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ABEGO is a coarse-grained representation for poly‐
peptide backbone dihedral angles. The Ramachandran
map is divided into four segments denoted as A, B, E,
and G to represent the local conformation of poly‐
peptide chains in the character strings. Although the
ABEGO representation is widely used in backbone
building simulation for de novo protein design, it cannot
capture minor differences in backbone dihedral angles,
which potentially leads to ambiguity between two struc‐
turally distinct fragments. Here, I show a nontrivial
example of two local motifs that could not be distin‐
guished by their ABEGO representations. I found that
two well-known local motifs αα-hairpins and αα-corners
are both represented as α-GBB-α and thus indistin‐
guishable in the ABEGO representation, although they
show distinct arrangements of the flanking α-helices.
I also found that α-GBB-α motifs caused a loss of
efficiency in the ABEGO-based fragment-assembly
simulations for de novo protein backbone design.
Nevertheless, I was able to design amino-acid sequences
that were predicted to fold into the target topologies
that contained these α-GBB-α motifs, which suggests

Corresponding author: Koya Sakuma, SOKENDAI, The Graduate
University for Advanced Studies, 38 Nishigonaka, Myodaiji, Okazaki,
Aichi 444-8585, Japan. e-mail: sakuma@ims.ac.jp

such topologies that are difficult to build by ABEGO-
based simulations are designable once the backbone
structures are modeled by some means. The finding
that certain local motifs bottleneck the ABEGO-based
fragment-assembly simulations for construction of
backbone structures suggests that finer representations
of backbone torsion angles are required for efficiently
generating diverse topologies containing such indistin‐
guishable local motifs.
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Introduction
Proteins are polymers, and using idealized bond lengths

and bond angles, the conformation of a polypeptide chain
can be represented as a series of backbone dihedral
angle triplets (φ, ψ, and ω) [1]. Provided that all peptide
bonds have trans conformations with ω of approximately
180°, the two-dimensional plot of φ and ψ called the
Ramachandran map can have sufficient information to
specify the residue-wise conformations of a polypeptide
chain. To construct coarse-grained representations of
backbone conformations, the Ramachandran map can be
divided into subsections to cluster similar backbone
conformations into the same class. A widespread approach

ABEGO is a coarse-grained representation for polypeptide backbone dihedral angles. I show ABEGO representation is unable to distinguish
certain type of helix-loop-helix fragments, which causes the loss of efficiency in the fragment-assembly simulations for construction of backbone
model in de novo protein design. Understanding the limitation of commonly used coarse-grained representations is important for improvement
of backbone-building strategies in de novo protein design.
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is to define a four-state representation dividing the map
into four segments and assigning the single letters A, B, E,
and G to the regions (Fig. 1) [2]. This enables the rough
backbone structures to be expressed by character strings
and is beneficial in structure-informatics analyses. Broadly,
the A region corresponds to α-helices and the B region to
β-strands. For regions with positive φ, the G region
corresponds to the left-handed α-helix and the E region
represents the remaining map. With an additional state O
corresponding to the cis-conformation of the peptide
bond, this five-state discrete representation can cover the
conformational space of polypeptide chains in a coarse-
grained manner. This five-state coarse-grained represen‐
tation of the polypeptide chain conformation is termed the
ABEGO representation, which is the main focus of the
current study.

An important application of the ABEGO representation
is the de novo design of protein backbone structures [3–15].
In this protocol, designers specify the target topology using
ABEGO sequences, select structure fragments that satisfy
the desired ABEGO sequences, and perform fragment-
assembly simulations to build the atomistic backbone
structures with the desired topology. Hereafter, these
fragment-assembly simulations guided by ABEGO
specification are referred to as ABEGO-based backbone-
building simulations. This approach is widely accepted in
de novo protein design and has been used to construct a
variety of topologies ranging from small α-helical bundles
to TIM barrels [3–15]. Therefore, this ABEGO-based
approach can be taken as a de facto standard approach to
generate backbone structures for de novo protein design.

Figure 1 Definition of ABEGO. Horizontal axis represents φ and
vertical axis represents ψ angle of polypeptide backbone structure.
Ramachandran plot is divided into four sections named A, B, E, and
G. The values of phi and psi angles for boarder line are indicated on
the left or right of the boarder lines. The state O is not defined in this
diagram because it represents cis-peptide.

However, ABEGO representation is a coarse-grained
representation of backbone dihedral angles that sometimes
fail to distinguish two different conformations, which
may cause troubles in ABEGO-based backbone building
simulations. In this study, I show a non-trivial example of
two famous local motifs that are indistinguishable by their
ABEGO representation and point out that the ambiguity
between these two motifs can lead to loss of efficiency
in the ABEGO-based backbone building simulations.
Clarifying the limitations of the ABEGO representation
will motivate further development of more sophisticated
representation for backbone conformation and backbone-
building methods.

Materials and Methods
Analysis of helix–loop–helix fragments

I composed a set of 29,397 non-redundant domain
structures, which were a subset of the Evolutionary
Classification Of protein Domains database (version
develop238) culled by 40% sequence identity [16]. Next,
secondary structures were assigned using the DSSP [17],
and helix-loop-helix fragments were extracted. The
fragments whose helix have residues less than and equal to
nine residues were discarded. The ABEGO representations
of backbone torsion were assigned using in-house Python
scripts according to the definition shown in Figure 1. Next
the fragments possessing the GBB loop were extracted. In
total, 318 αα-corner and 317 αα-hairpin fragments were
obtained, which were illustrated in Figures 2, 3 and
Supplementary Figures S1, S4, and S5. I calculated the
all-to-all Cα root mean square deviation (RMSD) within
these GBB fragments and performed k-medoid clustering
with k=2. The cluster representatives were extracted
and used for reference structure in Supplementary Figure
S8. Next, I identified the helix–helix crossing angle
(Supplementary Figure S1) using the helix orientation
vector defined by Krissinel et al. [18] and confirmed
that the clustering can clearly separate αα-corners and
αα-hairpins (Fig. 2).

ABEGO analysis of helix-loop-helix fragments
From the non-redundant domain structure set which was

a subset of ECOD database [16] whose sequence similarity
was reduced by 40% sequence identity, 39,938 helix-loop-
helix fragments were extracted. For the fragments with
α-helices longer than 10 residues, ABEGO sequences were
assigned for the loop regions. The ABEGO types of these
fragments were counted and used to make Figure 4A.

Construction of target structures
I composed the GBB, GB, and BAAB up-down bundles

as well as the GBB orthogonal bundle by manually grafting
the helix–loop–helix fragments using PyMOL (The PyMOL
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Molecular Graphics System, version 2.0 Schrödinger,
LLC.) and removed severe steric clashes using Foldit [19].
The constructed backbone structures were used as templates
for the ABEGO specifications, and the reference structures
for the ABEGO-based backbone-building simulations.
These structures were also used as template backbones for
amino acid sequence design by Rosetta.

Backbone-building simulations
Sequence-independent fragment assembly simulations,

termed ABEGO-based backbone-building simulations,
were performed using Rosetta BluePrintBDR [20], as
described by Lin et al. [6]. Blueprint files were generated
based on the target backbone structure that was manually
built in advance, and the files were used for fragment
selection to specify the backbone torsion in the ABEGO
representation. For each ABEGO specification, simulations
were repeated for 10,000 trajectories, and the final
snapshots from the trajectories were used for structural
analysis. During the analysis, the Cα RMSDs of each
structure referenced by the target backbone structures
were calculated.

Amino acid sequence design and sequence-dependent
folding simulations

I performed amino acid sequence designs using the
Rosetta flxbb protocol [20] starting from the backbone

structure that was built manually. To enhance the efficiency
of sequence design, amino acid profiles were constructed
for the loop region using similar loop structure fragments
(Cα RMSD<2 Å) and were used as constraints for the
residues used, as described by Marcos et al. [4]. The
specifications of the residues were refined based on the
buriedness of the backbone atoms using in-house programs.
I performed 10,000 design trials for each backbone model,
selected the best sequences based on the fragment-quality
score, and performed sequence-dependent fragment-
assembly folding simulations [21] to identify the best
design sequences. I defined the fragment-quality score as
the average of the logarithm of the number of fragments
that had a Cα RMSD value lower than 1.5 Å in the design
model. A total of 20,000 trajectories for folding simulations
were obtained for each design protein to check the
foldability.

Results and Discussion
αα-corners and αα-hairpins are indistinguishable in
ABEGO representation

First, I investigated a nontrivial example in which
ABEGO representation could not distinguish two struc‐
turally different local motifs. Using structural informatics
analysis, I identified two distinct types of helix–loop–helix
fragments that were indistinguishable based on their

Figure 2 Comparison of αα-corner and αα-hairpins. They have similar backbone torsions but provide distinct contact patterns between two
flanking α-helices. (Left) The overall structures of αα-corner and αα-hairpins. The loop regions are shown as sticks and colored in CPK-scheme.
The α-helices are shown in the cartoon representation. (Center) αα-corner and αα-hairpins offer different environments for nearby residues. Each
fragment is colored in blue-white-red gradient from N- to C-terminal. The orange sphere represents Cβ atoms on N-terminal α-helical segments.
The Cβ a corresponds to a', b to b', and c to c'. See that position a is more buried than position a', and similarly b is more exposed than b'. (Right)
Sequence logo for αα-corner and αα-hairpins. The region shaded in orange corresponds to the residues whose Cβ atoms are colored in orange in
the center panel. The alphabets beneath the logos indicate residue positions for the region on the N-terminal of loops, and the ABEGO backbone
torsion angle representation for the loop regions. As conformations largely differ between αα-corners and αα-hairpins, the variance in the amino-
acids compositions are most recognizable in the orange-shaded regions, which correspond to the flanking sequence rather than loop region.
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ABEGO sequences. Conformations of both motifs were
represented as α-GBB-α in their ABEGO representation,
but they result in distinct overall structures and sequence
preferences (Figs. 2 and Supplementary Fig. S1). The first
α-GBB-α motif is traditionally classified as an αα-corner
that results in an almost orthogonal crossing angle between
two flanking α-helices [22], and the second is called an
αα-hairpin, which results in a steep hairpin turn for tightly

Figure 3 Identification of the residues responsible for the
diversification between αα-corners and αα-hairpins. (A) Structure of
αα-corner and αα-hairpin and assignment of site names. The loop
regions are shown in sticks. (B) The Ramachandran plots for site
A(αN), G, B1, B2, and A(αC). The orange/purple dots correspond to
data from αα-corners/αα-hairpins. B1 site shows most divergent
dihedral angles between αα-corners and αα-hairpins.

packing adjacent α-helices into an antiparallel configuration
[23]. By making Ramachandran-plots for each site in the
loop region, I found that the first B site (B1) showed
most divergent torsion angles between αα-corners and
αα-hairpins (Fig. 3). I also confirmed that αα-hairpin can

Figure 4 Statistical analysis of helix-loop-helix fragments
revealed GB, GBB, and BAAB loops are most frequent αα-hairpins.
(A) Histogram of ABEGO types for length 2, 3, and 4 loops. (B)
Structures of GB, GBB, and BAAB αα-hairpins. (C) Although BAB-
loop is the most frequent loop types in the statistics of length 3 loops,
BAB loop is a v-shaped loop rather than αα-hairpins. For this reason
BAB-loop was not used in this study.
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be transformed into αα-corner by systematically changing
the value of dihedral angle φ at the site B1 from −70° to
−150° (Supplementary Fig. S2). From these observations,
I divided the region B into two sub-regions S and P by the
line of φ= −90° so that the αα-hairpins and αα-corners
were separated from each other (Supplementary Figs. S3,
S4, and S5). This extension of ABEGO representation can
deal with B region in finer resolution, and would be helpful
to specify the conformation more precisely. However,
as the original ABEGO representation does not take the
heterogeneity of the B region into account, αα-hairpins and
αα-corners are taken as identical in their ABEGO
representation and are therefore indistinguishable in the
coarse-grained representation.

α-GBB-α units cause loss of efficiency in ABEGO-based
backbone building simulations

Next, I sought to identify whether the ambiguity between
the αα-hairpin and αα-corner in the original ABEGO
representation causes loss of efficiency in ABEGO-based
backbone-building simulations. I first performed statistical
analysis of loop regions and found that GB and BAAB

loops are most frequent short αα-hairpin fragments in
addition to GBB loop (Fig. 4). I manually generated six
types of four-helix up-down bundle structures using
these hairpin motifs: GBB, GB, and BAAB bundles with
right-handed or left-handed topologies (Fig. 5). Based
on these decoy structures, the backbone dihedral angles
was roughly specified by the ABEGO representations
(Supplementary Fig. S6) to select the fragments satisfying
the specification, and ABEGO-based backbone-building
simulations were performed [6,20]. Although the simu‐
lations for the GB bundles successfully recovered the
original four-helix up-down bundle topologies, the
ABEGO-based backbone-building simulations for the GBB
bundles failed to efficiently generate the target topology
(Fig. 5). The result of BAAB bundles were marginal; the
behavior was better than GBB but worse than GB bundles.
More specifically, GB bundles showed best result where
almost all of the populations resides within 5 Å from the
native structure in the Cα-RMSD; BAAB bundle showed
almost one forth of the population stayed within 5 Å from
the native in the Cα-RMSD; GBB performed worst, in
which most of the population showed Cα-RMSD larger

Figure 5 The foldability of four-helix up-down bundles. The structure four-helix up-down bundles are shown on the left of each column. The
ABEGO of hairpins and handedness of bundles are indicated above each structure. The distributions of Cα RMSDs from 105 trajectories of
backbone building simulations are shown on the left of each column. The GBB bundle has a large peak around 10 Å, which indicates the
ABEGO-specification cannot force the polypeptide chain to fold into the target structure. GB and BAAB bundle show reasonably large
populations on the left (Cα RMSD<5 Å), which indicates that their ABEGO-specification is capable of letting the chain fold into the target
topology.
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than 10 Å. These results were independent of the
handedness of target bundle topologies; both right-handed
and left-handed four-helix bundles showed similar results
depending on the loop types. In the simulations for the
GBB bundle, most trajectories were trapped in misfolded
structures that contained GBB corner fragments
(Supplementary Fig. S7), which is undesirable for building
the up-down bundles.

So, why were GBB-containing structures more difficult
to build in ABEGO-based backbone building simulations
than GB-containing or BAAB-containing structures? To
investigate this, I looked into the contents of fragments
that were picked up for the ABEGO-based backbone
simulations from the structure database named
filtered.vall.dat.2006-05-05. The number of fragments was
200 for each loop type. This clarified that the fragment
libraries contained non-hairpin fragments in addition to
the hairpins in all of three types of loop fragments (Fig. 6).
The GB fragments possessed most purified hairpin
conformations, and the BAAB fragments showed long-
tailed distribution of the conformation but it also had a
sharp peak representing the hairpin structures. The GBB
fragment library possessed the largest population of non-
hairpin fragments. To estimate the population ratio of
corner against hairpins in the GBB fragment library, I
gathered the fragments showing RMSDs lower than 1.5 Å
from the representative αα-corner or αα-hairpin fragments.
The ratio of corners against hairpins was about 4:1 in the
fragment set (Supplementary Fig. S8). This tendency is
well consistent with the result of fragment assembly
simulations; GB performs best, BAAB performs so-so, and
GBB performs worst. As the populations ratio of corners
against hairpin was almost 1:1 in the fragment library from
manually curated domain database (Supplementary Fig.
S1), this bias of fragment populations toward the corner
would be Rosetta-specific artifact and should be improved
to allow more unbiased sampling of conformational
space. However, even if the fragment set show unbiased
populations of corners and hairpins, ABEGO-based
fragment picking for α-GBB-α motifs results in the mixture
of αα-corners and αα-hairpins and will still suffer from the
unwanted fragment insertion at the loop region and lead to
low sampling efficiency for GBB-containing structures. To
summarize, the GBB-containing structures are difficult to
build for two reasons: (1) low purity of fragments caused
by double-meaning α-GBB-α motifs (2) the unbalance
between αα-corner and αα-hairpins populations. More
precise assembly of GBB-containing structures requires
updates for the fragment picking algorithm and structure
database from which fragments are picked up. This may
require paying more attention on how to divide B region of
ABEGO classification into subsections.

Amino-acid sequences for backbone structures
composed of α-GBB-α units can be designed and
predicted in-silico to fold into the target topologies

Considering the structures containing α-GBB-α frag‐
ments are difficult to compose in ABEGO-based backbone-
building simulations, I sought to identify whether they
can be designed when their amino acid sequences are
completely specified. Are they difficult to build again? I
performed amino acid sequence design of two distinct
structures composed of α-GBB-α motifs alone using
Rosetta [20]. The first structure was the four-helix up-down
bundle that was described in the previous section, and the
second structure was a small four-helix orthogonal bundle
composed of two αα-hairpins and an αα-corner (Figs. 7A
and 7B). Similar to the ABEGO-based backbone-building
simulations for the GBB up-down bundle, those for the

Figure 6 Distributions of helix-helix crossing angles in Rosetta-
derived fragment library. GBB library shows a large peak at 90°,
which corresponds to αα-corners. GB and BAAB libraries have the
largest peak around 30°, which corresponds to the αα-hairpins. GBB
fragment library is largely biased to the αα-corners so that αα-hairpins
are difficult to appear in the fragment assembly simulations.

164 Biophysics and Physicobiology Vol. 18



GBB orthogonal bundle were also trapped in a misfolded
state and showed low efficiency for achieving the target
conformation (Supplementary Fig. S9), which is consistent
with the observation in GBB up-down bundles. However,

Figure 7 Design and sequence-dependent folding simulations of
the four-helix orthogonal bundle and up-down bundles. (A) (B)
Blueprints and structures of the GBB orthogonal bundles (left) and
up-down bundles (right). The gray bars represent the α-helix and black
bars represent loop regions. As all the loops are represented as GBB
in the ABEGO representation, their intended structure types are
indicated above the loop regions. (C) Energy-RMSD scatterplot from
sequence-dependent folding simulations for orthogonal (left) and up-
down bundle (right). Both of the designs have funneled energy
landscapes, and are predicted to fold into the target topology. (D) The
superposition of the lowest energy structure (orange) onto the target
structures. The lowest-energy structure from folding simulation of the
orthogonal bundles showed Cα RMSD=1.1 Å from the native. The
lowest-energy structure for the up-down bundle showed Cα
RMSD=0.5 Å from the native.

by carefully designing amino acid sequences onto these
structures using Rosetta, amino acid sequences that are
predicted to fold into the respective target topologies can be
obtained (Figs. 7C and 7D). In contrast to the misfolding
observed in the ABEGO-based backbone-building simula‐
tions, sequence-dependent fragment-assembly simulations
successfully predicted both target topologies as having the
lowest energy structures [21]. The results showed that
plausible amino acid sequences can be designed once the
backbone structures are built by some means even if they
contain two types of α-GBB-α motifs indistinguishable in
the ABEGO representation. This result indicated that the
conformational space that can be covered by the amino acid
sequence design is broader than the conformational space
in which ABEGO-based backbone-building simulations
can firmly sample. Further, a novel backbone-building
methodology may be required to improve the ability to
generate more diverse and complicated backbone
structures.

Conclusion
In this study, I showed that ABEGO is a coarse

representation that can fail to distinguish different
conformations, causing inefficiency in ABEGO-based
backbone building for de novo protein design. The αα-
corner and αα-hairpins are indistinguishable in the ABEGO
representation because both are represented as α-GBB-α
fragments. This ambiguity between these two distinct
structures leads to difficulty in constructing simple four-
helix bundle topologies composed of these α-GBB-α
motifs.

Although I used the two indistinguishable α-GBB-α
fragments as a nontrivial example in this study, such
confusion may occur for other motifs if the backbone
torsion angles are represented in coarse-grained manners.
Especially, the B region of ABEGO representation contains
very heterogeneous conformations so that the region should
be carefully divided into subsections in order to represent
the subtle conformational changes. To this end, I dividied B
region into the S and P subsection and proposed an
extended version of ABEGO that can separate αα-hairpin
and αα-corners. However, this extension is not always
enough and there may be other pairs of fragments that still
fail to be separated.

Interestingly, sequence design for GBB-containing
backbone structures does not appear to be difficult
compared to the backbone building; I showed that two
types of four-helix bundles composed of GBB fragments
can be designed to be predicted to fold into the target
topologies. This suggests that there are many topologies
designable as amino-acid sequences which have not been
tried because their backbone modeling remains difficult. In
other words, difficulty in backbone modeling may be
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bottlenecking the design of novel artificial proteins.
Therefore, novel methodologies for backbone building that
can sample diverse structures unreachable by conventional
structural modeling techniques may enable the design of a
wide variety of protein structures. This will allow protein
designers to further explore the protein structure universe
and expand their design repertoires.

A preliminary version of this work, DOI: 10.1101/
2021.04.13.439694, was deposited in the bioRxiv on April
14, 2021.
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