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Abstract

Motivation: It remains both a fundamental and practical challenge to understand and anticipate

motions and conformational changes of proteins during their associations. Conventional normal

mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by gen-

erating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational

selection model for protein–protein interactions. But earlier studies have also found cases where

conformational selection alone could not adequately explain conformational changes and other

models have been proposed. Moreover, there is a pressing demand of constructing a much

reduced but still relevant subset of protein conformational space to improve computational effi-

ciency and accuracy in protein docking, especially for the difficult cases with significant conform-

ational changes.

Method and results: With both conformational selection and induced fit models considered, we

extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and de-

velop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical re-

sults over a large data set of significant conformational changes indicate that cNMA is capable of

generating conformational vectors considerably better at approximating conformational changes

with contributions from both intrinsic flexibility and inter-molecular interactions than conventional

NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightfor-

ward application of conventional NMA to an encounter complex often does not improve upon

NMA for an individual protein under study and intra- and inter-molecular interactions need to be

differentiated properly. Moreover, in addition to induced motions of a protein under study, the

induced motions of its binding partner and the coupling between the two sets of protein motions

present in a near-native encounter complex lead to the improved performance. A study to isolate

and assess the sole contribution of intermolecular interactions toward improvements against con-

ventional NMA further validates the additional benefit from induced-fit effects. Taken together,

these results provide new insights into molecular mechanisms underlying protein interactions and

new tools for dimensionality reduction for flexible protein docking.

Availability and implementation: Source codes are available upon request.

Contact: yshen@tamu.edu

1 Introduction

Proteins participate in many important cellular processes through

interactions with proteins, nucleic acids, small molecules and so on.

These interactions often occur with protein motions and unbound-

to-bound conformational changes which might exist at different

space scales but are often found to be directly relevant to protein

functions (Bahar et al., 2010). Although it remains a fundamental

challenge to fully understand and correctly anticipate these con-

formational changes, theoretical models describing protein–protein

or protein–ligand interactions have been proposed beyond the trad-

itional ‘key-and-lock’ model where proteins are treated rigid. In

particular, the theory of conformational selection treats protein
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flexibility and motions as pre-existing conformational ensembles

which originate from proteins’ intrinsic flexibility, whereas the the-

ory of induced fit emphasizes an effect from the binding partner

(Goh et al., 2004; Nussinov and Ma, 2012). Following the theory of

conformational selection, methods such as molecular dynamics

(MD) simulation (Karplus and McCammon, 2002) and normal

mode analysis (NMA, Brooks and Karplus, 1985; Gibrat and Go,

1990; Harrison, 1984) have been developed to sample conform-

ational space which reflects intrinsic flexibility and covers potential

conformational changes.

NMA based on various elastic network models including aniso-

tropic network model (ANM) and Gaussian network model

(Atilgan et al., 2001) has been found to be able to quickly generate

low-frequency normal modes that capture proteins’ collective mo-

tions often observed in NMR experiments or MD simulations

(Doruker et al., 2000) as well as unbound-to-bound conformational

changes observed in X-ray crystallography (Bakan and Bahar, 2009;

Dobbins et al., 2008; Petrone and Pande, 2006). However, it is

unclear how much induced-fit effects contribute to protein conform-

ational changes along with conformational-selection effects, espe-

cially when cases have been found where conformational selection

alone could not adequately explain conformational changes and

induced fit was suggested to distort intrinsic flexibility-driven mo-

tions or even introduce new motions (Bakan and Bahar, 2009;

Dobbins et al., 2008). Inspired by these studies, here we model pro-

tein conformational changes upon associations with the contribu-

tions of both intrinsic flexibility and intermolecular interactions.

The objectives are not only to develop new insights into mechanisms

of conformational changes but also to apply these insights to pre-

dicting protein complex structures starting from separate, unbound

protein structures (a.k.a. ‘protein docking’). Major challenges in

protein docking include the extremely high dimensionality of the

space of conformational changes [a protein of n atoms has 3 n – 6

degrees of freedom (DoFs) in theory where n could easily reach

thousands for a medium-sized protein] as well as the coupling

among conformational variables originating from chemical bonds

and non-bonded interactions (Bonvin, 2006). Better capabilities to

anticipate conformational changes and reduce dimensionality, pos-

sibly with the help from both intrinsic flexibility and partner-specific

inter-molecular interactions, would facilitate solving protein dock-

ing problems.

Toward the objectives described above, beyond conventional

NMA of a single protein (Atilgan et al., 2001) or a straightforward

application of conventional NMA to a complex formed through

protein–protein interactions (Venkatraman and Ritchie, 2012),

we extend ANM to include concurrent but differentiated intra-

molecular and intermolecular potentials to treat protein complexes,

develop a new theoretical framework of NMA based on the ex-

tended ANM, design two classes of methods to extract modes useful

for approximating conformational changes and test our work over a

large-scale, non-redundant benchmark set of protein conformational

changes.

2 Materials and Methods

In this section, we will first give a brief description of conventional

NMA based on ANM and then introduce our extended, complex-

based ANM (cANM) and the corresponding new framework of

NMA (cNMA) including its relationship to conventional NMA (or

NMA in short), also shown in Figure 1. We will also describe two

methods reflecting two ways of exploiting protein dynamics to extract

normal modes and metrics to assess the capabilities of these normal

modes to approximate conformational changes. Lastly, we will

describe a large-scale dataset of unbound proteins, bound protein

complexes and encounter complexes formed during protein–protein

associations, against which empirical assessment is performed.

2.1 Extended ANM
NMA provides an efficient way to study the dynamics of macromol-

ecules including proteins near an equilibrium state by harmonic ap-

proximation of the potential. It was shown that the usually

sophisticated semi-empirical molecular potentials such as molecular

mechanic potential could be replaced by a simple pairwise Hookean

potential at the all-atom (Tirion, 1996) or even the coarse-grained

level (Ca atoms only) (Hinsen, 1998) without the loss of capability

to replicate low-frequency protein motions. It is noteworthy that the

coarse-grained Ca-level model further reduces the dimensionality of

conformational space, thus chosen in this study. Correspondingly,

nodes and (Ca) atoms will be used interchangeably unless otherwise

noted.

The resulting ANM (Atilgan et al., 2001; Doruker et al., 2000)

describes a protein as nodes (ranging from all atoms to just Ca

atoms) connected to each other through edges with a Hookean po-

tential (or ‘springs’) if pairwise distances fall below a cutoff D:

U ¼
X

i;jð Þ2N Pð Þ

1

2
c dij � d0

ij

� �2
(1)

where c is the intramolecular spring constant of the harmonic system

and U is summed over all neighboring (i, j) pairs in protein P whose

set is denoted by N(P) and depends on D.

When modeling an encounter complex formed through protein–

protein associations and consisting of a receptor (R) and a ligand (L)

(receptor and ligand here are only used to differentiate two proteins

forming a complex and do not bear biological meanings), we intro-

duce concurrent but differentiated intra- and inter-molecular har-

monic potentials. As a stepping stone to our goal, here we introduce

different parameters (spring constants and distance cutoffs to define

node pairs) for the two types of potentials:

U0 ¼
X

i;jð Þ2N Rð Þ[N Lð Þ

1

2
c1 dij � d0

ij

� �2
þ

X
i;jð Þ2N R;Lð Þ

1

2
c2 dij � d0

ij

� �2
(2)

where N(R, L) denotes the set of intermolecular (i, j) pairs with

atom i from the receptor (R) and atom j from the ligand (L).

Figure 2 provides an example (PDB code: 1Y64) illustrating the dif-

ference between a conventional ANM and our new model cANM.

Conformational Change

Intrinsic 
Flexibility

Intermolecular
Interaction

Conformational
Selection

Induced
Fit

Fig. 1. Illustrations of conventional (left arrow) and proposed (both arrows)

models for conformational change. A protein illustrated in blue changes its

conformation from unbound (light blue) to bound (dark blue) upon inter-

actions with its partner (gray)
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Throughout this study, the intramolecular parameters are set at

default values as in the ProDy computer package (Bakan et al.,

2011) (c1 ¼ 1 and D1 ¼ 15Å), whereas the intermolecular ones c2

and D2 are tested at various values.

2.2 Complex-based NMA
Normal modes are the eigenvectors of the Hessian matrix of the

potential. The Hessian matrix HC of U0 in our cANM is constructed

by deriving the second order partial derivatives of U0. The complex-

derived Hessian matrix HC possesses a special structure ofeHR HRL

HLR eHL

24 35, also investigated similarly in (Dasgupta et al.,

2014). Specifically, HC [a 3ðmþ nÞ � 3ðmþ nÞ matrix where m and

n are the number of nodes of R(eceptor) and L(igand), respectively]

has two diagonal submatrices eHR (3m� 3m) and eHL (3n� 3n) cap-

turing the coupled intramolecular motions of R and L, respectively.

The overhead tilde for each submatrix indicates that each differs

from the counterpart in conventional NMA, i.e. HR or HL. The ex-

pressions of both submatrices are shown in Tables 1 and 2 with their

differences from conventional counterparts highlighted in bold fonts

and gray backgrounds. It is noteworthy that only diagonal super-

elements of (3�3 matrices; see more details in the Appendix) eHL

and eHR could differ from their conventional counterparts without

consideration of intermolecular interactions. These diagonal super-

elements correspond to the coupled DoFs (x, y and z in this case) for

the same atom that forms intermolecular interactions and the differ-

ences capture the cumulative inter-molecular interactions this atom

forms. In addition, HC has two off-diagonal submatrices describing

the couplings between motions of R and L, where HRL � ðHLRÞT .

Their expressions are also given in Table 2.

2.3 ProjectingHC

Eigenvectors of HC include rigid-body motions of individual pro-

teins because of the Eckart body frame (Eckart, 1935) imposed on

the protein complex: with the external (rigid-body) motions of the

entire complex separated away from its internal motions, the latter

motions include internal motions of individual proteins as well as

their relative external motions. And here we are interested in the in-

ternal motions of each component of a protein complex. Therefore,

when applying complex-derived normal modes to model individual

proteins’ conformational changes, the rigid-body motions of each

protein need to be removed appropriately. This can be accomplished

by projecting HC away from the space of rigid-body motions for a

protein under study via the Rayleigh–Ritz procedure (Field, 2007;

Saad, 1992). The orthogonal projection procedure calculates

approximate eigen pairs of a matrix so that the resulting eigenvec-

tors lie in a subspace following the steps below:

1. Construct six basis vectors for the space of rigid-body motions

2. Orthonormalize the basis set by QR factorization:

½Tx;Ty;Tz;Rx;Ry;Rz�/ QR(½T x;T y; T z;Rx;Ry;Rz�)
3. Define projection matrix P:

P I � RxRT
x � RyRT

y � RzR
T
z � TxTT

x � TyTT
y � TzT

T
z

4. Apply projection to the Hessian:H0C  PHCPT

5. Calculate eigensystem ofH0C.

For instance, to study the internal motions of the receptor, we

need to remove trivial modes representing rigid-body motions of the

Table 1. Partial derivatives for diagonal super-elements of eHR
oreHL

with additional terms compared with conventional counterparts

highlighted in bold fonts and gray backgrounds
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Fig. 2. (a) Conventional ANM with intramolecular potentials only (illustrated

through gray edges). (b) Complex-based ANM with both intra- (gray and slate

blue edges for two individual proteins) and intermolecular potentials (dark

blue edges between two proteins)
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receptor, whereas keeping both internal and external motions of the

ligand. This can be achieved by constructing first the projection ma-

trix PR for the receptor using the procedure above and then the pro-

jection matrix P ¼
PR 0

0 I

" #
for the entire complex. Therefore, the

new Hessian after projection can be written as

H0C ¼ P
eHR HRL

HLR eHL

" #
PT ¼

PR eHR ðPRÞT PRHRL

ðPRÞTHLR eHL

24 35 (3)

Structurally, H0C contains applying the operation of PR to eHR

whereas keeping eHL
unchanged on the diagonal. Consequently, H0C

contains trivial modes with non-zero values only in the component

(the receptor here) specific subvector.

2.4 Approaches to extract normal modes
Two approaches are used to derive normal modes useful for approx-

imating conformational changes of individual proteins. In the first

approach, we use the diagonal submatrix eHR
or eHL

that captures

induced motions of each protein without considerations of induced

motions of its binding partner or the coupling between the two sets

of protein motions. The matrix is projected with the procedure

described above [akin to the projection of the covariance matrix in

Dasgupta et al. (2013)], and eigenvalues and eigenvectors are calcu-

lated with eigenvectors ranked with increasing eigenvalues (six

eigenvectors corresponding to zero-valued eigenvalues are trivial

normal modes corresponding to rigid-body motions and thus

removed). In the second approach, the complex-derived Hessian ma-

trixHC is used for projection and eigen calculations, and the compo-

nent of non-trivial normal modes corresponding to a protein under

investigation is extracted. We call these two approaches submatrix

and subvector correspondingly which are illustrated in Figure 3.

2.5 Assessment measures
An unbound-to-bound conformational change can be approximated

by a linear combination of the first K normal modes: d ¼ b� u ¼ r

þ
PK

j¼1 bjMj where d is a vector of conformational change, u a vec-

tor representing the unbound structure, b a vector representing the

bound structure, Mj the jth normal mode and r residuals of the fit.

The optimal coefficients of the first K modes to minimize the magni-

tude of d are analytically derived as in (Moal and Bates, 2010):

b ¼ ðMTMÞ�1MTd (4)

With such an optimal approximation of conformational changes

for any given set of K normal modes, the optimal root mean square

deviation (RMSD) reduction R(K) is defined as

RðKÞ ¼ 1�
RMSDðuþ

XK

j¼1

bjMj; bÞ

RMSDðu; bÞ : (5)

Based on the measure above, the average improvement of cNMA

compared with the conventional NMA (or NMA in short) is defined

by the average of ðRcNMAðKÞ
RNMAðKÞ � 1Þ � 100, which gives a relative im-

provement of the optimal RMSD reduction averaged over all cases.

And the population improvement (or net success rate) is defined as

the percentage with at least 5% relative improvement subtracted by

the percentage with at least 5% relative deterioration. Note that a

large fraction of comparable results (with neither significant im-

provement nor deterioration) would penalize net success rate here.

All comparisons are based on backbone atoms unless stated

otherwise.

Table 2. Partial derivatives for off-diagonal super-elements of eHR

(unchanged from those of HR ), as well as those for super-elements

of the off-diagonal submatrix HRL newly introduced in cNMA, thus

highlighted in bold fonts and gray backgrounds
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Table 3. Statistics of the test set

Class Fit components Docked components

iRMSD< 5Å iRMSD< 10Å All

Difficult 113 68 253 1130

Medium 185 234 536 1850

Rigid 42 33 132 420

All 340 335 921 3400
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In addition, a measure of overlap, as described in Dobbins et al.

(2008), is used to calculate the cosine similarity between the vector

of conformational change and any given normal mode.

2.6 Test set
The Protein–Protein Docking Benchmark Version 4.0 (http://zlab.

umassmed.edu/benchmark/, Hwang et al., 2010) provides a large-

scale data set of protein–protein interactions giving a broad cover-

age of non-redundant sequences and structural folds and thus

allowing extrapolation of analytic and empirical results for new,

uncharacterized proteins. Specifically, it contains 176 pairs of un-

bound protein structures and their corresponding bound complexes.

With 12 proteins removed due to identical unbound and bound

structures, the rest 340 individual proteins are classified into three

categories corresponding to the extent of conformational changes as

well as the difficulty for protein docking. Specifically, individual

proteins are classified as rigid, medium and difficult cases when their

unbound-to-bound interface RMSD (iRMSD) values fall below 1 Å,

between 1 Å and 2 Å and above 2 Å, respectively.

Conformational change vectors d between unbound and bound

proteins are constructed by determining residue-to-residue corres-

pondence and then least-squares fitting. Determining the corres-

pondence is a nontrivial task because of the need for chain-to-chain

correspondence for multi-chain proteins and the possible differences

in atoms or residues even for corresponding pairs of chains.

Therefore, the chain matching problem is formulated as the max-

imum weight perfect matching in a weighted bipartite graph.

Specifically, the two partite sets include chains of unbound and

bound structures; edge weights are defined as the average of se-

quence identity and sequence coverage after pairwise chain align-

ment. The problem is then solved using an implementation (https://

pypi.python.org/pypi/munkres/) of the Kuhn–Munkres algorithm

(Kuhn, 1955) (Hungarian algorithm).

Encounter complexes of protein pairs are constructed by two

approaches: (i) geometrically fitting unbound proteins to their cor-

responding bound complex which gives an optimal scenario for

rigid, unbound protein docking and (ii) rigidly docking unbound

protein pairs, which does not assume any knowledge of bound com-

plexes. For the latter approach, 10 encounter complex structures for

each of the 170 protein pairs have been generated by ZDOCK as the

top 10 cluster centers (with angular distances instead of RMSD as

dissimilarity measure) (Vreven et al., 2013) and kindly provided by

the Weng group. The number (10) of distinctive models per protein

complex is chosen as it is frequently used in assessing protein dock-

ing methods and shown to be enough in most benchmark cases; but

it can be adjusted larger with the increase of case difficulty. The stat-

istics for individual components (receptors and ligands) of encounter

complexes and category breakdowns are provided in Table 3.

Input data for cNMA are just an encounter complex structure

consisting of the unbound structure of a protein under study and

that of its binding partner. Parameters include distance cutoff and

spring constant for intermolecular potentials (D2 and c2, respect-

ively). The bound structure of the protein is only needed for poster-

ior assessment.

3 Results and discussion

In this section, two cNMA approaches (submatrix and subvector)

are first compared with conventional NMA empirically for difficult

cases (as in Table 3) that involve large-scale conformational

changes, a major challenge to protein docking. The submatrix ap-

proach only considers induced motions of a protein under study,

which involves the diagonal submatrix (eHR
or eHL

) of the Hessian

matrix for the encounter complex (H0C). The performances of the

submatrix approach prompt us to look into induced motions of a

protein’s binding partner and the coupling between the two sets of

induced motions and to introduce the subvector approach that in-

deed shows considerable improvement over conventional NMA.

Next, in an effort to isolate the contribution of intermolecular

interactions to the improved results, a special case of cNMA with

intermolecular potentials removed reveals an overlooked factor of

order effect and inspires the development of a re-ranking strategy

for the subvector approach. This scheme even improves the perform-

ances of the subvector approach and proves the isolated contribu-

tion of intermolecular interactions.

Finally, the approximating power of the cNMA modes is investi-

gated against the quality of encounter complexes.

Throughout the section, parameter dependence and mechanistic

insights are also reported.

3.1 Submatrix approach
As described in Section 2, the complex-derived Hessian matrix HC

contains diagonal submatrices eHR
or eHL

describing intra-molecular

motions of each component protein. Compared with Hessian matri-

ces calculated on individual proteins without considerations of bind-

ing partners (HR and HL), only diagonal 3�3 super-elements of

these diagonal submatrices could change if the corresponding atoms

form intermolecular interactions. It is intriguing that these changes

are only for the coupling among the DoFs for the same atom due to

its summed intermolecular interactions, which suggests perturb-

ations to intrinsic flexibility due to interactions. We set out to ex-

plore whether these submatrices provide normal modes capable of

approximating conformational changes better than conventional

NMA does with the submatrix approach first.

Figure 4 shows both the average and the population improve-

ments in approximating conformational changes when comparing

the submatrix approach against conventional NMA. Here difficult

cases with geometrically fit encounter complexes were considered.

Both overall conformational changes (top panel) and those at the

interface (bottom panel) were studied. The best initial performance

was given with intermolecular parameters D2 ¼ 10Å and c2 ¼ 0:25

(red line). The fact that both values are smaller than those of corres-

ponding intramolecular parameters (D1 and c1, respectively) is intui-

tively satisfying because non-bonded intermolecular interactions are

often assumed to be weaker and in shorter range than intramolecu-

lar ones. Although the approach improved the average overall

RMSD reduction by orders of magnitude when using the first 1 or 2

normal modes (see Fig. 4a inset), its performance was quickly out-

performed by conventional NMA methods until tying it after the

number of the slowest normal modes reached 40. The population

measure in Figure 4b told a similar story. So were the average and

(a) (b)

Fig. 3. Work flow for (a) submatrix and (b) subvector approaches
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population performance for interface conformational changes (Fig.

4c and d). It is noteworthy that the parameters equalizing intra- and

intermolecular interactions (thick dashed line) gave the worst per-

formance, which further proves the importance of differentiating

intra- and intermolecular interactions.

Considering that these results were derived from fit complexes

which were constructed with the information of bound complexes,

the performance of submatrix approach was extremely unsatisfying.

We also collected the results for docked complexes—apparently

with many non-native interactions present in those encounter com-

plexes its performance was even worse (results not shown). This

prompted us to propose the subvector approach which looked be-

yond submatrices and whose results will be reported next.

3.2 Subvector approach
Although submatrix eHR

or eHL
contains additional information on

intermolecular interactions, thus perturbing couplings between

DoFs for the same atom, the other diagonal submatrix correspond-

ing to the binding partner as well as the off-diagonal submatrices for

coupling between the two proteins were not considered. In contrast,

the subvector approach considers not only the induced motions of a

protein under study but also those of its binding partner as well as

the coupling between the two sets of motions.

Considerable amounts of average and population improvements

against conventional NMA using the subvector approach are

observed in Figure 5. Again, geometrically fit encounter complexes

were used here. First, it is intriguing that the parameters with the

best performances (cyan line) still correspond to a small spring con-

stant c2 ¼ 0:25 but a slightly higher distance cutoff D2 ¼ 12Å for

intermolecular interactions (although it is still smaller than the intra-

molecular distance cutoff D1 ¼ 15Å). Also, although a D2 ¼ 12Å

(cyan line) gave slightly better initial results between the first 10–20

normal modes, it was then surpassed by D2 ¼ 15Å (black solid

line). These data suggest that although intermolecular interactions,

being non-bonded, could act in shorter space scales than

intramolecular interactions, considerations of inter-molecular inter-

actions beyond the first layer (typically considered within 6Å) are

still needed for modeling protein–protein interactions. In contrast, a

straightforward application of conventional NMA to a protein com-

plex without differentiating intra- and inter-molecular interactions

(thick dashed line) produced results far from optimal. From the first

20 normal modes on, our approach improved on average RMSD re-

duction for both overall and interface conformational changes by

around 10%. Considering that the average performance could be

misleading with significant outliers, we also looked at the popula-

tion statistics in Figure 5b and d. With a 6 5% cutoff of improve-

ment or deterioration to define success versus failure, our net

success rate (success rate minus failure rate) impressively reached

above 30% for the overall and nearly 20% for the interface con-

formational changes.

Even for the rigidly docked encounter complexes with iRMSD

below 10 Å (which is a very loose definition of near-native encounter

complexes in the field of protein docking), the same optimal param-

eter sets (corresponding to cyan and black lines) were found (Fig. 6),

indicating that the trends in parameters in the subvector approach

were not sensitive to the choice of encounter complexes. More im-

portantly, significant improvements over conventional NMA were

still present. The best improvement over average RMSD reduction

with the first 30 normal modes was almost 20% for the overall pro-

tein and 10% for the interface. The best net success rate was over

40% for the overall and nearly 20% for the interface with the first

30 normal modes. Interestingly, the improvement against conven-

tional NMA in the more realistic case of the docked complexes was

even higher than that in the case of fit complexes.

So far, the subvector approach has produced a set of conform-

ational vectors which better and consistently explained conform-

ational changes of difficult proteins by considering induced motions

of both binding partners and their couplings in an encounter com-

plex. These results provided additional support to both mechanisms

of conformational selection and induced fit. Next, to single out

the effects of intermolecular interactions in our approach and

evaluate their contributions alone, we proceed to investigate in

depth the changes from the conventional NMA to our cNMA with a

subvector approach and propose a modification of the subvector

method next.

(a) (b)

(c) (d)

Fig. 4. Submatrix approach for proteins in geometrically fit encounter com-

plexes—average improvement against conventional NMA on (a) the whole

protein and (c) the interface and population improvement (or net success

rates) against conventional NMA on (b) the whole protein and (d) the inter-

face. The same color code is applied here and in Figures 5, 6 and 8: blue,

green, red, cyan and black solid curves correspond to D2 ¼ 6Å, 8 Å, 10 Å, 12 Å

and 15 Å, respectively (c2 ¼ 0:25 in all cases) and the black dashed curve cor-

respond to D2 ¼ D1 ¼ 15Å and c2 ¼ c1 ¼ 1

(a) (b)

(c) (d)

Fig. 5. Subvector approach for proteins in geometrically fit encounter com-

plexes—average improvement against conventional NMA on (a) the whole

protein and (c) the interface and net success rates against conventional NMA

on (b) the whole protein and (d) the interface
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3.3 Order effect

A special case of HC can be made by creating HC0 , a complex-based

Hessian without intermolecular interactions as HC0 ¼
HR 0

0 HL

" #
.

Such a block-diagonal matrix essentially contains the unchanged

Hessian of the receptor and ligand proteins, the off-diagonal matri-

ces being zero matrices. In such a system, the eigenvalues ki of HC0

are the union of the eigenvalues of HR and HL (kR
i and kL

i , respect-

ively). The associated eigenvectors lR
i and lL

i are also preserved,

now being subvectors of eigenvector li ofHC0 and having zero elem-

ents appended to fill the dimensions corresponding to their binding

partners. The eigensystem contains 12 zero-valued eigenvalues, cor-

responding to the six DoFs for each protein. Applying the projection

matrix P from Section 2.3 toHC0 leads to

H0C0 ¼ PHC0 PT ¼
PRHRðPRÞT 0

0 HL

" #
(6)

Empirically, in our experiments, the resulting matrix H0C0 after

projection was equal toHC0 .

In protein docking, deformation directions are often explored

along low-frequency normal modes of both component proteins, for

instance, alternating between ligand and receptor low-frequency

normal modes. However, applying the subvector approach to HC0

does not replicate the alternating strategy. The reason is that the

normal modes of component proteins appended with zero elements

are now reshuffled in an order corresponding to the mixed and re-

sorted eigenvalues from HR and HL, even though the order among

normal modes containing subvectors for the same protein maintains.

Figure 7 shows this order effect for the first six slowest modes of

HC0 for a random subset of complexes from the test set. It is appar-

ent that the first few normal modes are often not a uniform mixture

of those originated from both component proteins, which might ori-

ginate from their differences in size, shape and flexibility. Examples

here include that protein complex 2OT3 had its first six modes

solely coming from the receptor component, whereas the complex

2UUY displayed only ligand modes in the first six.

3.4 Component-specific re-ranking of complex-based

normal modes
A strategy with the goal to dampen the order effect, denoted as kR,

performs re-ranking of eigenvalues ki and corresponding eigenvec-

tors li by re-scaling the eigenvalues with component-specific

contributions:

kR
i ¼

ki

jjlR
i jj

2
(7)

where lR
i is a component-specific subvector of li. Through the kR

re-ranking, normal modes with a relatively small amount of direc-

tional contribution to the protein under study get demoted in rank.

It does not, per se, imply that complex-based modes with higher

magnitudes of corresponding components are indeed more valuable

for approximating protein conformational changes. Rather, by re-

ranking with kR, the re-ordered normal modes can now assess the

sole contribution from intermolecular interactions. In particular, if

there are no intermolecular interactions present (the case of HC0 ),

this approach produces the exact same set of normal modes in the

same order for individual proteins as conventional NMA does.

This re-ordering is invariant to the application of external mo-

tions to the system, when for instance superposing unbound and

bound proteins (or interfaces). Translations of the system leave both

ki and li unchanged and rotations change the three-dimensional

sub-elements of li by definition in a way that each magnitude is

unchanged.

We will next assess normal modes produced by this approach for

H0C where inter-molecular interactions are present (as opposed to

H0C0 ).

3.5 Subvector approach with re-ranking to assess the

sole contribution of intermolecular interactions
The subvector approach with kR re-ranking was applied to the diffi-

cult case again, with Figure 8 showing the results calculated using

geometrically fit encounter complexes. The optimal parameter set

for the subvector approach without re-ranking was still found to

give one of the best results (cyan lines) here. This approach produced

slightly improved average RMSD reduction compared with the con-

ventional NMA for both overall and interface conformational

changes. Moreover, it led to over 15% net success rate for overall

and about 20% for interface conformational changes. Similar results

(not shown here) can be found for near-native encounter complexes

constructed from rigid docking. It is potentially useful for practical

purposes that the parameter sensitivity with a kR re-ranking is lower

(a) (b)

(c) (d)

Fig. 6. Subvector approach for proteins in rigidly docked encounter com-

plexes—average improvement against conventional NMA on (a) the whole

protein and (c) the interface, and net success rates against conventional NMA

on (b) the whole protein and (d) the interface

0

1

1

0

Fig. 7. Normal mode spectrum. Each complex-derived mode is shown in a

row, with a blue color indicating its origin being the ligand and red the origin

being the receptor. The brightness reflects the amount of overlap between

this particular mode and the conformational change. Only a subset of protein

complexes and their first six non-trivial modes are shown here
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than that without re-ranking, which was particularly visible in the

curves for net success rates.

An intriguing fact is that lower D2 here improved performances

compared with the same parameter values in subvector approach

without re-ranking (one example is that the blue curves for D2 ¼ 6

Å here had much better performances than they did in Fig. 5). An

explanation can be given through the order effect and interaction ef-

fect in tandem. Since the order effect gives rise to modes mainly ex-

plaining the collective motions of a counterpart protein in the lower

eigenvalue spectrum, subvector approach with a smaller D2 can pos-

sess modes not as relevant to the conformational change among

low-frequency modes. In contrast, with a lower D2, the subvector

approach with kR re-ranking promoted modes that contain a signifi-

cant amount of motions for the protein under study and many of

such motions were empirically found to be relevant to conform-

ational changes, which is exemplified and visible in Figure 9a

(D2 ¼ 15 Å and c2 ¼ 0:25 without particular optimization). It can

be observed that, after the kR re-ranking, the slower modes (sorted

from afar to near on the y-axis) may have a relatively low level of

promotion (indicated by small negative values on the z-axis) com-

pared with some higher-frequency ones toward the near end but

many of those slower modes had good resemblance to actual con-

formational changes.

3.6 Reduction power versus model quality
For the real-world application of protein docking, an important

question is how the model quality of an encounter complex

(as measured by an interface RMSD value from the bound complex)

affects the approximation power of cNMA modes (as measured by

the optimal RMSD reduction defined earlier). Figure 9b shows

the relationship between the two derived using the subvector

approach with the first 20 normal modes. Without counting the

statistically insignificant samples with iRMSD>50 Å, one can ob-

serve a clear trend that high level of approximation power (RMSD

reduction above 50%) only comes with models of relatively good

quality (iRMSD<30 Å) even though a good-quality model of en-

counter complex could still lead to large variation in approximation

power. We note that iRMSD<30 Å represents an even larger range

than what is typically considered ‘near-native’ hits in protein

docking.

4 Conclusion

To decipher and anticipate protein conformational changes, we ex-

tended ANM to include concurrent but differentiated intra- and

inter-molecular potentials, developed a new framework of complex-

based NMA (cNMA) to analyze protein flexibility in the environ-

ment of encounter complexes and tested two ways of extracting

useful normal modes against a large-scale, nonredundant set of pro-

tein conformational changes. It was found important to differentiate

intra- and inter-molecular interactions in the model. In particular,

parameters defining shorter range (D2) (but preferably beyond the

first-layer interactions) or less strength (c2) for intermolecular inter-

actions improved the performance of approximating conformational

changes. Apparently, a straightforward application of conventional
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Fig. 9. (a) The order of slowest modes after re-ranking is given on the y-axis

from afar to near for each protein on the x-axis, with the change in ranking

order shown on the z-axis (negative values indicate a promotion in the order

of the eigenvector after re-ranking and positive ones indicate a demotion).

The colors indicated the overlaps between any given mode and the corres-

ponding actual conformational changes, warmer colors representing higher

overlaps. (b) The relationship between the power of cNMA to approximate

conformational changes and the quality of encounter complexes as input.

Colors in each block represent the conditional probability of RMSD reduction

(y-axis) given certain range of iRMSD (x-axis) of docked encounter complexes

compared with bound complexes. Calculations were performed using the

subvector approach with D2 ¼ 15Å and c2 ¼ 0:25 at the first 20 modes (these

parameters were not particularly optimized)

(a) (b)

(c) (d)

Fig. 8. Subvector approach with re-ranking for proteins in geometrically fit en-

counter complexes—average improvement against conventional NMA on (a)

the whole protein and (c) the interface, and net success rates against conven-

tional NMA on (b) the whole protein and (d) the interface
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NMA to an encounter complex does not necessarily improve upon

conventional NMA for proteins under study.

Our study provides additional support to both mechanisms of

conformational selection and induced fit for protein–protein inter-

actions and calls for more generalized theoretical models [candidates

include population shifts (Kumar et al., 2000)]. With contributions

from both intrinsic flexibility and intermolecular interactions, our

new modeling and analysis framework, cNMA, produced modes

better at approximating significant conformational changes than

conventional, intrinsic flexibility-driven NMA did. Interestingly, the

subvector approach outperformed the submatrix approach thanks

to the incorporation of both induced motions of the protein under

study and those of its binding partner as well as the couplings be-

tween the two sets of motions. The sole contribution of intermolecu-

lar interactions toward performance improvement was further

dissected and validated with a re-ranking scheme applied to the sub-

vector approach.

Our study also provides new tools for dimensionality reduction

of conformational space in flexible protein docking. A successful

protein docking method often involves the following critical compo-

nents that affect each other: reduced and essential representation of

conformational space, accurate energy function capable of discrimi-

nating native from non-native conformations and effective conform-

ational search or sampling strategy. cNMA focuses on improving

conformational representation thus is assessed in a critical way

using optimal combination of its modes to isolate this component.

In practice, any efficient search strategy under the guidance of a well

discriminatory energy function can be applied in the reduced con-

formational space spanned by cNMA modes to determine weights

(or coefficients) for individual modes and to improve protein dock-

ing results.
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AppendixeHR
for R with m nodes consists of m 3�3 super elements (each cor-

responding to one of m nodes or Ca atoms here), i.e.

eHR ¼

eH11
eH12 � � � eH1m

eH21
. .

. eH2m

..
. . .

.

..
.

eHm1 � � � � � � eHmm

266666664

377777775:

Each diagonal super-element contains second order partial de-

rivatives along 3 DoFs (x, y and z here) of an atom (say i), i.e.

eHR

ii ¼

@2U0

@x2
i

@2U0

@xi@yi

@2U0

@xi@zi

@2U0

@yi@xi

@2U0

@y2
i

@2U0

@yi@zi

@2U0

@zi@xi

@2U0

@zi@yi

@2U0

@z2
i

26666666664

37777777775
:

Each off-diagonal super-element contains second order partial

derivatives along DoFs of a pair of atoms (say i and j), i.e.

eHR

ij ¼

@2U0

@xi@xj

@2U0

@xi@yj

@2U0

@xi@zj

@2U0

@yi@xj

@2U0

@yi@yj

@2U0

@yi@zj

@2U0

@zi@xj

@2U0

@zi@yj

@2U0

@zi@zj

26666666664

37777777775
:

The structures of super-elements in eHL
for L are similar to those

described above.

The expressions of partial derivatives are given in Tables 1 and 2.

Terms different from counterparts of HR or HL in conventional

NMA are highlighted in bold fonts and gray backgrounds. Note that

the expressions are before setting dij at equilibrium distance d0
ij and

those reported in Atilgan et al., (2001) can be regarded as a special

case where no intermolecular potentials are present and dij ¼ d0
ij.
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