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Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis

accompanied by one of three features: overweight or obesity, T2DM, or lean or normal

weight with evidence of metabolic dysregulation. It is distinguished by excessive fat

accumulation in hepatocytes, and a decrease in the liver’s ability to oxidize fats, the

accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic

damage will keep this pathophysiologic cycle active causing progression from hepatic

steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene

expression without altering DNA sequence allows us to study MAFLD pathophysiology

from a different perspective, in which DNA methylation processes, histone modifications,

and miRNAs expression have been closely associated with MAFLD progression.

However, these considerations also faced us with the circumstance that modifying

those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is

an area of great interest because it could provide new insights in therapeutic targets

and non-invasive biomarkers. This review comprises an update on the role of epigenetic

patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.

Keywords: MAFLD, NASH, DNA methylation, histone modification, miRNAs

INTRODUCTION

Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied
by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of
metabolic dysregulation (1).

MAFLD, as with the previous term NAFLD, represents the hepatic manifestation of a
multisystem disorder, whose incidence is 20–30% in the western countries (2). Currently, there
is no FDA-approved therapeutic agent for MALFD, and changes in diet and increase in physical
activity are the first-in-line treatment of hepatic steatosis (3).

Gene expression is ultimately influenced by diverse epigenetic processes, including DNA
methylation, histone modification, and expression of non-coding RNA molecules, like miRNAS.
Epigenetic changes are reversible, and lifestyle and environmental exposure can define epigenetic
patterns throughout life (4).

Epigenetic variations differ in the same individual among cell types and are associated with
disease susceptibility by producing long-term changes in gene transcription (5). Alterations in
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hepatic epigenetics significantly contribute to MAFLD
development by altering transcriptional networks implicated
in redox homeostasis, peroxisome and mitochondria function,
inflammation, insulin sensibility, and fat homeostasis. Most
important epigenetic mechanisms implicated in the development
of metabolic associated fatty liver disease are described in the
next sections.

DNA METHYLATION

DNA methylation is the covalent addition of a methyl group to
the C5 position of cytosine generating a 5-methylcytosine (5mC),
usually in cytosine–guanine dinucleotides-rich regions known
as CpG islands. In general, hypermethylation of CpG islands
is associated with gene repression, since the methyl group may
physically block binding of transcription factors to the DNA, or
it can act as a binding site for transcriptional repressors such as
histone deacetylases; whereas hypomethylation is permissive to
transcription (6). DNA methylation is catalyzed by a family of
enzymes called DNA methyltransferases (DNMTs) that transfer
the methyl group from an S-adenyl methionine (SAM) to DNA
(7). DNMT1 accounts for the recognition of the hemimethylated
strand after a cell cycle. DNMT3a and DNMT3b are responsible
for de novo methylation (8). The ten–eleven translocation (Tet)
enzymes remove the methyl group in DNA (9).

DNA methylation is the most studied epigenetic mechanism
in MAFLD. Detection of aberrant DNA methylation patterns
could provide therapeutic targets and molecular tools for
diagnosis and prediction of MAFLD (10). Several studies have
analyzed genome-wide methylation changes associated with
MAFLD, showing alterations in the methylation signature of
many genes including regulatory loci for key metabolic and
inflammatory pathways. For example, a study in humans
using liver biopsies from obese patients with MAFLD
showed methylation and expression differences in nine key
enzymes implicated in intermediate metabolism and insulin
signaling: pyruvate carboxylase (PC), ATP citratelyase (ACLY),
phospholipase C-gamma-1 (PLCG1), insulin-like growth factor
1 (IGF1), insulin-like growth factor binding protein 2 (IGFBP2),
and protein kinase C epsilon (PRKCE), putative polypeptide
N-acetylgalactosaminyl-transferase-like protein 4 (GALNTL4),
glutamate receptor delta-1 (GRID1), and inositol hexaphosphate
kinase 3 (IP6K3) (11). A similar study founded that 41 genes
responsible for lipid homeostasis were significantly and
differentially methylated, including members of the APO family
(lipid transport), genes involved in cholesterol transport like
intracellular cholesterol transporter 1 (NPC1L1), acyl-CoA, sterol
regulatory element binding transcription factor 1 (SREBF1),
StAR-related lipid transfer domain containing 5 (STARD5),
and solute carrier family 2 member 4 (SLC2A4) (12). Insulin
resistance (IR) is part of the pathophysiology of MAFLD and its
progression to NASH (13). An increased hepatic methylation of
peroxisome proliferator-activated receptor gamma coactivator-1
alpha (PPARGC1A) has been correlated with high plasma fasting
insulin levels (r = 0.51, p < 0.01) and HOMA-IR (r = 0.58, p <

0.003) in patients with MAFLD (14, 15).

DIET AND DNA METHYLATION

“Western diet” is characterized by excessive fat and sugar
consumption and seems to contribute to MAFLD pathogenesis
(16). Preclinical studies demonstrated that the consumption
of high-fat diet alters DNA methylation of gene clusters
(17) and induces hypermethylation in promoter regions of
peroxisome proliferator-activated receptor alpha (PPARA) (18),
whereas, high fructose induces hypermethylation of carnitine
palmitoyltransferase 1A (CTP1A) and PPARA genes (19) and
global hypomethylation of mitochondrial DNA (20). PPARA is
a transcriptional regulator of genes involved in mitochondrial
beta-oxidation, fatty acid transport, and hepatic production
of glucose, and PPARA hypermethylation decreased its gene
expression and induced fatty accumulation in the liver. On the
other hand, peroxisome proliferator-activated receptor gamma
(PPARG) is upregulated in diabetes, obesity, and MAFLD. Mice
fed a high-fat diet (HFD) showed a reduction of the level
of cytosine methylation Pparg promoter, DNMT activity, and
induction of hepatic Pparg expression (21).

Furthermore, Wang et al. proposed a regulatory pathway
for sugar leading to induction of lipid accumulation; Huh-7
cells administered with high-glucose showed a close relationship
between an increase in nuclear 25-hydroxycholesterol and
activation of DNMT1, which methylates cytosine of CpG in
promoter regions, suppressing expression of genes involving in
MAFLD diseases (22).

It is challenging to confirm these studies in humans; however,
a human study examined the effect of lifestyle interventions on
DNA-methylation. The participants received a regimen of either
low-fat or Mediterranean-low carbohydrates for 18 months. At
baseline, intrahepatic fat was inversely correlated with DNA-
methylation in calcium release activated channel regulator 2A
(CRACR2A), alpha-2-macroglobulin pseudogene 1 (A2MP1),
and ARH/RhoGEF and pleckstrin domain protein 1 (FARP1)
genes. In conclusion, patterns in DNA-methylation changed in
A2MP1 gene after lifestyle interventions (23).

DNA methylation patterns can be modified also by bioactive
food components. For example, methyl-group donors (B9,
B12, methionine, betaine, and choline) are required for SAM
synthesis in one-carbon metabolism. One-carbon metabolism
comprises a series of interlinking metabolic pathways that
include the methionine and folate cycles that are central to
cellular function, providing methyl groups for the synthesis of
DNA, polyamines, amino acids, creatine, and phospholipids (24).
Several studies have demonstrated that CH3 deficiency in one-
carbon metabolism is strongly associated with MAFLD (25).
In animal models, a deficient methyl-donor diet is associated
with reduced hepatic global DNA methylation and altered DNA-
methylation patterns of lipid genes associated with fatty-liver-like
phenotype such as ATP binding cassette subfamily A member 1
(Abca1), acetyl-CoA acetyltransferase 1 (Acat1), 1-acylglycerol-
3-phosphate O acyltransferase 3 (Agpat3), and angiotensin
II receptor type 1 (AGTR1) (26, 27). In contrast, dietary
methyl donor-supplementation prevents liver fat accumulation
by modifying the methylation of specific gene promoters like
Srebf2, Agpat3, and estrogen receptor 1 (Esr1) (28). Recently,
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these results were corroborated in humans; hepatic global DNA
methylation levels were significantly lower in patients with
MAFLD than in the control group, and also among participants
who were overweight. These data correlate negatively with
histological disease severity. In addition, MAFLD group had
a significant higher serum homocysteine concentration (an
indicator of methyl donor–deficient diet). This suggests that
global DNA methylation and serum one-carbon metabolites
may be markers of MAFLD status or severity (29). In patients
with type 2 diabetes, a correlation between a high number
of hypomethylated CpG sites and reduced levels of folate in
the circulation was found (30). Another study was conducted
in obese patients, associated low folate intakes with lower
calcium/calmodulin-dependent protein kinase 2 (CAMKK2)
gene methylation and IR (31).

DNA METHYLATION AS PREDICTIVE
BIOMARKERS OF DISEASE

DNA methylation in peripheral cells or ccf-DNA is a potential
biomarker to diagnose MAFLD. Hypomethylation in promoters
of protein kinase C epsilon (PRKCE) and SEC14 like lipid
binding 3 (SEC14L3) is associated with MAFLD by genome-
wide DNA methylation profiling in peripheral blood leukocytes
(32). Ma et al. reported differential methylation in 22 CpG
in genes like SLC7A11, CPT1A, SREBF1, zinc finger RNA
binding protein 2 (ZFR2), and SLC9A3R1 associated with
increase hepatic fat in European Ancestry participants (33).
Similarly, in patients with histologically confirmed MAFLD,
six differentially methylated CpG sites were identified in the
Acyl-CoA synthetase long-chain family member 4 (ACSL4),
cardiolipin synthase 1 (CRLS1), carnitine palmitoyltransferase
1A (CTP1A), single Ig and TIR domain containing (SIGIRR),
single-stranded DNA binding protein 1 (SSBP1), and zinc
finger protein 622 (ZNF622) genes compared with healthy
controls (34). Nano et al. reported an association between DNA
methylation in SLC7A11, SLC1A5, SLC43A1, phosphoglycerate
dehydrogenase (PHGDH), psoriasis susceptibility 1 candidate
1 (PSORS1C1), SREBF1, and ankyrin repeat and sterile alpha
motif domain containing 3 (ANKS3) with gamma-glutamyl
transferase (GGT) levels; while DNA methylation in SLC7A11
was associated with alanine aminotransferase (ALT) (35).
MAFLDmay progress to advanced liver disease with the presence
of fibrosis, a key histological determinant of long-term prognosis.
An observational study compared liver biopsies from patients
with mild vs. advanced fibrosis, identifying significant more
methylation in gene regulatory regions of transforming growth
factor beta 1 (TGFB1) and platelet-derived growth factor subunit
A (PDGFA) in patients with mild fibrosis, whereas PPARA and
PPARD showed considerably less methylation (36).

A previous study has demonstrated that PPARG promoter
hypermethylation correlated with severe fibrosis in liver biopsies
(37), and more recently Hardy et al. found a similar degree
of hypermethylation in the PPARG promoter in plasma ccf-
DNA and hepatocyte-rich tissue captured by laser capture
microdissection, suggesting that plasma DNA methylation of

PPARG could potentially be used as a noninvasive method
to determinate liver fibrosis severity in patients with MAFLD
(38). Also, hypomethylation in a branched chain amino
acid transaminase 1 (BCAT1) has been reported inversely
associated with fibrosis degree (39). Hypomethylation of
fibroblast growth factor receptor 2 (FGFR2), caspase 1 (CASP1),
and hypermethylation of methionine adenosyltransferase 1A
(MAT1A) were associated with advanced MAFLD in a study
of Murphy et al. (40). Parvin beta variant 1 (PARVB)
(hypomethylated in CpG26) and patatin like phospholipase
domain containing (PNPLA3) (hypermethylated in CpG99) have
also been associated with MAFLD (41). Figure 1 describes
differential DNA methylation patterns associated with MAFLD,
some of them proposed as biomarkers.

HISTONE MODIFICATIONS IN MAFLD

Histones are a family of basic proteins whose positive charges
allow them to associate with DNA in the nucleus and help
them condense it into a chromatin. The basic structural unit
of chromatin, the nucleosome (42), is formed by a pair of
each H2a, H2b, H3, and H4 histones, an octamer (43). These
histones are small globular proteins containing an N-terminal
tail that can undergo acetylation, methylation, phosphorylation,
SUMOylation, ubiquitination, or ADP-ribosylation. Multiple
histones modifying enzymes can carry out more than 60
chemical histone-modifications that affect specific DNA binding
sites, causing transcription activation or silencing of specific
genes (44).

Lysine acetylation or methylation in the N-terminal tail stands
out as the histone modifications with greatest repercussion
in gene expression (45). Acetylation is mediated by histone
acetyltransferases (HAT) and is usually associated with active
gene transcription due to its ability to decompress chromatin. For
this reaction, acetyl CoA acts as a cofactor, and subsequently HAT
catalyzes the transfer of an acetyl group to the epsilon-amino
group of lysine (46), neutralizing the positive charge of lysine and
weakening histone and DNA interactions (47). In the opposite
way, histone deacetylases (HDAC) remove acetyl groups from
lysine and thus restores the compacted form of chromatin (48).

On the other hand, histone methylation in residues in
the N-terminal tail of histones causes silencing of chromatin
and the inactivation of transcription. However, in particular
cases, methylation of histone activates gene transcription and
is associated with the initiation of chromatin remodeling (49).
The precise effect of methylation is linked to the specific residue
where the reaction takes place. The methylation process is
carried out by histone methyltransferases (HTM), which have
the ability to add one, two, or three methyl groups to lysine
or arginine residues of histones. Histone demethylases (HDM)
have the ability to remove methyl groups from histone, thus
beginning the remodeling of chromatin toward a decompressed
or active state. HDMs have been classified into two classes,
the FAD-dependent amino oxidases (LSD) and the jumonji C
demethylase (JMJD) (50). Imbalance in histone modifications
causes a disproportion in transcriptional activity associated

Frontiers in Medicine | www.frontiersin.org 3 January 2022 | Volume 8 | Article 770504

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Rodríguez-Sanabria et al. Epigenetics in MAFLD

FIGURE 1 | Aberrant DNA-methylations in MAFLD. Several studies using liver biopsies, ccf-DNA or peripheral blood leukocytes have been shown differential DNA

methylation patterns associated with MAFLD. Certain CpGs also represent attractive biomarkers for MAFLD and the prediction of progression to fibrosis.

with the development of diseases such as type 2 diabetes
mellitus, obesity, and consequently MAFLD (51). Main enzymes
involved in histone modifications that are implicated in MAFLD
development are enlisted in Figure 2.

HISTONE ACETYLATION

During IR or DM2 the risk to develop non-alcoholic fatty liver
increases due to inflammatory factors; where nuclear factor
enhancing kappa of activated B cells (NFkB) or elements of
carbohydrate metabolism that affect lipogenesis like element
binding protein carbohydrate response (ChREBP) stand out.
These factors are upregulated by someHAT (52). P300, a member
of the HAT family, is a transcriptional regulator that plays a
very important role modifying NFkB pathway. It has been shown
that inhibition of p300 improves MAFLD in mice and restores
biochemical parameters, decreases activity of genes involved in
lipogenesis, and therefore, the aberrant activity of p300 favors
MAFLD development (53). One of the main factors that is altered
by p300 is ChREBP, a protein essential for the accumulation of
fat in the liver. Bricambert et al. corroborated the interaction of
these two molecules, activating or inhibiting kinase inducible by
serine/threonine kinase 2 (SIK2), an element that regulates the
activity of p300. In HepG2 cells and mice, SIK2 inhibited p300

activity by direct phosphorylation, and therefore also decreased
the lipogenesis mediated by ChREBP. SIK2 depletion caused an
overexpression of p300 increasing lipogenesis and causing insulin
resistance, hepatic steatosis and inflammation (54). HDACs have
4 families (class I, IIa, IIb, and IV) that differ in structure,
enzymatic function, and location. HDACs play an important
role in the development of MAFLD, some with more evidence
than others. For example, HDAC1, a member of the class I
family-depleted HepG2 cells decreased sterol regulatory element
binding protein (SREBP1c) as well as, liver tissue of P50 NFkB-
subunit KO mice (55). In addition to HDAC1, the activity of
HDAC3 has also been evaluated in MAFLD and in obesity and
insulin resistance. HDAC3 regulates hepatic lipid metabolism
in the opposite way to HDAC1. HDAC3 is an important lipid
homeostatic regulator in the liver, and its loss leads to severe
hepatic steatosis in mice (56). It is key to highlight that HDAC3
also has direct interaction with molecules that participate in
the development of hepatic steatosis, such as SREBP1, key
molecule in the lipogenic process (57). In addition, HDAC3 has
a specific role in the circadian pattern of hepatic lipogenesis, a
dysregulation in this cycle mediated by SREBP1 increases the
lipogenic process (58, 59).

A well-known group of deacetylases are silent information
regulatory proteins (SIRTs), also known as Sirtuins. SIRTs are
members of the class III HDAC family and use NAD+ as a
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FIGURE 2 | Histone modifications in MAFLD. Metabolic imbalance in lipids and carbohydrates are involved in the development of MAFLD. Adipose tissue storage and

insulin resistance triggers the accumulation of free fatty acids in the liver and liver homeostasis is lost. There is a direct association between aberrant chromatin

modifications and this metabolic imbalance. Histone methylation and acetylation process, allows the activation of genes associated with the lipogenic and

inflammatory process, as well as the reduction in expression of the genes involved in the oxidation of fatty acids, enzymes responsible for these events are possible

therapeutic target for MAFLD control.

cofactor. They can interact with histones as well as non-histone
proteins and have gained interest in metabolic diseases since they
are involved in lipid homeostasis, oxidative stress, and insulin
resistance, all events implicated in MAFLD development. Sirtuin
family has 7 members characterized by their structure, enzymatic
function, and localization. SIRT 1, 2, 3, 6, and 7 are mainly found
in the nucleus, SIRT1 and SIRT2 are also in the cytoplasm, and
SIRT4 and SIRT5 in mitochondria (60).

The sirtuins with greatest association to nonalcoholic fatty
liver disease development are SIRT1 and SIRT3. Recent evidence
showed that SIRT1 is an important piece in lipid homeostasis in
the liver, and it is an agonist ligand of peroxisome proliferator-
activated receptor alpha (PPAR), promoting oxidative activity
in lipids. Sandoval-Rodriguez and Monroy-Ramirez et al. used
synthetic inhibitors and activators of SIRT1 and PPARA in
cultured HepG2 cells, demonstrating positive feedback between
both proteins, which leads to the fact that a decrease in SIRT1
favors the development of MAFLD in part due to decrease in
PPARA activity (61). The effect of SIRT1 on lipid metabolism
has been an important part of the discussion of whether it could

function as a therapeutic target for MAFLD. The activation of
SIRT1 during MALFD decreases lipids and TGs accumulation
in the liver, decreasing inflammation and lipogenic process (62).
For its part, SIRT3 is also important in MAFLD. Mice deficient
in SIRT3 and fed with HFD increased lipid levels in the liver,
promoting development of MAFLD. SIRT3 deficiency leads to
less DNA binding activity in PPARA, thereby decreasing the
production of molecules activated by PPARA; promoting fatty
acids oxidative status (63). In addition, regarding oxidative stress
and mitochondrial damage, events involved in hepatic steatosis,
SIRT3 deficiency increased oxidative stress and activation of
caspase-9 pathway. However, overexpression of SIRT3 decreases
reactive oxygen species and promotes the activation of the ERK-
CREB-Bnip3 pathway improving mitophagy (63).

HISTONE METHYLATION

Transcription silencing is linked with a compacted state of
chromatin, generally, associated with methylation of histone
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tail. Histone 3 lysine 9 (H3K9) has been associated with the
development of MAFLD, and the aberrant activity of some
methyltransferases have been associated with this process (51).

Histone–lysine N-methyltransferase SUV39H2, an enzyme
capable of adding mono, di, and trimethylated labels to H3K9,
has a fundamental role in the activation of inflammatory
pathways. Also, it can reduce the activity of SIRT1 causing NASH
progress. SUV39H2 activity was analyzed in KOmice fed a HFD,
and they developed hepatic steatosis of less severity compared
with the wild type for this enzyme (64).

In addition, there is also a relationship between the
development of hepatic steatosis and methylation of histone 3
lysine 4 (H3K4) by myeloid/lymphoid or mixed-lineage leukemia
4 (MLL4) methyltransferase. It was shown that in overnutrition
conditions, MLL4 provokes H3K4 methylation facilitating
interaction with targets of peroxisome proliferator-activated
receptor gamma 2 (PPARy2), which promotes lipogenesis (65).

On the other hand, the activity of methylases has also been
studied in MAFLD. Clear evidence of the direct effect of JMJD2B
on histone mark H3K9 has demonstrated the importance of
this enzyme in the lipogenic process during MAFLD, with
the interaction of PPARG2 and the ligand-activated liver X
receptor alpha (LXRa). JMJD2B removes the trimethylated and
dimethylated marks, leaving the monomethylated mark of H3K9,
causing activation of PPARG2 and its target genes increasing
the hepatic lipogenic process (66). The same situation occurs
with Liver X receptor alpha (LXRA). It has been shown that the
overexpression of JMJD2B increases the activity of this receptor,
inducing intracellular accumulation of triglycerides and thus
MAFLD development (67).

Another molecule that has a demethylase function and that
has been associated with the progression of MAFLD is JMJD1C.
In the same way, the interaction of this enzyme with the
histone mark H3K9, removing repressive marks, promotes the
transcription of genes, inducing lipogenesis and accumulation
of hepatic fatty acids. It has been shown that the mammalian
Target of Rapamycin (mTOR) complex phosphorylates JMJD1C,
allowing interaction with upstream stimulatory factor 1 (USF1),
a molecule that activates lipogenic genes and is associated with
familial hyperlipidemia (68).

On the contrary, the activity of JMJD3 has been associated
with the disease improvement; it removes the repressive mark of
histone 3 lysine 27 (H3K27) leaving it in its dimethylated form
(H3K27me2), promoting chromatin remodeling, and in turn,
working together with SIRT1, to promote PPARA activation. This
evidence was obtained in fasting conditions, and genes involved
in gluconeogenesis pathway had no relevant activity, but these
facts open up the possibility of a new therapeutic target (69).

microRNAs

microRNAs (miRNAs) are single-stranded non-coding RNAs
of 18–25 nucleotides long that can regulate gene expression at
posttranscriptional level by inhibiting translation or inducing
degradation of target mRNAs through complementary base-
pairing (70). miRNAs account for 1–5% of the human genome

and regulate at least 50% of protein coding genes in mammals
(71). To date, more than 2,800 human miRNAs have been
registered in the miRBase 22.1, which are predicted to regulate
up to 60% of the human genes. About 50% of miRNAs
are transcribed from protein coding genes, mostly intragenic
regions particularly introns and few exons. The other half are
intergenic, transcribed independently, and regulated by their
own promoters. Each miRNA can regulate several target genes,
and vice versa, and each target gene can be regulated by various
miRNAs, explaining why miRNAs can play crucial functions
in essentially all biological processes and in all cell types (72).
Evidence have demonstrated that miRNAs are implicated as
important mediators in metabolic diseases including obesity,
DM2, metabolic syndrome, and metabolic associated fatty liver
disease (MAFLD) (73–75). Figure 3 summarizes upregulated
miRNAs involved in pathogenesis and development of MAFLD.

miRNAs IN OBESITY

Several miRNAs including miR-27b, miR-33, miR-34a, miR-122,
and miR-223 are important regulators in fatty acid metabolism
and cholesterol biosynthesis in the liver (76). Specifically, miR-33
plays a key role in cholesterol homeostasis thought suppression
of sterol regulatory element-binding protein 1 (SREBP1), high
density lipoprotein formation, fatty acid oxidation, and insulin
signaling (77).

miR-27b-3p exert regulatory effects in lipid metabolism and
is altered in dyslipidemia (78). In high-fat diet model of obesity,
miR-27b-3p suppress adipose tissue browning. Due to this key
role in promoting body fat accumulation miR-27b-3p should be
further explored as a potential target for the treatment of central
obesity and linked diseases (79).

miR-122 is the most abundant miRNA in the liver, and has a
key role in liver metabolism, cholesterol biosynthesis, fatty acid
synthesis, and oxidation (80). It should be noted that miR-122
was the first miRNA to be associated with metabolic regulation
(81). Long JK et al. found that miR-122 promoted hepatic
lipogenesis inhibiting LKB1/AMPK pathway by targeting SIRT1
in HepG2 and Huh-7 cells cultured with free fatty acids (FFA)
(82). miR-122 was downregulated in steatotic-FFA-induced
hepatocytes, and nonalcoholic steatohepatitis mice model
using streptozotocin and HFD (STZ- HFD). Besides, miR-122
showed an important role in hepatic triglyceride accumulation
reducing YY1 mRNA stability causing upregulation in FXR-SHP
signaling (83).

miR-34a has been reported as a probable tumor suppressor
in numerous types of cancers (84). miR-34a is upregulated in
MAFLD and is an essential regulator of lipid metabolism (85). In
a work by Ding et al., miR-34a levels were increased in L02 cells
transfected with miR-34a inhibitor and C57BL/6 mice injected
with a miR-34a inhibitor. Ppara and Sirt1, which are target
genes of miR-34a, were downregulated after miR-34a inhibitory
treatment, provoking triacylglycerides, liver index, and activated-
AMPK pathway decrease (86). In adipose tissue it has been
reported that miR-34a expression gradually increases as dietary
obesity develops. In miR-34a–KO mice glucose intolerance,
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FIGURE 3 | Upregulated miRNAs involved in pathogenesis and development of MAFLD. Schematic illustration of selected miRNAs shows the impact on the

stimulatory effect on target genes implicated in obesity, metabolic dysregulation and cardiovascular dysfunction. Insig 1, insulin induced gene 1; Crot, carnitine

O-octanoyltransferase; Hadhb, hydroxyacyl-coa dehydrogenase trifunctional multienzyme complex subunit beta; Ppar, peroxisome proliferator activated receptor;

Pparg, peroxisome proliferator activated receptor gamma; Pparg2, peroxisome proliferator activated receptor gamma 2; aP2, activating protein 2; Glut4, glucose

transporter type 4; Srebf1, sterol regulatory element binding transcription factor; Sirt1; sirtuin 1; Cav1, caveolin 1; Cpt1a, carnitine palmitoyltransferase 1A; Col1a1,

collagen type I alpha 1 chain; Tgfb, transforming growth factor beta; Irs2, insulin receptor substrate 2; Sirt6, sirtuin 6; Crgf, teratocarcinoma-derived growth factor 1;

Smad4, SMAD Family Member 4; Stx6, syntaxin 6.

insulin resistance, and systemic inflammation were present in
epidydimal white adipose tissue (epiWAT).

Interestingly, increased miR-34a expression causes adipose
inflammation principally by reduced expression of Klf4, resulting
in suppressive effects on M2 macrophages polarization. Besides,
it was found that high expression of miR-34a in visceral fat of
overweight/obese patients correlated negatively with diminished
Klf4 (87).

miR-33 is a key regulator of lipid metabolism by targeting
genes involved in cholesterol uptake and efflux in the liver,
fatty acid metabolism Cpt1, Crot, Hadhb, insulin signaling IRS2

and mitochondrial function Ampk, Pgc1a (88–90). miR-223
could inhibit cholesterol biosynthesis in mice through negative
regulation of the 3-hydroxy-3-methylglutaryl-CoA synthase 1
(Hmgcs1) and the sterol-C4-methyloxidase-like protein (Sc4mol).
Besides, miR-223 decreased high-density lipoprotein-cholesterol
(HDL-C) uptake by targeting the scavenger receptor class
B member 1 causing ABCA1 expression increase that rise
cholesterol efflux (91). Otherwise, miR-223 targets include

inflammatory and oncogenic genes like CXCL10 and TAZ, data
obtained in hepatocytes of high fat diet fed mice and in NASH
patient livers. Therefore, miR-223 could protect against NASH
development 322 (92).

A recent study by Zhang et al. reported that overexpression
of miR-802 downregulates insulin transcription and secretion,
as well as impairs glucose tolerance, suggesting a role of miR-
802 in the development of obesity-associated β cell dysfunction
(93). Several studies have reported that miR-221 is upregulated in
adipose tissue from obese patients (94, 95). Peng et al. suggested
that miR-221 promotes white adipose tissue inflammation
and reduces insulin sensitivity in obesity while suppressing
SIRT1 (96).

miRNAs IN METABOLIC ALTERATIONS

Some miRNAs are crucial in MAFLD progression and metabolic
alterations including waist circumference, blood pressure, serum
triglycerides, and HOMA levels (97).
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During adipogenesis, miR-425 expression is controlled by
Pparg in adipocytes. miR-425 overexpression resulted in a
proliferation reduction of 3T3-L1 preadipocytes, but accelerated
cellular adipogenic differentiation. miR-425 also influences
adipogenesis inhibiting its target gene Mapk14,a negative
regulator of adipogenesis (98).

miR-107 is known to regulate insulin sensitivity in mouse
models mainly by altering liver metabolism. miR-107 has a
key role in lipid metabolism, inhibiting CDK6 expression and
its downstream targets, reducing adipogenesis in preadipocytes.
Besides, it has been proposed that miR-107 promotes ectopic
fatty acid accumulation and reduced glucose tolerance since
miR-107 decreased glucose uptake and triglycerides synthesis in
mature adipocytes (99). In a work carried out by Okamoto et
al., serum miR-379 expression was upregulated in patients with
MAFLD compared with healthy individuals. Serum levels ofmiR-
379 showed positive correlations with alkaline phosphatase, total
cholesterol, low- density-lipoprotein cholesterol, and non-high-
density lipoprotein cholesterol levels in patients with early stage
MAFLD (100).

miR-126a has been validated as a biomarker in obesity and
related metabolic disease in women by Vonhögen et al. Thus,
circulating levels of miR-216a are predictive factors for obesity.
Interestingly, they found the obesity predisposition locus, the
miR-216a gene that includes CpG islands with differential DNA
methylation levels among obese and non-obese children, and is
related with differential circulating miR-216a plasma levels in
obese and non-obese women (101).

Remarkably, Lin et al. demonstrated that miR-144
targets Foxo1, thus reducing its expression and inhibiting
its promotional effect on adiponectin, thereby alleviating
the inhibitory effect of adiponectin on adipogenesis in an
experimental model (102). A study performed by Komaya et al.
reported that miR-33b showed high expression in the liver, and
its expression was increased in response to cholesterol overload,
using genetically modified mice, miR-33 knockout mice, and
miR-33b Knock in mice; as a result, miR-33b showed increased
atherogenic potential (103).

Basic and clinical evidence has shed light on the
association between MAFLD and cardiovascular diseases
(CVD) (104); in this context, increased plasma miR-
1 was found to be associated with myocardial steatosis
and it has been suggested to be a biomarker for diabetic
cardiomyopathy (105).

A recent work carried out by Jiang et al. reported that miR-1
expression was increased in liver tissues and primary hepatocytes
derived from a diet-induced obese mice, as well as, selective
increase of miR-1 expression in EVs derived from steatotic
hepatocytes (106). Several studies have shown that miR-26a is
highly associated to cardiovascular diseases. Zhang et al. reported
that miR-26a prevented blood pressure elevation and inhibited
myocardial fibrosis using hypertensive animal models (107).
Figure 3 schematizes crucial miRNAs involved in pathogenesis
and development of MAFLD, considering key parameters such
as obesity, type 2 diabetes mellitus, and metabolic alterations
(hypertension, high level of triglycerides and cholesterol, and
HOMA). Table 1 lists the miRNAs implicated in crucial

TABLE 1 | miRNAs implicated in crucial key process in MAFLD and their potential

target genes.

miRNAS Expression in

MAFLD

Potential target genes References

miR-24 Upregulated Insig1, Srb1 (108, 109)

miR-33a/b Upregulated Crot, Hadhb, Irs2, Sirt6,

Dusp1, Tfrc, Abca1, Ski,

Hipk2

(103, 110)

miR-27b Upregulated Ppar, Acot2 (111)

miR-192 Downregulated Scd1 (82)

miR-122 Upregulated Pparg, Agpat1, Dgat1,

Cpeb1,Sirt1

(112, 113)

miR-144 Upregulated Abca1 (114)

miR-148a Upregulated Ldlr, Pgc1a, Insig1 (115)

miR-223 Upregulated Glut4, Nlrp3, Igf1r, Cxcl10 (116)

miR-145 Downregulated Klf4 (117)

miR-21a Upregulated Srebf1, Smad7, Ppara (118, 119)

miR-107 Upregulated Cav1, Srebf1, Cpt1a (120)

miR-34a Upregulated Sirt1, Hnf4a, Ppara (86, 121)

miR-29 Upregulated Col1a1, Tgfb, Sirt1 (122)

miR-26a Upregulated Crgf, Smad4, Eif2a (123)

miR-1 Upregulated Stx6 (124)

Insig1, insulin induced gene 1; Srb1, scavenger receptor class B type 1; Crot,

carnitine O-octanoyltransferase; Hadhb, hydroxyacyl-coA dehydrogenase trifunctional

multienzyme complex subunit beta; Irs2, insulin receptor substrate 2; Sirt6, sirtuin 6;

Dusp1, dual specificity phosphatase 1; Tfrc, transferrin receptor; Abca1, ATP binding

cassette subfamily A member 1; Ski, SKI Proto-Oncogene; Hipk2, homeodomain

interacting protein kinase 2; Ppar, peroxisome proliferator activated receptor; Acot2, acyl-

CoA thioesterase 2; Scd1, stearoyl-CoA desaturase 1; Pparg, peroxisome proliferator

activated receptor gamma; Agpat1, 1-acylglycerol-3-phosphate O-acyltransferase 1;

Dgat1, Diacylglycerol O-Acyltransferase 1; Cpeb1, cytoplasmic polyadenylation element

binding protein 1; Sirt1, sirtuin 1; Glut4, glucose transporter type 4; Nlrp3, NLR family

pyrin domain containing 3; Igf1r, insulin like growth factor 1 receptor; Cxcl10, C-X-C

motif chemokine ligand 10; Smad7, SMAD Family Member 7; Klf4, Kruppel Like Factor 4;

Ppara, peroxisome proliferator activated receptor alpha; Cav1, caveolin 1; Srebf1, sterol

regulatory element binding transcription factor 1; Cpt1a, carnitine Palmitoyltransferase

1A; Hnf4a, Hepatocyte Nuclear Factor 4 Alpha; Col1a1, collagen Type I Alpha 1 Chain,

Tgfb, transforming Growth Factor Beta 1; Crgf: teratocarcinoma-derived growth factor 1;

Smad 4: SMAD Family Member 4; Eif2a, eukaryotic Translation Initiation Factor 2A; Stx6:

syntaxin 6.

key process in development of MAFLD and their potential
target genes.

CLINICAL TRIALS INVOLVING miRNAs
FOR HEPATIC DISEASES

In the last decade, various miRNA-based therapeutics have been
tested in different clinical trials. The first anti-miRNA drug for
the treatment of hepatitis C is a locked nucleic acid (LNA) that
inhibits miR-122, called Miravisen. Miravirsen inhibits miR-122
biogenesis and repressed HCV infection. miR-122 has a critical
role in the life cycle of HCV due to the fact that miR-122 binds
to two target sites (S1and S2) at the 5’ end of the HCV genome,
forming an oligomeric miR-122–HCV complex that protects the
HCV genome from nucleolytic degradation or from host innate
immune responses. Besides, at least three additional target sites
in 3’-untranslated region of HCV genome have not been of
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TABLE 2 | Clinical trials using miRNAs for hepatic diseases.

Start year miRNA

source/type

Study type Characteristics Status ClinicalTrials

identifier

Authors

2021 Panel of circulating

miRNAs (not

specific)

Observational cohort

prospective

Early detection of hepatocellular

carcinoma (HCC): miRNA,

microbiome and imaging

biomarkers in the evolution of

chronic liver disease in a

high-risk

Recruiting NCT04965259 Pierce Chow, et al.

2020 Serum circulating

miRNAs

Observational cohort

prospective

Hepatic microRNA expression in

non alcoholic fatty liver disease

Not yet recruiting NCT04574557 Nourhan

M.Abbas, et al.

2019 miRNA profile (not

specific)

Observational

case-only prospective

Expression and variance of

microRNAs in a cohort of

patients with acute

decompensation of cirrhosis

Recruiting NCT03905746 Fanny Lebossé

et al.

2017 Serum circulating

miRNAs

miR-122-5p,

miR-126a-3p,

miR-193a-5p,

miR-222-3p

Interventional clinical

trial randomized parallel

assignment

Effects of a combination of

prebiotic fibers on weight loss

during an energy restricted diet in

an overweight/obese population

Completed NCT03135041 Thomas M. Larsen

et al.

2016 Plasma circulating

miRNA panel

Observational

prospective cohort

Comparative study of circulating

microRNA changes in patients

with liver injury and healthy

subjects

Recruiting NCT03000621 Huang Jian et al.

2016 anti-miR-103/107

(RG-125)

Interventional clinical

trial randomized parallel

assignment single

masking

Study to assess the safety,

tolerability, pharmacokinetics and

pharmacodynamics of AZD4076

following multiple ascending

dose administration to T2DM

Subjects with NAFLD

Completed

recruiment

NCT02826525 Linda Morrow

et al.

2015 Serum miRNAs Interventional

randomized parallel

assignment

Impact of IL-28B rs12979860

and rs4803217 gene

polymorphisms associated with

miRNAs deregulation on

HCV-related hepatocellular

carcinoma

Not yet recruiting NCT02507882 Waleed Samir,

et al.

2013 Liposomal

injection of

miR-34a mimic

Interventional clinical

trial single group

assignment open label

A multicenter phase I study of

MRX34, MicroRNA miR-RX34

Liposomal Injection

Completed five

immune related

serious adverse

events

NCT01829971 O’Neill Vincent,

et al.

2010 antimiR-122

(Miravirsen)

Interventional clinical

trial randomized parallel

assignment Double

masking

Multiple ascending dose study of

miravirsen in treatment-naïve

Chronic Hepatitis C subjects

Phase II NCT01200420 Zeuzem et al.

functional importance (125). Currently, anti-miR-122 safety and
effectiveness is being evaluated in a phase II clinical trial (126).

RG-101 is another novel anti-miR 122 for the treatment
of hepatitis C virus. It is an N-acetylgalactosamine (GalNAc)-
conjugated oligonucleotide. RG-101 repressed replication of
HCV genotypes 1a and 1b in replicon systems. However, the
precise mechanism of HCV suppression by RG-101 is not yet
identified (127). Currently, RG-101 has reached the phase 1B
clinical trial (128, 129).

Another miRNA-based therapeutic, a GalNAc conjugated
anti-miR 103/107, called RG-125 (AZD4076) is an insulin
sensitizer to treat patients with metabolic diseases such as type 2
diabetes andNASH. It has been reported that RG-125 normalized
glucose tolerance and improvedHOMA-IR in obese-diet induced

mice compared with the control group. RG-125 treatment also
reversed the extreme hyperglycemia that develops with age in
db/db mice (130). Table 2 lists the clinical trials using miRNAs-
based drugs registered in the ClinicalTrials.gov web site (August
2021) for liver diseases.

CONCLUSION AND PERSPECTIVES

Metabolic dysfunction associated fatty liver disease is currently
a global health problem, epidemically associated to obesity,
metabolic syndrome, and type II diabetes mellitus. MAFLD
development and progression involves several genetic and
environmental factors including epigenetics. Epigenetics
includes an extensive amount of events such as methylation in
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CpGs, chemical modification of histones, and posttranscriptional
gene regulation by the modification of mRNA stability through
short noncoding RNAs such as miRNAs. In latest years,
epigenetic modifications in DNA and histone have been studied
as essential mechanisms that modify the development of
liver diseases including MAFLD. Hence the dysregulation
of epigenetic modifications has a critical role in MAFLD
progression since it regulates the expression and activity of
various genes implicated in lipid metabolism, insulin resistance,
DNA repair, and inflammatory process that enhance the
pathogenesis of MAFLD (10, 131). Currently, it has been
demonstrated that miRNAs involved in lipid synthesis, fatty
acid, and glucose catabolism and inflammation are dysregulated
in MAFLD being useful as biomarkers (132). Moreover, it has
been suggested that precise methylation patterns in DNA may
be used as a predictor or diagnostic for MAFLD progression
(133). Besides, the crucial paper of numerous micronutrients
seems necessary to maintain DNA methylation homeostasis, as
they act as cofactors of a variety of enzymes involved in DNA
methylation, synthesis, and repair (134). To date, no therapeutic
strategy is approved for the treatment of MAFLD, and lifestyle
modifications, physical exercise, and weight loss account as
the keystone therapeutics for patients with MAFLD. Certainly,
a profound understanding of the molecular mechanisms
related to gene expression, epigenetic modifications, and

environment interactions ought to be a main concern for future
studies. Overall, further basic research is necessary to improve
mechanistic knowledge of the epigenetic processes and their
interactions, their dysregulation in MAFLD, and the molecular
and cellular response to epigenetic-based therapies. These
studies together with clinical trials will enhance epigenetic-based
personalized medicine. In conclusion, research in this area is in
constant advance; however, there is still more to study to increase
our understanding in MAFLD.
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