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Summary

Genome-wide association studies (GWAS) have detected large numbers of variants associated with complex human traits
and diseases. However, the proportion of variance explained by GWAS-significant single nucleotide polymorphisms
has been usually small. This brought interest in the use of whole-genome regression (WGR) methods. However, there
has been limited research on the factors that affect prediction accuracy (PA) of WGRs when applied to human data
of distantly related individuals. Here, we examine, using real human genotypes and simulated phenotypes, how trait
complexity, marker-quantitative trait loci (QTL) linkage disequilibrium (LD), and the model used affect the performance
of WGRs. Our results indicated that the estimated rate of missing heritability is dependent on the extent of marker-QTL
LD. However, this parameter was not greatly affected by trait complexity. Regarding PA our results indicated that: (a) under
perfect marker-QTL LD WGR can achieve moderately high prediction accuracy, and with simple genetic architectures
variable selection methods outperform shrinkage procedures and (b) under imperfect marker-QTL LD, variable selection
methods can achieved reasonably good PA with simple or moderately complex genetic architectures; however, the PA of
these methods deteriorated as trait complexity increases and with highly complex traits variable selection and shrinkage
methods both performed poorly. This was confirmed with an analysis of human height.

Keywords: Whole genome regression, prediction accuracy, variable selection, shrinkage estimation, linkage disequi-
librium, genetic architecture, missing heritability

Introduction

The availability of genomic data has revolutionised the statis-
tical analysis of human diseases and traits. The development
of methods that can accurately predict the genetic risk as-
sociated with these diseases and complex human traits can
have a great impact on public health (e.g., Guttmacher et al.,
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2002; Simon-Sanchez et al., 2009). Modern genotyping and
sequencing technologies can deliver massive amounts of in-
formation about the human genome, which are necessary for
the prediction of genetic risk. However, the incorporation of
genomic data into prediction remains challenging.

In recent years, a large number of genome-wide as-
sociation studies (GWAS) have been conducted (e.g.
http://www.genome.gov/gwastudies/). These studies have
identified unprecedented numbers of variants associated with
important complex traits and diseases. In some cases, the vari-
ants identified so far explain a sizable proportion of the vari-
ance of the trait or disease. Examples of these include Crohn’s
disease, age-related macular degeneration and Type I diabetes
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(Manolio et al., 2008; Goldstein, 2009). However, for the
great majority of traits and diseases, the variance accounted
for by GWAS hits is small, regardless of whether they are
moderately or highly heritable (Allen et al., 2010). Conse-
quently, the use of genomic information for prediction of
risk for diseases with complex genetic architectures remains
limited. This problem, the so-called “missing heritability” of
complex traits, has been discussed extensively by multiple au-
thors (e.g., Maher, 2008; Manolio et al., 2009; Eichler et al.,
2010).

Although several factors contribute to the “missing her-
itability” problem, a major explanation resides in the lack
of power of standard GWAS to detect small-effect variants.
Recent studies have shown that prediction accuracy can be
improved by including in risk scores information of allele
content at variants that show suggestive, albeit not statistically
significant, association with the trait or disease being studied
(Allen et al., 2010). However, most risk score methods are
still based on a limited number of loci and alleles at differ-
ent loci that are either equally weighted or weighted using
statistics derived from single-marker-based association tests.
Several authors (de los Campos et al., 2010; Yang et al., 2010;
Makowsky et al., 2011; Speed et al., 2012) have suggested
that a potentially better approach may consist of regressing
phenotypes on whole-genome markers simultaneously using
a whole-genome regression (WGR) approach like the one
originally proposed by Meuwissen et al. (2001).

WGR has been used with human data for estimation of
the proportion of variance that can be explained by regres-
sion of phenotype on markers (e.g., Yang et al., 2010; Speed
et al., 2012) and for the assessment of prediction accuracy
(e.g., Makowsky et al., 2011; de los Campos et al., 2013b).
Using a genomic best linear unbiased predictor (GBLUP)
model and data from distantly related individuals, Yang et al.
(2010) showed that simultaneous regression on a large set of
�300,000 common single nucleotide polymorphisms (SNPs)
could explain roughly 50% of the heritability of human
height. This encouraging result suggested that a large frac-
tion of the missing heritability could be recovered by using
regression methods based on large panels of whole-genome
markers.

Accuracy of prediction of yet-to-be observed phenotypic
or disease outcomes is arguably one of the most important fea-
tures of a model when it comes to potential use of the method
for precision medicine. It is well established that prediction
accuracy of WGR methods is highly affected by genetic re-
lationships (e.g., Makowsky et al., 2011) and it is not clear
whether WGR methods that have been proved accurate for
prediction of complex traits with family data (VanRaden et al.,
2009; Crossa et al., 2010; Makowsky et al., 2011) will also be
effective when applied to distantly related individuals, which
are often of interest in human genetic applications.

According to Goddard (Goddard & Hayes, 2009), when
WGR is applied to distantly related individuals, the predic-
tion accuracy depends on two main factors: (1) the proportion
of variance that can be explained by regression on the marker
set (this depends largely on the extent of linkage disequilib-
rium (LD) between alleles at the markers and those at causal
loci and, according to Yang et al. (2010) could be estimated
using variance components), and (2) the accuracy of estimates
of marker effects. These are two opposing forces: as we add
more markers in the prediction equation the proportion of
variance explained by markers potentially increases; however,
more marker effects need to be estimated and the individual
accuracy of estimates of effects will typically decrease. There-
fore, in finite samples is not exactly clear that methods that
have a higher proportion of variance explained in the training
data will also be best for prediction of yet-to-be-observed out-
comes. For example, in a recent study on prediction of human
height using GBLUP, de los Campos et al. (2013b) showed
that, with distantly related individuals, prediction accuracy in-
creased as markers were added to the model up to a saturation
point beyond which it decreased. This result suggests that the
analysis and prediction of complex traits may benefit from
the use of models that combine variable selection and shrink-
age within a single framework.

In the last two decades, important developments in the
area of penalised and Bayesian estimation procedures have led
to a number of methods for implementing large-p-small-n re-
gressions, including various methods that combine shrinkage
estimation and variable selection. An overview of different
penalised methods can be found in Hastie et al. (2005) and
an overview of Bayesian methods for variable selection and
shrinkage estimation (with a focus on genetic applications) is
given by Gianola (2013) and de los Campos et al. (2013a).
In animal and plant breeding, use of these methods has led
to a substantial improvement in prediction accuracy (Habier
et al., 2011; Heslot et al., 2012). Several studies have com-
pared shrinkage and variable selection methods from a pre-
dictive perspective in animal and plant breeding applications
(e.g., Habier et al., 2007; Calus et al., 2008; Verbyla et al.,
2009; Daetwyler et al., 2010; Gao et al., 2013; Wimmer et al.,
2013). Simulation studies have suggested superiority of vari-
able selection methods over shrinkage estimation procedures.
However, real data have not always confirmed that (de los
Campos et al., 2013a) and in empirical analyses the predic-
tive performance of different regression methods has been
very similar, perhaps reflecting the fact that the architecture
of most traits is more complex than often assumed in simula-
tion studies. Most of the studies in plant and animal breeding
are based on family data. The few studies (e.g., Habier et al.,
2007; Gao et al., 2013 in breeding populations and Makowsky
et al., 2011 or de los Campos et al., 2013a with human data)
that have assessed prediction accuracy with distant relatives
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have found that the prediction accuracy of WGRs models
deteriorates quickly as the genetic distance between training
and testing populations increases. In principle, variable selec-
tion methods are better suited to detect variants that are in
strong LD with QTL, and this should make these methods
more robust with respect to the effects of genetic distance on
prediction accuracy (e.g., Habier et al., 2007).

However, the performance of these methods for prediction
with human data so far has not been studied in detail. Indeed,
in applications involving human data, most of the studies
(Yang et al., 2010; Makowsky et al., 2011; de los Campos
et al., 2013b) have used ridge-regression type estimators that
do not involve variable selection or differential shrinkage of
estimated effects. Zhou et al. (2013) used WGR models that
combine variable selection and shrinkage using data from
distantly related individuals; unfortunately, the study did not
evaluate the prediction accuracy. Importantly, the factors that
affect prediction accuracy in the analysis of family data can
be different than those that affect prediction accuracy when
training and validation samples are distantly related. Indeed,
with family data, co-segregation of alleles at markers and at
quantitative trait loci (QTL) plays a major role, and can induce
linkage between markers and QTL at distant positions. Under
these conditions, variable selection is difficult to perform and
may not be needed because signals generated by QTL can be
tracked by markers that are far apart from a QTL. This type
of linkage is not present when training and validation samples
are distantly related, and we lack research about the relative
effectiveness of shrinkage and variable selection methods with
data from distantly related individuals.

Therefore, the main goal of this study was to assess the
predictive performance of different types of WGR methods,
including both shrinkage estimation procedures and meth-
ods that perform variable selection, when used for prediction
of complex traits and with distantly related individuals. We
considered three statistical methods that differ in the prior
distribution of marker effects and consequently yield different
types of estimates. First, a model with Gaussian distribution of
marker effects (the GBLUP) was used; this ridge-regression-
type method induces homogeneous shrinkage of marker ef-
fects. Second, a scaled-t prior for marker effects (labelled as
Bayes A by Meuwissen et al., 2001) was used; a method
that induces an effect-size dependent shrinkage of estimates
(Gianola, 2013). Finally, a Spike-Slab model (e.g., George &
McCulloch, 1993; Ishwaran & Rao, 2005) was used, which
combines variable selection and shrinkage. Recent method-
ological developments introduced by Zhou et al. (2013) allow
implementation of a Spike-Slab model even with a very large
numbers of markers.

The performance of these methods was assessed with sim-
ulated and real data. Our simulation comprised different sce-
narios pertaining to the complexity of the trait (in terms of

number of large-effect loci) and the pattern of LD between
markers and causal or QTL. The results obtained from sim-
ulation studies were validated by analysis of human height
measured on distantly related individuals.

Materials and Methods

In the classical quantitative genetic model, a continuous trait
yi is described as a sum of three components: the population
mean (μ), a random component reflecting the genetic factors,
the so-called genetic value ui , and a random model residual
(εi ) usually assumed to be identically and independently nor-
mal distributed with zero mean and variance σ 2

ε .
In genomic models, the genomic values ui are approxi-

mated using regressions on marker genotypes. For instance,
in an additive model one can set ui = ∑p

j=1 Xi j β j , where
Xi j ∈ {0, 1, 2} represents the allele dosage at the jth locus of
the ith individual and β j represents the corresponding marker
effect. Thus, the model for p markers can be expressed as:

yi = μ +
p∑

j=1

Xi j β j + εi , i = 1, . . . , n. (1)

In WGR methods, the number of effects to be estimated
can vastly exceed the number of data points (i.e., p � n).
Thus, the estimation of effects in the model described above
requires the use of some type of regularised regression pro-
cedure such as penalised or Bayesian regression. In Bayesian
regressions, the type and extent of shrinkage of estimates of
effects is controlled by the choice of prior for marker effects.

To cover a wide range of methods, in this study we consid-
ered two extreme approaches (GBLUP a shrinkage estimation
procedure and the Spike-Slab, a method that combines vari-
able selection and shrinkage) and an intermediate one (Bayes
A) that induce differential shrinkage of estimates of effects.

The GBLUP model is obtained by assigning independent
identically distributed (IID) normal before the marker effects,
that is: β j ∼ N(0, σ 2

β ), j = 1, . . . , p . This approach yields
estimates equivalent to those from ridge regression, where
all effects are shrunk toward zero to a similar extent. Using
the expectation of ith phenotype yi (given the genotypes and
marker effects), and the genomic value ui = ∑p

j=1 Xi j β j ,
we rewrite equation (1) as yi = ui + εi , i = 1, . . . , n. Thus,
the genomic value is also normal: u ∼ N(0, σ 2

u G) with a
genomic relationship matrix, which is obtained as a cross
product of genotype readings G = {Gik} = 1∑

j 2p j (1−p j )
XX′

[p j is the minor allele frequency (MAF) at the jth locus] and
a genomic variance component σ 2

u = ∑p
j=1 2p j (1 − p j )σ 2

β .
Therefore, the GBLUP could be implemented in Bayesian
settings as a random effect model with a variance–covariance
structure represented by σ 2

u G + σ 2
ε I, assuming for example a
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scaled inverse χ2 density as a prior distribution for variance
components σ 2

u and σ 2
ε .

Above we described the GBLUP model that one obtains
by regressing phenotypes on markers using IID normal priors
for marker effects. This model can be fitted by either regress-
ing phenotypes on markers explicitly, or using an equivalent
model based on a genomic relationship matrix G ∝ XX′.
Some authors (Speed et al., 2012) have proposed alternative
ways of computing genomic relationships that account for
LD; therefore, we also fitted the GBLUP model applying the
method proposed by (Speed et al., 2012) to compute G using
the LDAK software (available at http://dougspeed.com/); we
refer to this method as to GBLUP-ldak.

In Bayes A, markers are assumed to follow IID scaled-t den-
sities (an example for t-scaled prior with 5 degrees of freedom
is given in Fig. S1). In practice it is convenient to represent
this density as an infinite mixture of scaled-normal densi-
ties: t (β j |df , S) = ∫

N(β j |0, σ 2
β j

)χ−2(σ 2
β j

|df , S)∂σ 2
β j

, where
N(β j |0, σ 2

β j
) is a normal density with null mean and variance

σ 2
β j

and χ−2(σ 2
β j

|df , S) is a scaled-inverse χ2 density with de-
gree of freedom df and scale parameter S (e.g., Gianola et al.,
2009).

In the Spike-Slab model, the prior assigned to marker ef-
fects is a mixture of two distributions: one (the spike) with
small variance concentrated around zero that corresponds to
small or no effects and the other (the slab) is a flat distri-
bution with large variance that is linked to large marker
effects. The spike can be represented by a continuous dis-
tribution centred at zero and with very small variance or
by a point mass at zero. We concentrate on the prior in-
troduced by George and McCulloch (1993), a mixture of
two normal distributions. Conditional on the proportion
of large effects, π , and on variance parameters, the dis-
tribution of marker effects is given by p (β j |π, σ 2

β1
, σ 2

β2
) =

πN(β j |0, σ 2
β1

) + (1 − π )N(β j |0, σ 2
β2

), where σ 2
β1

reflects the
variability in large effects and σ 2

β2
is the variance component

of small effects. An example for π = 0.15 is represented in
Figure S1.

Recently, Zhou et al. (2013) proposed an efficient method
to implement the Spike-Slab model. In their approach, called
Bayesian sparse linear mixed model (BSLMM), they repre-
sent marker effects as the sum of two components: small ef-
fects α j ∼ N(α j |0, σ 2

α ) , assigned to all markers and sparse
effects γ j ∼ πN(γ j |0, σ 2

γ ) + (1 − π )δ0 (a mixture of a nor-
mal and a point-mass-at-zero distribution), which are assigned
to a proportion of markers π , so that the total effect of
the jth SNP β j = α j + γ j is a mixture of normal distribu-
tions π N(β j |0, σ 2

α + σ 2
γ ) + (1 − π )N(β j |0, σ 2

α ). Zhou et al.
(2013) specified this model using a re-parameterization which
greatly facilitates computations.

All simulations as well as subsequent statistical analyses of
simulated and real data were implemented in R (R Core
Team, 2014). In this study, the GBLUP and Bayes A meth-
ods were fitted using the Gibbs Sampler algorithm imple-
mented in the R package, BGLR (Pérez and de los Campos,
2014). The Spike-Slab model was fitted using the BSLMM
method, which is included in the GEMMA software package
(http://stephenslab.uchicago.edu/software.html).

Simulation and Real Data Analysis

Data

The genotypes used for simulation and in the real data analy-
sis came from by NIH-funded gene–environment association
studies (GENEVA, http://www.genevastudy.org), which is a
consortium of 16 genome wide association studies. We used a
subset of GENEVA consisting of data from the Nurses’ Health
Study and the Health Professionals’ Follow-up Study stud-
ies. Samples were genotyped using the Affymetrix Genome-
Wide Human SNP Array 6.0 with about 780 K SNPs. The
GENEVA data set contains phenotypic and genotypic records
of n = 5,961 individuals (3,391 women and 2,570 men) with
average age of 57.2 years (SD = 7.7 years) and average height
170.2 cm (SD = 9.6 cm). For the real data analysis we used
adult height (adjusted for age, sex and affiliation to case or
control group) as the phenotype.

Quality Control Procedures

We removed all markers with proportion of missing genotypes
per SNP ≥ 0.01 and all individuals with a proportion of
missing genotypes per individual ≥ 0.05. Furthermore, on the
basis of the available pedigree information, we also removed all
nominally related individuals and individuals with a Hispanic
genomic background such that only individuals of Caucasian
origin remained in the data set. We also set a lower threshold
of 0.01 for MAF, so that after quality control of the genomic
data sample size was 5,758 individuals and 673,197 SNPs loci
remained.

Simulation

We aimed at investigating the performance of three models,
which apply different types of shrinkage of effect estimates,
under different genetic architectures and varying levels of LD
between markers and QTL. The simulation was conducted
using true genotypes (see details above) and simulated
phenotypes.
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Markers and QTL
SNPs were randomly divided into two subsets: 350K SNPs
were designated as markers and the rest (�323K) were used
as a pool for sampling subsets of QTL (5K, in each replicate).
The 5K QTL were sampled from the pool of 323K loci either
completely at random (RAND) or by oversampling among
the loci with low minor allele frequency (LOW-MAF). In this
case sampling probabilities were set to target 75% of the QTL
with MAF < 0.05, 25% of the QTL with MAF between 0.05
and 0.15, no QTL had a MAF > 0.15. In the LOW-MAF
scenario, the distributions of allele frequencies at markers and
at QTL were expected to be different, and this was expected
to influence the extent of LD between markers and QTL.
Therefore, for each replicate, we used PLINK (Purcell et al.,
2007) to compute the pairwise squared correlation r 2 be-
tween genotypes at the QTL and those at the two flanking
markers.

Genetic architecture
We assumed that only a subset of QTL had large effects,
whereas the rest of them had small effects. We considered
three different scenarios: in the first one all QTL effects were
sampled from IID normal densities N(βj|0, σ 2

β ). In the sec-
ond and third scenarios we randomly chose p = 50 or 250
SNPs, respectively, and sampled their effects from a normal
density with a large (see next) variance, the rest of the QTL
effects were sampled from a normal density with a smaller
variance. We set the variance parameters of the two normal
densities used to sample effects in scenarios 2 and 3 to target a
heritability (h2) of 0.5 and a partition of the genetic variance
(hereinafter called pve) where large effect QTL explain either
25% or 75% of genetic variance in scenarios 2 and 3.

Simulation of phenotypes
The phenotypes were constructed according to an additive
model yi = ∑5000

j=1 Zi j β j + εi for i = 1, . . . , n, where model
error εi and marker effects β j follow normal distributions
with zero mean and Zi j are the genotype readings at causal
loci. The variance of the residual term V(εi ) = 0.5 was kept
fixed across all scenarios, whereas the variance of marker ef-
fects V(β j ) varied from scenario to scenario, depending on
the number of large effect QTL, amount of genetic variance
explained by these large effects QTL, and the distribution of
MAFs in QTL.

Data Analyses

We analysed the simulated data using markers, QTL or mark-
ers and QTL. The first scenario involved imperfect LD be-
tween markers and QTL, the last two contained the causal
variants in the panel and therefore were perfect LD scenarios.

Genomic heritability
For the GBLUP, the estimated genomic heritability h2

G =
σ 2

g

σ 2
g +σ 2

ε
was defined as the ratio between the variance ex-

plained by genomic factors, σ 2
g , and the phenotypic variance,

σ 2
p = σ 2

g + σ 2
ε ; in the G-BLUP, h2

G was estimated based on
posterior samples collected using the BGLR-package.

For Bayes A, the BGLR-package did not provide the
estimates of genomic heritability directly. In this model, a
scaled-inverse χ2 distribution is assigned to the variance
of the effects β j . Therefore, we have E(σ 2

β ) = S0
df −2 ; us-

ing this we can define the genomic variance as follows:
σ 2

g = ∑p
j=1 2p j (1 − p j )

S0
df −2 , where p j stands for allele fre-

quency at locus j. With this, the genomic heritability can be

defined as h2
G =

∑p
j=1 2p j (1−p j )

S0
df −2∑p

j=1 2p j (1−p j )
S0

df −2 +σ 2
ε

. We also estimated this

parameter using posterior samples collected using the BGLR-
package.

GEMMA provided posterior samples of PVE(β,u, τ−1) =
V(Xβ+u)

V(Xβ+u)+τ−1 (Zhou et al., 2013), which describes total pro-
portion of variance in phenotype explained by the sum of the
“sparse” (Xβ) and random effect (u). Essentially. this quantity
meets definition of genomic heritability, we used posterior
mean of PVE to obtain the estimate of genomic heritability.
In addition to estimates of genomic heritability, we report the
R2 between phenotypes and predictions in the training data
set as a measure of goodness of fit. This was only done for
the GBLUP and Bayes A because GEMMA does not provide
predictions for the training data set.

Assessment of prediction accuracy
To assess prediction accuracy, in both the simulated and real
data, we replicated 30 times a training–testing (TRN–TST)
validation design (Hastie et al., 2005). In each TRN–TST ex-
periment, data were randomly split into two disjoint sets, 5258
data points in the TRN and from the remaining 500 individ-
uals, we retained for validation only the ones whose genomic
pairwise relationships with individuals in the TRN group did
not exceed 1/8; these were typically �400 individuals. In the
analysis of real phenotype (adjusted human height), we used
the same subset of SNPs that were used in the “only marker”
scenario in simulation studies and the same mapping of indi-
viduals to TRN/TST groups. We assessed prediction accuracy
using the Pearson’s product–moment correlation between the
true and predicted phenotypes cor(y, ŷ) in the validation set.

Results

Results from Simulation Studies

The empirical quantiles of the distribution of MAF at different
sets of loci are given in Table 1. In the RAND scenario,
the empirical distribution of the MAF at QTL and markers
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Table 1 Empirical percentiles of the distribution of minor allele fre-
quency for markers and for QTL in simulated data in both sampling
scenarios.

Percentiles of the distribution of minor
allele frequency

Set (scenario) 5% 10% 25% 50% 95%

Markers 0.0298 0.0498 0.1115 0.2268 0.4713
QTL (RAND) 0.0302 0.0501 0.1117 0.2273 0.4713
QTL (LOW-MAF) 0.0133 0.0169 0.0279 0.0461 0.1383

The 5%, 10%, 25%, 50% and 95% percentiles for marker data set and
for QTL in both sampling scenarios, averaged over 30 replicates.

Table 2 Summary statistics of pairwise LD measure in simulated
data in both sampling scenarios.

Quantiles

Scenario Average r2 (SD) 5% 25% 50% 75% 95%

RAND 0.624 (0.286) 0.223 0.344 0.609 0.941 0.996
LOW-MAF 0.206 (0.333) 0.001 0.007 0.029 0.203 0.982

Summary statistics of pairwise LD, measured as squared correlation r 2

between the QTL and markers, flanking markers on either side in the
RAND and LOW-MAF scenarios; r 2 is averaged over 30 Monte-
Carlo replicates, with standard deviation given in parentheses and
5%, 25%, 50%, 75% and 95% quantiles.

were very similar; this was expected because both sets of loci
were sampled at random. However, as intended, the empirical
distribution of MAF at QTL in the LOW-MAF scenario had,
relative to the same distribution at the marker loci, an over
representation of loci in the low MAF spectra.

LD is allele-frequency dependent; therefore, based on
results of Table 1 one would expect that the extent of Marker-
QTL LD will vary between scenarios. Table 2 provides a
summary of estimates of LD between QTL and the two
flanking markers by scenario. The average of r 2 over 30
Monte-Carlo (MC) replicates in the RAND-scenario was
0.624 with a standard deviation (SD) of 0.286. However, the
average of pairwise. r 2 in the LOW-MAF-scenario was three
times smaller.

Estimated Genomic Heritability and Goodness
of Fit

The average (over MC replicates) estimated genomic her-
itabilities obtained by simulation scenario (RAND in the
upper panel, LOW-MAF in the lower panel), statistical
method (Bayes A, Spike-Slab, GBLUP and GBLUP-ldak),

information used (markers, markers+QTL and QTL) and
genetic architecture are shown in Figure 1.

QTL-based analysis
When only QTL genotypes were used to fit models to data
simulated with the RAND scenario (Fig. 1C), the GBLUP
and Spike-Slab models gave an average estimate of genomic
heritability that was very close to the simulated heritability,
suggesting that these two methods have almost no bias with
the sample size used in this study. GBLUP-ldak generally
underestimated heritability and Bayes A yielded downwardly
biased estimates when the genetic architecture had a few
markers explaining a sizable proportion of genetic variance
(e.g., pve = 0.75, p = 50 in Fig. 1C). In the LOW-MAF sce-
nario (Fig. 1F), GBLUP, Spike-Slab and GBLUP-ldak showed
almost unbiased estimates, but Bayes A continued to deliver
downwardly biased estimates in scenarios where large-effect
QTL explained a sizable fraction of genetic variance (e.g., pve
= 0.75, p = 50 in Fig. 1F).

Marker-based analysis
It is important to note that, due to imperfect marker-QTL
LD when only markers are used in the analysis, the true
proportion of variance that can be explained by regression
on markers [the so-called genomic heritability, (e.g., de los
Campos et al., 2014)] can be lower than the trait heritabil-
ity. Therefore, even in simulations, the population value of
the genomic heritability is unknown and therefore we can
compare results across models but we cannot assess bias. In
the RAND scenario the estimates derived with the GBLUP
models (see Fig. 1A) were very close to the simulated trait her-
itability. However, the estimates obtained with the Spike-Slab
model suggested some extent (of the order of 10%) of miss-
ing heritability. Bayes A yielded estimates similar to those of
the Spike-Slab with complex genetic architectures but tended
to overestimate the genomic heritability with simpler genetic
architectures.

In the LOW-MAF scenario (see Fig. 1D) estimates of ge-
nomic heritability varied substantially between methods and
genetic architectures: the GBLUP and Bayes A yielded a
great extent of missing heritability. In comparison, GBLUP-
ldak yielded a much smaller extent of missing heritability
and Spike-Slab estimated an extent of missing heritability
that was small in scenarios in which large effect QTL con-
tributed a sizable proportion of variance and increased—to the
point of getting very close to GBLUP—as trait complexity
increased.

Finally, as one could expect, the analysis based on markers
and QTL (Fig. 1B and E) yielded estimates that were inter-
mediate between the QTL only and marker only cases in the
RAND scenario and were very close to the analysis based on
markers in the LOW-MAF scenario.
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Figure 1 Estimates of genomic heritability. Average (over 30 Monte Carlo replicates) estimates of genomic heritability (vertical axis) by:
simulation scenario (RAND upper panel: A–C; LOW-MAF in lower panel: D–F), genetic architecture (p = number of large effect QTL,
pve = proportion of genetic variance explained by large effect QTL), model (GBLUP, GBLUP-ldak, Bayes A and Spike-Slab) and data
used (only markers, markers and QTL, or only QTL). Red lines refer to the simulated heritability ĥ2 = 0.5.

The R2 between true and the predicted phenotypes in the
training data sets, averaged over 30 MC replicates, is repre-
sented in Figure S2. We do not present results for GEMMA
because this software does not provide predictions for the
training data set. In the perfect LD scenario (only QTL geno-
types used, Fig. S2C and F), the R2 was between 60% and
70%, suggesting some overfitting (the simulated heritability

was 0.5). The evidence of overfitting increased slightly when
markers were used. The clearest sign of overfitting was ob-
served with Bayes A in the LOW-MAF scenario. In the anal-
ysis based on markers only (Fig. S2A and D), the three models
behaved very differently: GBLUP showed the lowest R2, and
this statistic did not vary much between scenarios. How-
ever, GBLUP-ldak showed much higher R2 than GBLUP
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Figure 2 Correlation between phenotypes and genomic predictions in training data sets. Correlation (average over MC replicates)
between phenotypes and genomic predictions in training data sets, by: simulation scenario (RAND upper panel: A–C; LOW-MAF in
lower panel: D–F), genetic architecture (p = number of large effect QTL, pve = proportion of genetic variance explained by large effect
QTL) data used (only markers, markers and QTL, or only QTL) and analysis method (GBLUP, GBLUP-ldak, Bayes A and Spike-Slab).

and the value of this goodness of fit statistics for this model
was also very stable across simulation scenarios. Finally, Bayes
A showed a pattern with higher R2 than GBLUP in sce-
narios involving large-effect QTL with sizable contribution
to additive variance. However, the R2 in the training data
set of Bayes A decreased as the genetic architecture of the
simulated trait became more complex, to a point that the
Bayes A approached GBLUP when there were no large effect
QTL.

Prediction Accuracy

Figure 2 displays the correlation (average over 30 MC repli-
cates) between phenotypes and predictions in testing data sets.
Plots were sorted by simulation scenario (RAND or LOW-
MAF), genetic architecture (number of large effect-QTL and
proportion of genetic variance explained by large effect QTL),
data used (QTL, markers, or markers+QTL) and analysis
methods (Bayes A, Spike-Slab, GBLUP and GBLUP-ldak).
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Impacts of LD
The comparison of the prediction accuracy achieved using
only QTL (Fig. 2C and F) and those obtained using only
markers (Fig. 2A and D) sheds light on the impacts of LD
on prediction accuracy. As expected, the maximum predic-
tion accuracy across methods and simulation scenarios was
achieved when only QTL genotypes were used for model
fitting and prediction (perfect LD scenario). When mark-
ers in imperfect LD with QTL were introduced, prediction
accuracy was reduced markedly. The adverse effects of im-
perfect LD between markers and QTL were more marked
in the GBLUP and GBLUP-ldak and less adverse for model
Spike-Slab and Bayes A and in scenarios with simpler genetic
architectures; however as the genetic architecture of the trait
become more complex, the superiority of these two methods,
relative to GBLUP diminished.

Statistical method
Overall, GBLUP and GBLUP-ldak had the worst predictive
performance; this was particularly clear when only markers
or markers and QTL were used. Bayes A performed consid-
erably better than the GBLUP and the Spike-Slab performed
even better than Bayes A indicating clear benefits of methods
inducing differential shrinkage of estimates relative to meth-
ods like the GBLUP that induce homogeneous shrinkage of
estimates.

Genetic architecture
The highest prediction accuracy was obtained in scenarios
where a small number of QTL with large effects (p = 50)
explained a large proportion of the genetic variance (pve =
75%). The superiority of the Spike-Slab or Bayes A over the
GBLUP was maximum when the genetic architecture was
simple; however, the differences between the prediction accu-
racy of Bayes A and Spike-Slab, relative to GBLUP methods
diminished as the trait architecture became more complex.
Although, the prediction accuracy of the GBLUPs was not
greatly affected by the genetic architecture of the trait, in anal-
yses based on markers or markers and QTL, there was a small
but systematic trend suggesting that GBLUP outperformed
GBLUP-ldak in the RAND scenario and the opposite was
true in the LOW-MAF scenarios.

For each MC replicate we computed differences in pre-
diction accuracy, measured by differences in correlations
cor(y, ŷ), between different simulations or data analysis sce-
narios and studied the distribution of these differences [box-
plots with pairwise differences in prediction accuracy (by
method) are provided in Fig. S3]. In analyses including mark-
ers, (either markers only or markers+QTL), adding QTL to
the set of loci used to compute the G matrix increased predic-
tion accuracy when Bayes A or Spike-Slab were used, whereas

Figure 3 Pairwise difference in prediction accuracy (from
simulation studies) across methods. Boxplots of the pairwise
differences (across MC replicates and simulation scenarios) in
prediction accuracy [correlation between predictions and
simulated phenotypes cor(y, ŷ)] by pair of models.

Table 3 Estimates (SEs) of genomic heritability and of prediction
accuracy (correlation between phenotypes and predictions in testing
data sets) in real data analysis of human height.

Method Genomic heritability Prediction accuracy1

Bayes A 0.494 (0.0001) 0.159 (0.044)
Spike-Slab 0.367 (0.0005) 0.165 (0.043)
GBLUP 0.435 (0.0006) 0.169 (0.043)
GBLUP-ldak 0.561 (0.004) 0.171 (0.041)

1Average correlation between predictions and phenotypes in testing
data sets.

the GBLUP methods did not benefit from having the QTL
loci within the set of markers used to compute the G matrix.
As expected, the prediction accuracy obtained in the RAND
scenario was higher than the one obtained in the LOW-MAF
scenario; this pattern was observed across statistical methods.

Figure 3 gives boxplots of the differences in prediction
accuracy by pair of models, across simulation scenarios. The
Spike-Slab models and Bayes A were significantly better than
the GBLUP; the superiority of the Spike-Slab over Bayes A
was also systematic, but very small in magnitude.

Results from Real Data Analysis

The estimates of genomic heritability and of prediction ac-
curacy in testing data sets, averaged over 30 training-testing
partitions, are displayed in Table 3. The estimated genomic
heritability ranged from 0.367 (Spike-Slab) to 0.561
(GBLUP-ldak). The GBLUP had an intermediate estimate
of genomic heritability (0.435). Our estimates are in line
with previous reports for human height using common SNPs
(e.g., Yang et al., 2010; de los Campos et al., 2013b). These
results are also in agreement with what we observed in the
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Figure 4 Difference in prediction accuracy (from real data
analysis) across methods. Boxplots of the difference in prediction
accuracy [correlation between predictions and phenotypes
cor(y, ŷ)], within TRN–TST partition, between methods.

LOW-MAF setting, in scenarios for traits without major
QTL and using only marker genotypes for computing G (see
Fig. 1D for pve = 0). The correlations between phenotypes
and predictions were low (0.16–0.17) for all methods, and
only slightly higher for the GBLUP methods. These correla-
tions are in agreement with what we obtained in the simula-
tion study in the LOW-MAF scenario when QTL were not
used in the model (see Fig. 2D).

Figure 4 provides boxplots of the difference in predic-
tion accuracy obtained, within each TRN–TST partition,
between methods. Although the average difference in pre-
diction accuracy between methods was small, the analysis
of pair-wise differences in prediction accuracy (by using the
Wilcoxon signed rank test) suggested a statistically significant,
albeit small, superiority of the GBLUP methods over Bayes
A; the differences between the Spike-Slab and GBLUP are
nonsignificant.

Discussion

In recent years, GWAS have found an unprecedented num-
ber of variants associated with important human traits and
diseases (http://gds.nih.gov/). However, for complex traits
and diseases, the variants identified so far usually explain a
small fraction of inter-individual differences in a trait or in
disease risk, a problem referred to as the missing heritabil-
ity of complex traits (Maher, 2008; Manolio et al., 2009;
Eichler et al., 2010; Gibson, 2010; Makowsky et al., 2011).
This problem has been partially attributed to the lack of
power of GWAS to detect small-effect variants, and some
studies (e.g., Allen et al., 2010; Ober et al., 2012) have shown
that the proportion of marker-driven variance and predic-
tion accuracy could be improved when prediction models
include variants that show strong, but not GWAS-significant
association.

Several authors (e.g., de los Campos et al., 2010; Yang
et al., 2010) have suggested the use of WGR methods
(Meuwissen et al., 2001), where phenotypes are regressed on
potentially hundreds of thousands of variants concurrently, for
analysis and prediction of complex human traits and diseases.
In human genetic applications, the most commonly used
WGR method has been the GBLUP (Gondro et al., 2013).
This method has been used primarily for the estimation of
missing heritability (e.g., Eichler et al., 2010; Yang et al.,
2010; Speed et al., 2012). Only a few studies have assessed
these methods from a prediction perspective. These studies
have reported poor prediction performance of GBLUP when
training and validation samples were distantly related (e.g., de
los Campos et al., 2013b). This leaves open the question of
what avenues should be pursued to improve the prediction
performance of WGR methods when used for the prediction
of phenotypes for distantly related individuals.

The prediction accuracy of WGR is known to be affected
by many important factors, including genetic relationship
(e.g., VanRaden et al., 2009; Crossa et al., 2010), trait
heritability (e.g., Hayes et al., 2009; Daetwyler et al., 2010),
marker density (e.g., Vazquez et al., 2010; Makowsky et al.,
2011; Ober et al., 2012; Erbe et al., 2013), the genetic
architecture of the model (e.g., the number of QTL, the
distribution of effects (VanRaden et al., 2009; Wimmer
et al., 2013), the extent of LD between markers and QTL
(Habier et al., 2007; Calus et al., 2008), the sample size
(Hayes et al., 2009; Makowsky et al., 2011) and the method
used (e.g., Habier et al., 2007; Hayes et al., 2009; VanRaden
et al., 2009; Verbyla et al., 2009; Gao et al., 2013; Wimmer
et al., 2013; Zhang et al., 2014). The vast majority of
studies that have compared the predictive performance of
shrinkage and variable selection methods have used family
data from populations with intensive history of recent
selection. Indeed, there has been little, if any, assessment of
the factors that affect the prediction accuracy of WGRs using
human data from distantly related individuals. In this article
we contributed towards filling this gap by conducting an
extensive simulation study where we assessed the impact on
estimated missing heritability and on prediction accuracy of:
(a) the extent of LD between markers and QTL, (b) the com-
plexity of the trait architecture and (c) the statistical model
used.

Missing heritability
Missing heritability can be attributed to imperfect LD be-
tween marker and QTL genotypes (e.g., Goddard & Hayes,
2009; Yang et al., 2010; de los Campos et al., 2013b). There-
fore, in scenarios where QTL genotypes were used for anal-
ysis (either when QTL only or when both markers and QTL
were used) there is no missing heritability because the causal
loci were included in the set of genotypes used for data
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analysis. In these analysis scenarios (only QTL or markers
and QTL), estimates of genomic heritability above or below
the simulated heritability (0.5) reflect bias of the estimation
method.

When the analysis was carried out using QTL genotypes
only, the Spike-Slab and GBLUP methods yielded estimates
very close to the simulated heritability, while Bayes A and
GBLUP-ldak yielded substantial biases. In the case of Bayes
A, the estimate was downwardly biased in scenarios where a
few QTL made a substantial contribution to genetic variance
(e.g., p = 50, pve = 0.75) and GBLUP-ldak showed a clearly
downwardly biased estimate in the RAND scenario.

When markers and QTL were used for analysis, the results
differed between the RAND and LOW-MAF scenarios. In
the RAND scenario, GBLUP and Spike-Slab yielded almost
unbiased estimates, while Bayes A and GBLUP-ldak yielded
upwardly biased estimates under simple genetic architectures.
In the LOW-MAF scenario, GBLUP, Spike-Slab and Bayes A
yielded downwardly biased estimates whereas estimates from
GBLUP-ldak were slightly biased upward.

Finally, in scenarios using only markers the estimated
genomic heritability was very close to the trait heritabil-
ity in the RAND scenario, whereas in the LOW-MAF
scenario estimates revealed a substantial extent of missing
heritability.

The observation that having a different distribution of allele
frequencies at markers and at QTL can induce a large extent
of missing heritability is in line with the reasoning and results
presented in some studies (Goldstein, 2009; Yang et al., 2010;
Lee et al., 2012; de los Campos et al., 2013b). This result is
also in agreement with the fact that the extent of LD between
markers and QTL in the LOW-MAF scenarios was much
weaker than in the RAND scenarios (see Table 2). It should
be noted that in all simulation scenarios considered in our
study, including the LOW-MAF scenario, the frequency of
rare variants among the QTL was limited relative to what one
could have with sequence data, because the genotypes used in
our study were all obtained from a panel of common SNPs.
Therefore, one could speculate that the extent of differences
in distribution of allele frequency between markers and causal
loci and the corresponding extent of missing heritability may
be even more extreme with real phenotypes than the one
observed in our LOW-MAF scenario.

Importantly, within any scenario we found remarkable
differences in estimates of genomic heritability across
models, and there was no single method with smallest
bias across all genetic architectures and analysis scenarios
(QTL, markers+QTL, or only markers). The GBLUP and
Spike-Slab methods performed well in the RAND scenario,
but had clear problems in the LOW-MAF scenarios (both had
seriously downwardly biased estimates in the analysis based
on markers and QTL). However, GBLUP-ldak exhibited

some clear problems in the RAND scenarios (downwardly
biased estimates when analysis was based on QTL only) or
upwardly biased estimates in the LOW-MAF analysis based
on markers and QTL). Finally, Bayes A showed somewhat
erratic behaviour, especially with simple genetic architectures
(e.g., p = 50, pve = 0.75); we believe that this is not a
limitation of the model per se but a consequence of the
degree-of-freedom parameter being fixed. Estimating this
parameter from the data, as done, for instance in Yi and Xu
(2008), is likely to confer more flexibility to Bayes A to cope
with different genetic architectures.

Prediction accuracy

When the analysis was carried out using only QTL geno-
types (“perfect LD,” Fig. 2C and F), all methods achieved
relatively high prediction accuracy (correlation of about 0.5
or greater, i.e., an R2 50% or more of the trait heritability).
This indicates that if one is able to narrow down the influen-
tial genetic regions of a trait to a limited number (5000 loci in
our simulation), regularised regressions like the one used here
can yield relatively high prediction accuracy. In these scenar-
ios, the prediction accuracy of the GBLUP and GBLUP-ldak
methods was not affected by the genetic architecture and
tended to be poorer than that of Bayes A and the Spike-Slab
methods. Bayes A and Spike-Slab performed similarly and
clearly better than any of the GBLUP methods in scenarios
where a limited number of QTL (e.g., 50 or 250) explained
a sizable proportion of the genetic variance. However, with
increase in trait complexity there was a decrease in predic-
tion performance of these two methods, to the point that the
three methods performed very similarly when the most com-
plex genetic architecture was considered (5,000 QTL without
any “major effect” one). Overall, our results are in agreement
with previous studies in animal and plant breeding (Daetwyler
et al., 2010; Wimmer et al., 2013) that have reported that:
(a) the prediction accuracy of GBLUP is largely independent
of the genetic architecture of the trait, and (b) with simple
genetic architectures there are benefits of using methods such
as Bayes B, Spike-Slab, Bayes C, or Bayes A, relative to ridge-
regression type-methods. However, as the trait architecture
became more complex, these differences disappeared.

When markers and QTL were jointly used
When markers and QTL were jointly used (Fig. 2B and E)
or when only markers were used (Fig. 2A and D), important
changes in prediction accuracy were observed. The prediction
accuracy of any of the GBLUP methods was reduced from
correlation levels of the order of 0.45 (QTL-only analysis) to
0.15 when both markers and QTL were used, and to levels
below 0.1 when only markers were used. This reflects the
limitations of using methods such as GBLUP or GBLUP-ldak
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where the effects of all predictors are homogeneously shrunk,
especially in situations where a large number of markers do
not have effects.

In scenarios where 50 or 250 QTL explained a sizable
proportion (e.g., 0.75) of the genetic variance, the benefits of
using methods that perform variable selection (Spike-Slab) or
differential shrinkage of estimated effects (Bayes A) relative to
the GBLUP methods were pronounced. In the scenario with
the simplest genetic architecture (50 QTL explaining 75% of
the genetic variance) these methods, especially the Spike-Slab
were able to achieve levels of prediction accuracy comparable
to those obtained when only QTL genotypes were used,
illustrating the “oracle” property (e.g., Ishwaran & Rao, 2005;
Scheipl et al., 2013) that these methods have. However, as the
complexity of the trait increased, the predictive performance
of these methods decreased and in the most complex scenario
(5000 small QTL) all methods performed similarly.

Real data analysis
Human height is believed to be a trait affected by a very large
number of small-effect QTL (e.g., Allen et al., 2010; Yang
et al., 2010). The analysis conducted with human height data
from the GENEVA data set very closely matched the results
from the simulation for scenarios with large numbers of small
effect QTL, where the distributions of allele frequency at
markers and at QTL were different. We estimated a sizable
proportion of missing heritability, given a trait heritability of
0.8, the estimates of missing heritability ranged from 0.24
with GBLUP-ldak to 0.54 with Spike-Slab and very poor
prediction accuracy (correlation of about 0.16–0.17, and very
similar across methods).

Implications

The results presented in this study have several implications.
First, estimates of missing heritability derived from distantly
related individuals using WGR methods need to be treated
with caution. Although they are indicative of how imper-
fect LD between markers and QTL can limit the ability of a
model to capture the genetic signal, some of the results pre-
sented here indicate that under some circumstances estimates
can have a sizable bias. In addition, we observed that in some
scenarios these estimates of heritability can vary significantly
between methods. This is not surprising because the propor-
tion of variance explained by a model depends both on the
input information (markers/QTL, etc.) and on the statisti-
cal model used. We believe that this model-genetic architec-
ture dependency has been overlooked so far. Importantly, the
model that yields the highest estimated genomic heritabil-
ity is not necessarily the one that yields the best prediction
accuracy.

Second, the assessment of prediction accuracy suggests that
for traits in which a limited number of regions explain a siz-
able proportion of genetic variance, the use of WGR meth-
ods that perform variable selection or differential shrinkage
of estimates of effects is strongly recommended over ridge-
regression type methods such as the GBLUP. However, for
very complex traits such as human height, all the methods
evaluated yield low prediction accuracy. It remains to be de-
termined whether significant increases in sample size (which
likely should be by orders of magnitude) will also yield sub-
stantial gains in prediction accuracy.
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