiple comparison test (*** p < 0.001).

To further evaluate the effect of partial AMPK silencing on the capacity of C6 cells
to adapt to glucose deprivation, their metabolic activity was assessed by MTT assay
(Figure 5A,B), which measures the reducing capacity of viable cells [45]. Decreases in
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metabolic activity of 30 and 33% were measured in non-induced cells after a 6 h incubation
period in low-glucose and glucose-free media, respectively. In DOX-treated cells, total glu-
cose deprivation elicited a more pronounced decrease in metabolic activity when compared
to control cells (Figure 5B). We further investigated the impact of partial AMPK silencing
by measuring the intracellular content of ATP after glucose deprivation (Figure 5C,D).
While non-induced cells maintained rather stable ATP content under these conditions, cells
expressing the α1DN mutant of AMPK showed a statistically significant decrease in ATP
content when exposed to severe (0.1 mM) or total (0 mM) glucose deprivation.
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Figure 5. Influence of α1DN expression on the metabolic activity of C6 cells. C6-rtTA-AMPK-DN
cells induced or not with DOX (2 µg/mL, 24 h) were submitted to severe (0.1 mM) or total (0 mM)
glucose deprivation for 3 (A–C) and 6 h (B–D). Their metabolic activity and their intracellular
ATP content were assessed by MTT colorimetric assay (A,B) or by a luciferase-based assay (C,D),
respectively. Histograms represent the difference from the control condition (25 mM of glucose)
and show means ± SEM from four (C,D) or five (A,B) independent experiments, in which every
experimental condition was tested in octuplicate. Statistical analyses were performed by two-way
ANOVA followed by Bonferroni’s multiple comparison test (* p < 0.05, ** p < 0.01, *** p < 0.001).

Further metabolic phenotyping of C6-rtTA-AMPK-DN cells undergoing glucose depri-
vation was obtained through the Real-Time ATP Rate Assay performed using the Seahorse
metabolic flux analyzer. The Seahorse XF analyzer allows one to quantitatively assess
the mitochondrial and glycolytic ATP production rates through the measures of changes
in oxygen consumption and extracellular acidification, after sequential addition of the
metabolic modulators oligomycin (inhibitor of complex V of the electron transport chain)
and rotenone/antimycin A (inhibitors of complexes I and III of the electron transport
chain, respectively). Under standard culture conditions, C6-rtTA-AMPK-DN cells mainly
generated ATP through a glycolytic metabolism, and this was not significantly modified
after partial silencing of the AMPK activity (Figure 6A,C). Upon complete glucose depri-
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vation, the oxygen consumption rate increased in C6-rtTA-AMPK-DN cells, reflecting an
increase in the mitochondrial ATP production rate (Figure 6B,D). The same observation
was obtained 6 h after adding DOX, indicating that cells can switch to mitochondrial ATP
production when glycolysis is reduced, independently of the AMPK activity (Figure 6C,D).
This metabolic shift, however, cannot entirely compensate for the lack of glucose, as to-
tal ATP production rates are lower in both cell lines (Figure 6D). It is noteworthy that
when treating cells with DOX, the switch to mitochondrial ATP production tends to be
less efficient, and the mitochondrial ATP production rate seems slightly lower (p = 0.08)
(Figure 6D). This suggests that the AMPK activity might contribute to the activation of
mitochondria in conditions of stress.
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Figure 6. Metabolic profiling and ATP production rate of C6-rtTA-AMPK-DN cells. The oxygen
consumption rate (OCR) and the extracellular acidification rate (ECAR) were measured using the
Seahorse XFe96 flux analyzer. The rate of ATP production in C6-rtTA-AMPK-DN cells was quantified
by real-time ATP rate assay following 6 h of severe (0.1 mM) or total (0 mM) glucose deprivation.
Data from four biological replicates are presented as means ± SEM. (A) Energetic map of not induced
(blue) and DOX-induced (red) cells in all conditions tested. All replicates are represented on the
dotted plot. (B) Kinetic profile of the OCR measurements. (C,D,E) Histograms show glycolytic,
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mitochondrial, and total ATP production rates, respectively. Statistical analyses were performed by
two-way ANOVA followed by Bonferroni’s multiple comparison test.

Together, these results indicate that C6 cells adapt their metabolism to glucose depriva-
tion. The production of ATP is reduced, but the total content of ATP is preserved, suggesting
a parallel reduction in the consumption of ATP. This homeostasis is altered in cells where
AMPK is partially silenced, an effect that appears not to be predominantly caused by
enhanced loss of ATP production, but more likely reflects an insufficient regulation of ATP
consumption.

3.4. AMPK Silencing Impairs Cell Migration

Even though astrocytes are mostly quiescent and non-migratory cells in physiolog-
ical conditions, it has been shown that in response to diverse cellular stresses, reactive
astrocytes show increased mobility. To characterize the role of AMPK in the regulation of
such adaptation, a migration assay was conducted in C6-rtTA-AMPK-DN cells submitted
to metabolic stress. The migration of the cells was studied in vitro by examining the cell
colonization within a wound that was mechanically realized in a confluent cell monolayer.
As expected, glucose deprivation elicited a modest increase in C6 motility. Induction of
the α1DN expression with DOX did not affect cell motility in standard glucose conditions.
However, under glucose deprivation, the cell colonization within the wound area was sig-
nificantly reduced compared to non-induced cells (Figure 7). This data indicates that AMPK
participates in the regulation of C6 cell migration in conditions of glucose deprivation,
suggesting its role in the adaptation of these cells to stress.
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Figure 7. Effect of α1DN expression on C6 cells migration.C6-rtTA-AMPK-DN cells treated or not
with DOX (2 µg/mL; 24 h) were submitted to glucose deprivation, and cell migration was examined
by measuring the kinetics of cell recolonization after mechanically scratching the cell monolayer.
Pictures (10×magnification) were taken at the beginning of the experiment (0 h) and every 2 h from
+8 h onward over a 12 h period. (A) Pictures are representative of four independent experiments,
in which every experimental condition was tested in triplicate. (B) Histograms illustrate the cell
migration kinetic and represent means ± SEM. Statistical analyses were performed by two-way
ANOVA followed by Bonferroni’s multiple comparison test (* p < 0.05).

3.5. AMPK Silencing Does Not Alter Glutamate Transport

The uptake of glutamate by astrocytes indirectly consumes ATP. In addition, during
periods of intense synaptic activity, this uptake and the associated Na+ flux serves as a
biochemical signal that triggers the metabolic adaptations of these glial cells [9,14,46]. To
investigate the influence of AMPK on the regulation of the activity of glutamate trans-
porters, C6-rtTA-AMPK-DN cells were treated with AMPK activators or exposed to glucose
deprivation before monitoring the uptake of radiolabeled aspartate. As shown in Figure 8A,
activation of AMPK with either AICAR (0.5 mM) or A-769662 (1 µM) for 3 h was without
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influence on the aspartate uptake velocity. This suggests the absence of direct modulation
of glutamate transporters by this kinase. Similarly, submitting the cells to severe (0.1 mM)
or total glucose deprivation for up to 6 h did not influence the substrate uptake. Such
resilience was not supported by the activity of AMPK, as its partial silencing upon DOX
treatment did not cause any significant loss of aspartate uptake in all tested conditions of
glucose deprivation (Figure 8B,C).
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Figure 8. AMPK regulation of glutamate transport. The activity of glutamate transporters was evalu-
ated by measuring the uptake of D-[3H]-aspartate in C6-rtTA-AMPK-DN cells exposed or not to DOX
(2 µg/mL; 24 h). (A) C6-rtTA-AMPK-DN cells were either treated with the pharmacological AMPK
activators AICAR (0.5 mM) and A-769662 (1 µM) for 3 h, or (B,C) exposed to glucose deprivation
conditions for 3 and 6 h. Histograms show means ± SEM of data obtained from three independent
experiments performed in quadruplicate. Statistical analyses were performed by two-way ANOVA
followed by Bonferroni’s multiple comparison test.

4. Discussion

The objective of the present study was to examine the implication of AMPK in the
adaptation of astrocyte functions in response to a metabolic stress. This was specifically
examined by manipulating AMPK activity in a model of astrocytoma cells maintained
in glucose containing medium or in conditions of glucose deprivation. Considering the
difficulty in achieving efficient and specific pharmacological inhibition of AMPK [47],
a genetic approach was used to silence AMPK. A dominant negative mutant of the α1
subunit of AMPK was obtained by introducing a mutation at position 157 to generate an
inactive α subunit that is thought to compete with both endogenous α isoforms for β and
γ, causing a silencing of both α1- and α2-containing complexes [48]. Avoiding any bias
related to the comparison of different transfected cell populations, a single cell clone was
used, which carries a DOX-inducible system allowing one to manipulate the expression
level of the α1DN. The study was performed in a model of C6 rat astrocytoma cells [35] that
can easily be genetically manipulated. Even though their use presents limitations because
of their malignant origin, a comparative study between C6 cells and primary cultures of
astrocytes has shown that these cells respond similarly to certain stimuli [49]. Moreover,
accumulating evidence states that astrocyte-derived tumors actually retain or exacerbate
many key features of “normal” astrocytes, notably their metabolic plasticity [50].
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To study their adaptation to a metabolic stress, C6 cells were submitted to severe
(0.1 mM) or total (0 mM) glucose deprivation for 6 h. This differs from several other
studies where cells were exposed to transient deprivation of both glucose and oxygen as
an in vitro model of stroke to specifically study ischemic cell death [51]. Considering the
rapid reversibility of the inducible system, DOX was maintained in the culture medium at
all times, even during the deprivation step. The metabolic profiling of the cells was first
examined using the Seahorse XF analyzer, which allows one to simultaneously measure
the glycolytic and mitochondrial ATP production in living cells in order to appreciate
the contributions of both catabolic pathways. In standard culture conditions, C6 cells
showed a predominant glycolytic phenotype, which is consistent with their astrocytic
nature [14,52,53]. When deprived of glucose, the rate of ATP production was reduced,
which was clearly assigned to a considerable reduction in glycolysis. Even though this was
accompanied by a robust increase in mitochondrial ATP production, this metabolic switch
could not fully compensate the loss in glycolytic ATP. The altered metabolic profile of C6
cells maintained in the absence of glucose was also evident in the MTT assay, revealing the
vulnerability of the cells in these conditions. Strikingly, however, the total ATP content in
C6 cells was found to remain stable under stress conditions, suggesting that a decrease in
energy consumption paralleled the decrease in energy production to maintain homeostasis.
Remarkably, glucose deprivation was found to trigger the activation of AMPK in C6 cells,
as evidenced by the increase in the phosphorylation of its specific endogenous substrate
ACC, thus confirming its role as a metabolic sensor in these cells. Together, these results
highlight the resilience of these astrocyte-like cells towards metabolic stress and suggest
the implication of AMPK in their metabolic adaptation.

In astrocytes, the detection of both α isoforms of AMPK has been reported [27,28].
However, no other study has specifically detailed the relative quantification of these
AMPK isoforms in glial cells. The expression profile of endogenous AMPKα mRNAs
was herein evaluated in a model of C6-rtTA cells, in which we found a predominant
expression of the α1 isoform. These observations are consistent with studies focusing on
cancer cells in which the Prkaa1 mRNA is commonly detected [25,47], notably in high-
grade astrocytoma [54]. Moreover, high-metabolic-demand tissues, such as the liver or
the kidneys, are also characterized by an abundant expression of the α1 isoform [21]. In
the brain, Meares et al. have reported on the immunodetection of both α isoforms, with
a predominant expression of the α1 isoform in astrocytes [55]. These observations are in
accordance with our recent findings on primary cultures of astrocytes when comparing
AMPKα isoform expression by qPCR (Belo do Nascimento et al., in preparation).

Using the inducible system, we were able to manipulate the expression of the α1DN as
evidenced by a robust increase in the Prkaa1 mRNA expression after exposure to DOX. The
induction was also validated by immunoblotting, further confirming that the expression of
the recombinant protein was DOX concentration dependent. It has been suggested that
overexpression of α1DN destabilizes the endogenous AMPK complexes and promotes the
degradation of both endogenous AMPKα1 and AMPKα2 [48]. Even though this possibility
was not formally addressed, since both the endogenous α1 and α1DN isoforms are recog-
nized by the same antibodies, we found that the endogenous Prkaa1 mRNA expression was
not altered by overexpression of the α1DN. This suggests that DOX treatment has no effect
on the endogenous expression of AMPK. Besides validating the inducible expression of
the DN, the efficacy of the functional silencing of AMPK was assessed by measuring its
kinase activity in response to a stimulus. Overexpression of the α1DN partially reduced the
AMPK activity triggered by two biochemical AMPK activators, as illustrated by a lower
pACC/ACC ratio when compared to control cells.

A major observation regarding the impact of silencing AMPK on the metabolic adap-
tation of C6 cells is the inability of α1DN-expressing cells to maintain stable ATP levels
under glucose deprivation. This was observed at both time points tested, after severe
or total glucose deprivation. Similarly, these cells showed an increased vulnerability to
metabolic stress, as indicated by their reduced activity measured in the MTT assay. Data
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from both ATP and MTT assays could reflect a reduction in cell number due to reduced
viability after exposure to stress conditions. Nevertheless, it is noteworthy that silencing
AMPK activity was shown to exacerbate these outcomes, confirming their vulnerability.
The compromised metabolic adaptation of DOX-induced C6 cells was also noticeable in
a cell migration assay. Several studies have indeed suggested that enhanced astrocyte
mobility represents an adaptive mechanism in response to energetic stress [56,57]. In the
present study, even if silencing of AMPK had no effect on cell migration in standard glucose
conditions, a decreased cell motility in response to glucose deprivation was observed in
α1DN-expressing cells.

The compromised adaptive properties observed in α1DN-expressing cells are con-
sistent with their limited capacity to activate AMPK-dependent signaling pathways, as
also revealed by a reduced phosphorylation of the ACC, here used as an indicator of
the kinase activity. Preservation of the energetic homeostasis constitutes the major role
of AMPK in conditions of stress. The observation that α1DN-expressing cells are less
capable of adapting to glucose stress conditions therefore highlights the importance of
AMPK in C6 cells’ metabolism. The decrease in total ATP levels herein observed when
combining glucose deprivation and AMPK silencing is indicative of an altered balance
between ATP-consuming and -generating processes. As observed in non-induced cells,
metabolic profiling of the DOX-induced C6 cells submitted to glucose deprivation actually
revealed a similar switch towards mitochondrial activity, despite the partial silencing of
AMPK. This suggests that the loss of ATP homeostasis does not result from a decreased
production of ATP, but rather from a failure of the cell to repress ATP-consuming processes
to save energy.

AMPK activation has been suggested to regulate several ion channels and trans-
porters [58], but there is only limited evidence for a regulation of monoamine or amino
acid transporters by this enzyme. It is, however, noteworthy that the co-transport of Na+

constitutes the driving force supporting the uptake of specific substrates against their
concentration gradient, and that the extrusion of Na+ consumes substantial amount of
ATP. In a model of Xenopus oocytes expressing the glutamate transporters EAAT3 or
EAAT4, co-expression of constitutively active mutants of AMPK was shown to down-
regulate Na+-coupled glutamate transport [59]. The molecular mechanism has not been
elucidated in this study, but the implication of the ubiquitin ligase Nedd4-2 was evidenced,
and the direct phosphorylation of the EAAT transporter by AMPK was proposed. Even
though EAAT3 is expressed in C6 cells [60], our present work failed to provide evidence
of an alteration in the glutamate uptake after pharmacological activation of AMPK. These
observations suggest that the transport of glutamate is not directly regulated by AMPK.
Similar observations were reported by Voss et al. in cultured astrocytes, showing that the
pharmacological activation of AMPK was without influence on glutamate uptake or its
conversion to glutamine [61]. Furthermore, in their follow-up study in 2020, the authors
found that in hippocampal slices, AMPK activation did not alter glutamate uptake nor its
entry in the TCA cycle [29].

Considering the herein demonstrated role of AMPK in preserving ATP homeostasis in
C6 cells in conditions of metabolic stress, the silencing of AMPK could indirectly influence
the glutamate uptake capacity. Indeed, the loss of ATP could result in local alterations in
the Na+-gradient that support efficient uptake. Our data show that even in condition of
glucose deprivation, the uptake of glutamate was not altered in DN-expressing C6 cells.
This indicates either that the uptake of glutamate is highly resistant to metabolic stress in
C6 cells or that the inhibition of AMPK obtained with the dominant negative approach is
insufficient to affect this essential astrocytic function.

5. Conclusions

The present study provides evidence for the functional resistance of C6 cells when fac-
ing a metabolic stress, herein modeled by glucose deprivation. Such resilience is supported
by AMPK likely regulating the balance between the energy-producing and -consuming pro-
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cesses. Indeed, in tissues showing a high metabolic rate, such as muscle or liver, metabolic
stresses promote the activity of AMPKs that coordinate a program of energy preserva-
tion. This includes the enhancement of ATP-generating processes and the inhibition of
energy-consuming or -storing pathways, such as lipid, glycogen, and protein synthesis.
Glutamate uptake, which indirectly consumes ATP, was found to be unaltered in conditions
of metabolic stress, even when AMPK was partially silenced. As an essential astrocytic
function in the support of neuronal activities, one may hypothesize that the glutamate
uptake is not affected by adaptive processes operating in astrocytes exposed to stress.
Hence, some recent studies have shown that glutamate, which may serve as an alternative
energetic substrate for glial cells, is sufficient to pay the costs of glutamate uptake [13].

Besides oxidative stress and neuroinflammation, glutamate excitotoxicity and dysregu-
lation of energetic homeostasis are commonly implicated in the development or progression
of several neurological diseases such as Alzheimer’s disease, amyotrophic lateral sclerosis,
and chronic/neuropathic pain. Largely contributing to the protection of neurons against
these cellular insults, astrocytes are commonly pointed out as key actors in these diseases.
Recent studies have proposed AMPK as a promising therapeutic target for neurodegener-
ative diseases [31]. The need to inhibit or reinforce AMPK activity remains a question of
debate, and in this context, the absence of influence of AMPK on the activity of glutamate
transporters could be considered as an advantage.
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