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ABSTRACT: Recently, ABX3 materials have garnered significant
attention due to their diverse applications in photovoltaics, catalysis,
and optoelectronics as well as their remarkable efficiency in energy
conversion. However, progress has been somewhat slow due to the
high expenses of the experiment or the time-consuming density
functional theory (DFT) calculation. In this study, we utilized the
extreme gradient boosting (XGBoost) algorithm to facilitate the
discovery and characterization of ABX3 compounds based on vast data
sets generated by DFT calculations. While the XGBoost algorithm
provides a powerful tool for accelerating the discovery of ABX3
compounds, it is crucial to acknowledge that different DFT
approximation levels can significantly impact the predicted band
gaps, potentially introducing discrepancies when compared with
experimental values. In the first step, we predict the space group of 13947 oxides and halides using the Open Quantum Materials
Database and elemental features. Our analysis yields classification accuracies ranging from 82.39% to 99.14% across these materials.
Following this, XGBoost regression algorithms are employed to interrogate the data set, enabling predictions of volume (achieving
an optimal accuracy of 98.41%, with a mean absolute error (MAE) of 2.395 Å3 and a root-mean-square error (RMSE) of 4.416 Å3),
formation energy (an optimal accuracy of 97.36%, with an MAE of 0.075 eV/atom and an RMSE of 0.132 eV/atom), and band gap
energy (an optimal accuracy of 87.00%, an MAE of 0.391 eV, and an RMSE of 0.574 eV). Finally, these prediction models are
employed to identify the possible space groups for each of the 1252 new ABX3 formulas. Then, we predict the volume, the formation
energy, and the band gap energy for each candidate space group. Through these predictive models, machine learning accelerates the
exploration of new materials with enhanced performance and functionality.

1. INTRODUCTION
Machine learning has become an effective tool for accelerating
the discovery of new ABX3 materials, revolutionizing research
in materials science.1−4 ABX3 compounds, which have
perovskite crystal structures, are applicable in various fields,
including catalysis,5−7 light-emitting diodes,8−10 superconduc-
tivity,11−13 piezoelectricity,14,15 ferromagnets,16 ferroelec-
trics,14 energy storage, and solar cells.17−20 Traditional
methods of material discovery often rely on onerous trial-
and-error experiments, aiming to find a material possessing
desired properties, or density functional theory (DFT), which
offers a computationally expensive and time-consuming
method to predict material behavior accurately. By contrast,
machine learning uses complex systems or vast data sets to
predict material properties, significantly speeding the discovery
process and unlocking the full potential of ABX3 compounds in
an advancing technological field.

To understand the ABX3 material’s performance, first,
predicting the space group aids in understanding crystal
material properties. Li et al.21 utilized a random forest model

with data from the Material Project Database to predict space
groups based on crystal material formulas. They achieved
performance rates ranging from 67% to 92% across the 14
space groups examined. Nomura et al.22 used machine learning
models to predict the space groups for Ba(Ce0.8‑xZrx)Y0.2O3
perovskite, achieving 94% accuracy across the space groups
considered. However, these models determine only the most
probable space group for each formula. Second, in crystallog-
raphy, the lattice constant significantly influences material
identification. X-ray diffraction is often a straightforward
method for determining it with high accuracy and an expensive
cost. To obtain the lattice constant or volume without using
experimental methods, researchers utilize data mining
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techniques because they are among the most extensively
utilized methods in the world of research for extracting
information from a large amount of data and organizing it for
greater use. Majid et al.23 utilized support vector regression
and neural networks to predict the lattice constant of
perovskites within two crystal systems, monoclinic and cubic.
They achieved performance rates ranging from 97.1% to
99.8%. Li et al.24 utilized the random forest model with a novel
descriptor to predict lattice constants specifically for cubic
crystals, achieving a performance accuracy of 97.3%. However,
when data from other crystal systems (orthorhombic,
tetragonal, and trigonal) were aggregated, the overall accuracy
decreased to 69.9%. That indicates a reduction in the model
accuracy when combining space groups. Within our model, we
accurately forecasted the volume across 103 space groups with
a precision exceeding 97%.

Formation energy (Ef) is generally used to select
thermodynamically stable materials with desirable proper-
ties.25,26 Stability conditions also aid in identifying compounds
that are more resistant to phase transitions or degradation,
ensuring reliability and long-term performance. The band gap
energy (Eg) is an essential property of materials; it affects their
electronic behavior and makes them applicable in a wide range
of fields, including photovoltaics,27 optoelectronics,28 and
semiconductors,29 because Eg directly influences the light
wavelength range that can absorb and control the solar cell
efficiency. However, predicting the band gap energy effectively
poses a challenge due to the complicated electrical interactions
and structural intricacies within the materials. Thus, many
researchers were interested in Ef and Eg. For example, Im et
al.30 predicted the formation energy for 540 hypothetical
double perovskites with an RMSE of 0.021 eV/atom to get the
solar cell perovskites used. Li et al.31 use ML models (GBR,
bagging, SVR, and RF) to predict the formation and band gap
energies for 758 perovskites. Zhang et al.32 use random forest
regression to predict the band gap of 1306 double perovskites
with an accuracy of 85.6% and MSE = 0.64 eV. Gao et al.33

employ three machine learning models (XGBR, ANN, and
SVR) to predict the band gap of 745 inorganic double
perovskites. While previous studies have applied machine
learning to predict individual properties of materials, our work
addresses the gap in comprehensive, high-throughput
prediction of multiple critical properties for ABX3 materials.

This approach enables rapid screening of a vast compositional
space, accelerating the discovery process in a way that
traditional DFT-based methods cannot match in terms of
speed and scale.

In this investigation, we address existing challenges by
developing XGBoost models to predict the critical parameters
of ABX3 materials. Our approach first predicts all feasible space
groups for each chemical formula, followed by the prediction
of volume (V), formation energy (Ef), and band gap energy
(Eg) based on the chemical formulas. We use data from the
Open Quantum Materials Database (OQMD) for training our
models, without performing additional DFT calculations.
Furthermore, we apply these predictive models to elucidate
the potential space groups for each of 1252 unexplored ABX3
formulas and to predict the properties of each candidate space
group. This method allows for rapid screening of a large
number of potential materials without the need for time-
consuming DFT calculations.

2. MATERIALS AND METHODS
2.1. Machine Learning.Machine learning (ML) integrates

computer science, mathematics, statistics, and engineering,
revolutionizing data analysis by uncovering hidden relation-
ships without human programming. Various machine learning
techniques, including supervised and unsupervised learning,
assist in proficiently managing data and identifying descriptors
associated with targeted attributes. This is especially valuable
in rapidly identifying potential solar cell materials and
accurately predicting material band gaps.34−36 Crafting models
through supervised learning allows precise anticipation of
values for unexplored materials, advancing material discovery.
This pursuit of understanding material behavior through ML
transcends predictive accuracy, aiming to catalyze develop-
ments in science and technology.
2.2. XGBoost. Extreme gradient boosting (XGBoost) is a

powerful and widely used distributed gradient boosting tool
proposed by Chen and Guestrin.37 It is an accessible tool for
building predictive models for regression and classification
tasks.38

The core idea of boosting is to iteratively create more
accurate models by combining multiple low-accuracy trees and
generating a prediction by summing the previous output,
where the model is trained to rectify the prediction errors

Figure 1. A and B cations and X anions of ABX3 compounds.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06139
ACS Omega 2024, 9, 47519−47531

47520

https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


made by prior trees. The sum of the classification and
regression trees in CARTs yields the final prediction yi:

=
=

y f x f F( ),i
k

K

i
1

k k

where f k(xi) refers to the output of one tree, K is the tree’s
number, and F denotes the set of all CART’s potential.

XGBoost is a widely used algorithm for classification and
regression problems due to its exceptional performance. Also,
it is known for its efficient memory usage, which makes it an
attractive choice for data science professionals seeking to
develop high-performance machine learning models.
2.3. SHapley Additive exPlanations. In data science,

SHapley Additive exPlanations (SHAP) are widely used to
simplify the interpretation of machine learning model outputs.
SHAP values are derived from cooperative game theory, and
each feature is assigned an importance value for a particular
prediction by considering its contribution across all possible
combinations of features. This fair distribution of “credit”
among features allows for consistent and theoretically
grounded interpretation of model predictions. The SHAP
graph visually represents this by illustrating the significance of
each feature in a given data set, with descriptors displayed
along the horizontal axis and the vertical axis representing a
normalized measure of importance, ranging from 0 to 1, to
facilitate comparison. To enhance clarity, we incorporate this
explanation into the SHAP section, providing readers with a
deeper understanding of its fundamental concepts and
applications. The feature importance graph arranges all
features based on estimating the individual contributions of
each one across the model’s trees. As a result, this graph aids in
providing valuable insights into the importance of different
variables in influencing the target variable or overall model
performance.39−41 Using SHAP, data scientists and profes-
sionals can explain the predictions made by machine learning
models in a human-understandable way by identifying the
most significant features and understanding how the model
made its final decision.
2.4. Data Collection. In pursuit of enumerating all

possible ABX3 crystal structures from the elements of the
periodic table within the oxide and halide families (where X =
Br, F, Cl, I, and O), we fill the A and B positions with 81
semimetal or metal atoms (see Figure 1).

Obtaining neutral ABX3 compounds requires specific
oxidation states for the oxides (A-B cation pair:
A+1B+5,A+2B+4,A+3B+3,A+4B+2,A+5B+1) and halides (A-B cation
pair: A+1B+2,A+2B+1) to maintain charge balance with anions.
For this purpose, we searched for all possible oxidation states
for the yellow atoms, utilizing the Shannon database (see
Table 1). Based on these criteria, it is possible to find 1448
halides and 2194 oxides, constituting 3642 chemical formulas.
In our study, Shannon ionic radii, introduced by R.D. Shannon
in 1976, are employed to describe the effective size of ions
within a crystal lattice. These radii, widely used across
chemistry, materials science, and crystallography, account for
variations based on the ion’s charge, coordination number, and
oxidation state. This approach provides a standardized measure
of ionic size that is critical for accurate modeling and analysis
of ionic interactions and crystal structures in our research.

A comprehensive search within the OQMD (Open
Quantum Materials Database)43,44 yielded 2390 of these
formulas, which can exist in multiple space groups, resulting inT
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13947 ABX3 compounds. The remaining 1252 new formulas,
however, are not present in the OQMD database and are the
subject of our interest. Figure 2 provides the distribution of
these 13947 ABX3 categorized by their anionic parts: oxides,
fluorines, bromines, chlorines, and iodines.

The’oxides’ category has the highest number of compounds,
with a count of 11567 (83%), because they have multiple
oxidation states, while’halides’ have the fewest compounds,
with only 2380 (17%) of the data set.
2.5. Features Generation. To determine the properties of

ABX3 compounds, the first model employs 80 initial elemental

Figure 2. Distribution of 13947 ABX3 in oxides, fluorines, bromines, chlorines, and iodines.

Table 2. Distribution of Space Groups in the ABX3 Train-Test Data
a

Crystal System Space Group Occurrences Crystal System Space Group Occurrences Crystal System Space Group Occurrences

Cubic Pm-3m 1805 Tetragonal P4mm 863 Orthorhombic Fmmm 6
Fd3̅m 32 I4/mcm 462 Pbcn 6
Ia3̅ 25 P4/mmm 360 Pba2 5
Fm3̅m 18 P4/mbm 278 Fddd 4
I213 14 I4/mmm 76 Immm 3
Im3̅ 14 P41 51 Pmmn 3
Ia3̅d 9 I4/m 16 Ama2 2
Pn3̅m 9 p-421c 6 Cmm2 2
P213 3 P42/nmc 3 Aba2 1
Pn3̅ 5 I4mm 2 Cmca 1
I23 1 P4̅m2 2 Pcc2 1
Pa3̅ 1 P42/mcm 2 Pca21 1

Hexagonal P63/mmc 190 P42/n 1 Pnnm 1
P63 cm 16 P4̅b2 1 Pmn21 1
P63mc 10 I41/a 1 Pmm2 1
P6̅2m 6 I41/amd 1 Ibam 1
P6322 4 P4/nmm 1 Monoclinic P21/m 227
P63 1 Orthorhombic Pnma 1447 P21/c 217
P63/mcm 1 Imma 411 C2/m 296
P6522 1 Amm2 274 C2/c 97

Trigonal R3̅c 1080 Cmcm 211 Cm 38
R3̅ 937 Cmmm 149 C2 25
R3̅m 259 Ima2 146 Pc 20
R3c 107 Pmmm 136 Pm 16
R3m 74 Cmc21 54 Cc 9
P3̅m1 28 C2221 32 P21 9
R3 19 Pbcm 28 P2/c 2
P3̅1c 13 P212121 21 Triclinic p-1 201
P321 13 Pna21 19 P1 73
P3̅1m 6 Pnna 13
P3m1 4 Pcca 12
p-3 2 Pmc21 12
P3121 1 Fdd2 11
P31 1 Pbam 11
P31c 1 Pmma 9
R32 1 Pccn 7
P32 1 Pbca 7

aWe split the 11117 ABX3 with a train/test ratio of 80/20, and then, we built the XGBoost classification utilizing both model 1 and model 2.
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features for the A, B, and X atoms. Of these, 72 are sourced
from the Python Materials Genomics library (Pymatgen).45

These features include the valence, period, group, atomic
number, molar volume, atomic mass, number of s, p, d, and f
electrons, ionic radius, atomic radius, van der Waals radius,
covalent radius, melting point, boiling point, electron affinity,
electron negativity, thermal conductivity, electrical resistivity,
T curie, first ionization energy, second ionization energy, and
enthalpy of fusion. For the polarizabilities of these 3 sites, we
selected them from.46 The remaining 5 features are the types
of compounds (oxides, fluorines, bromines, chlorines, and
iodines).

To alleviate the computational difficulty,47−50 we introduce
a second model that utilizes the mean of the elemental features
from A, B, and X sites, resulting in 25 novel features. The
remaining 5 features are the types of compounds (oxides,
fluorines, bromines, chlorines, and iodines). The total of these
variables is 30. We collected the ABX3 properties from the
OQMD database: volume (V), space group, band gap energy
(Eg), and formation energy (Ef).

3. RESULTS AND DISCUSSION
3.1. Space Group Prediction. 3.1.1. Data Preprocessing

(Removing Highly Correlated Features). To predict the
preferred space group for 1252 new ABX3 halides and oxides
solely from their chemical formulas, we utilized the 13947
known ABX3 compounds with their respective space groups.
We generated a correlation matrix using Python codes for both
the elemental features of the first model and the mean of the
elemental features of the second model to remove highly
correlated features when the coefficient between them exceeds
0.95. Following removal, we obtained 60 features in the first
model and 27 in the second model.

3.1.2. Data Splitting. We divided the 13947 ABX3
compounds into a train-test set, comprising 11117 materials
(80%), and a validation set, comprising 2830 materials (20%).
Table 2 represents the distribution of the 11117 ABX3 train-
test, where there are 7 crystal systems with space group sets,

and the counts beside each space group indicate the number of
its occurrences in the data set. For example, the space group
″Pm-3m″ has 1805 occurrences, which is the most common
structural symmetry; ″Pnma″ has 1447; and so on.

3.1.3. Model Evaluation. For each space group, we need to
build an XGBoost classification model that predicts ″yes″ or

Table 3. Evaluation of Space Group Models in ABX3 Compounds

Model 1 Model 2

Crystal System Space Group Train Train + 10 cv Test Validation Train Train +10 cv Test Validation

Cubic Pm-3m 96.53 95.67 93.46 93.29 96.99 95.21 93.98 93.71
Hexagonal P63/mmc 97.51 94.69 95.29 95.60 100 93.31 92.41 94.34
Trigonal R3̅c 100 88.07 89.79 86.16 99.87 87.54 87.96 86.58

R3̅ 99.80 88.07 90.05 84.70 100 85.96 84.55 83.86
R3̅m 100 96.72 97.12 95.39 99.74 94.42 93.19 93.50

Tetragonal P4mm 99.02 87.61 84.82 87.00 100 83.35 86.39 87.00
I4/mcm 100 91.74 90.58 93.50 100 87.81 89.01 89.94

P4/mmm 99.93 93.18 91.10 89.94 99.34 90.75 90.58 89.73
P4/mbm 96.53 93.00 91.62 89.31 100 91.80 91.88 91.19

Orthorhombic Pnma 100 86.36 82.46 83.65 100 85.44 88.22 82.39
Imma 100 95.54 96.60 95.39 100 90.82 90.84 91.00
Amm2 100 96.52 95.81 96.65 99.93 91.28 89.53 90.57
Cmcm 92.66 90.95 88.74 89.10 93.51 90.95 89.27 88.47
Cmmm 100 97.37 93.72 94.34 100 95.93 95.03 95.39
Ima2 99.87 99.14 97.12 98.11 100 96.85 96.86 96.02

Pmmm 99.93 95.87 95.55 95.18 100 95.67 95.03 94.97
Monoclinic P21/m 98.17 91.08 91.62 89.31 100 90.56 90.31 86.58

P21/c 89.52 89.12 87.70 85.95 100 90.29 86.39 86.16
C2/m 96.46 91.74 93.46 91.40 100 91.47 92.15 89.73

Triclinic p-1 95.15 90.82 90.05 87.21 100 90.63 90.58 86.79

Figure 3. Volume distribution of 13947 ABX3 in oxides, fluorines,
bromines, chlorines, and iodines.

Figure 4. Formation energy distribution of 13947 ABX3 in oxides,
fluorines, bromines, chlorines, and iodines.
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″no″ values. However, some of these groups contain a small
number of compounds (for example, Ama2 appears only
once), which hinders the construction of a strong model.
Therefore, we chose only the first 20 groups that had more
than 100 occurrences in the data. These are the most common
space groups found in perovskite structures and have
technological applications in various fields. Table 3 summarizes
the results that yield classification accuracies ranging from
82.39% to 97.12% across these materials in train, train + 10
cross-validation (cv), test, and validation data. In the test set,
models 1 and 2 achieve the best accuracies of 97.12% and

96.86%, respectively, corresponding to the space group
″Ima2″, and their lowest accuracies of 82.46% and 88.22%,
respectively, linked with the space group ″Pnma″, In the
validation set, models 1 and 2 achieve their highest accuracies
of 98.11% and 96.02%, respectively, associated with the space
group ″Ima2″, and their lowest accuracies of 83.65% and
82.39%, respectively, tied to the space group ″Pnma″.
3.2. Volume (V) and Formation Energy (Ef) Prediction.

3.2.1. Data Distribution. Figure 3 illustrates the volume
distribution of oxides and four halide types, indicating a range
of behaviors. Chlorines and oxides demonstrate a narrow and
high peak, suggesting a precise volume measurement with less
variability (less than 140). Iodines exhibit a broad distribution,
signifying a high degree of variability in volume, which may
imply diverse physicochemical properties. Also, the biggest
volumes are iodines (more than 220 Å3). The overlap between
bromines and chlorines indicates similarities in volume within
specific ranges. Figure 4 illustrates the formation energy
distribution of the previous five types. Oxides dominate the
distribution, with a prominent symmetrical peak centered

Table 4. Optimal Hyper-Parameters for XGBoost Regression Models

Model 1 Model 2

The hyper-parameters Volume (Å3) Formation energy (eV/atom) Volume (Å3) Formation energy (eV/atom)

colsample_bytree 0.7 0.7 0.7 0.5
learning_rate 0.1 0.1 0.1 0.1
max_depth 5 5 7 7
min_child_weight 3 3 3 5
n_estimators 1000 1000 1000 1000
objective reg:squarederrora reg:squarederror reg:squarederror reg:squarederror
Subsample 0.7 0.7 0.7 0.7

areg:squarederror: regression tasks where the model predicts a continuous value.

Figure 5. Feature importance plot. (a) The SHAP plot of the volume (V); (b) the SHAP plot of the formation energy (Ef).

Table 5. Relationship between d B and Ef Clusters

Ef (eV/atom)
−4 to
−3.3

−3.3 to
−2.7

−2.7
to −2

−2 to
−1.5

−1.5 to
−1.2

−1.2
to 0

d B fluorines 0−2 0−5 0−10 5−10 6−10 10
chlorines / / 0 0−10 5−10 5−10
bromines / / 0 0−2 3−10
iodines / / / 0 0
oxides 0−2 0−5 0−10 5−10 5−10

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.4c06139
ACS Omega 2024, 9, 47519−47531

47524

https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.4c06139?fig=fig5&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.4c06139?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


around −2.0. The other halides exhibit significantly lower
frequencies, with bromines and iodines showing a relatively
narrow distribution, whereas fluorines and chlorides display
broader spreads, indicative of higher variability. It can also be

noted that the most stable compounds for the phase transition
are oxides and fluorines (less than −2.7 eV/atom).

3.2.2. Data Splitting and Removing Highly Correlated
Features. To predict the volume (V) and formation energy

Table 6. Evaluation of Formation Energy (Ef) and Volume (V) Models in the ABX3 Compounds

Model 1 Model 2

Accuracy (%) MAE (eV/atom) RMSE (eV/atom) Accuracy (%) MAE (eV/atom) RMSE (eV/atom)

V train 99.59 1.343 2.123 99.85 0.843 1.272
train + 10 cv 98.00 2.400 4.255 98.00 2.890 5.000
test 98.41 2.395 4.416 98.06 2.748 4.878
validation 97.85 2.588 4.955 97.02 3.427 5.829

Ef train 99.42 0.039 0.062 99.70 0.028 0.044
train + 10 cv 98.00 0.070 0.140 97.00 0.080 0.150
test 97.36 0.075 0.132 96.93 0.083 0.143
validation 96.67 0.086 0.140 94.60 0.125 0.179

Figure 6. Prediction results of volume and formation energy for ABX3 materials in train, test, and validation data. (a) Parity plot of the volume (V);
(b) parity plot of the formation energy (Ef). Note: “actual” refers to reported values in the OQMD.

Table 7. Evaluation of Metal or Nonmetal State Models in the ABX3 Compounds
a

Model 1 Model 2

train train + 10 cv test validation train train + 10 cv test validation

Metal or nonmetal model accuracy (%) 98.91 90.47 91.17 88.63 99.92 89.75 90.58 86.26
aIf the compound exhibits metallic properties, indicating a band gap energy of zero, otherwise, XGBoost regression models can predict the gap
energy for nonmetallic compounds (Table 7).
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(Ef) of 1252 new ABX3 halides and oxides just from the
chemical formula and proposed space group, we selected the
13947 known ABX3 compounds with their space groups. We
generate a correlation matrix using Python codes for both the
elemental features of the first model and the mean of the
elemental features of the second model to remove highly
correlated features when the coefficient between them exceeds
0.95. Following removal, we obtained 60 features in the first
model and 27 in the second model.

We divided the 13947 ABX3 compounds into a train-test set,
comprising 11117 materials (80%), and a validation set,
comprising 2830 materials (20%). Subsequently, we divided
these 11158 train-test ABX3 compounds with a train-test ratio
of 80/20, upon which we constructed our XGBoost regression
models.

3.2.3. Hyper-Parameters Optimization. Before the pre-
diction processes begin, we need to optimize the hyper-
parameters to enhance the performance of our models and
attain heightened accuracy. Table 4 represents the optimal
hyper-parameters for XGBoost regression utilizing both model
1 and model 2.

3.2.4. Features Importance Plot. By examining the SHAP
plots presented in Figure 5, we can discern the influence of
these features on our prediction. In (a), the primary factors
affecting the prediction of V are the atomic number of the X
atom, the ionic radius of the B atom, and the space group
(Figure 5a). Also, the most important family is iodines, which
confirms the distribution in Figure 3, because the largest
volumes in our data are iodines. In contrast, the top features in
predicting Ef are the number of d electrons in the B atom (d
B), the second ionization energy of the A atom, and the

number of d electrons in the A atom (d A). The most
important family is fluorines, because most of them are stable
for phase transition, which confirms the distribution in Figure
4. We can explain the Ef clusters in Figure 5b with the SHAP
plot of the formation energy (Ef) that confirms the importance
of d B as in Table 5.

3.2.5. Model Evaluation. Table 6 represents the model
performance for train, train + 10 cross-validation (cv), test, and
validation data, which summarizes the results that yield
regression accuracies greater than 96% across these materials.
For the volume, both models 1 and 2 achieve a test set
accuracy of 98% and a validation set accuracy of 97%. In the
formation energy, model 1 achieves an accuracy of 97.36% and
model 2 achieves 96.93% in the test set, while in the validation
set, model 1 achieves 96.67% accuracy and model 2 achieves
94.60% accuracy. Figure 6 presents the parity plot of the
volume and formation energy for ABX3 materials in model 1.
The training data set is indicated by red circles, the test data set
is indicated by blue circles, and the validation data set is also
illustrated by green circles.
3.3. Band Gap Energy (Eg) Prediction. The prevalence of

zero values in the band gap target in the regression models
greatly hinders prediction accuracy. This challenge arises
because these models struggle with the imbalance between
zeros and nonzeros, leading to inadequate performance.

To construct a precise predictive model, we must remove
the zero values of the band gap energy, which constitute 57%
of the data. Therefore, we propose the development of a new
classification model termed “metal or nonmetal″, aimed at
discerning between metallic (Eg = 0) and nonmetallic states (
Eg 0).

3.3.1. Metal or Nonmetal State Prediction. Among the
13947 ABX3, 27 energy gaps are not mentioned in the OQMD,
so we divide the 13927 ABX3 compounds into an 80% train-
test set and a 20% validation set. Subsequently, we divided
these train-test ABX3 compounds with a train-test ratio of 80/
20, upon which we constructed our XGBoost classification
models Table 7.

3.3.2. Band Gap Energy (Eg) Prediction for Nonmetallic
ABX3 Compounds. 3.3.2.1. Data Distribution. Figure 7
illustrates the gap energy distribution of five types. Oxides
with lower band gap energies are more common, so they are
relevant in applications such as metals or semiconductors. The
other types, including fluorines, iodines, bromines, and

Figure 7. Band gap energy distribution of 13947 ABX3 in oxides, fluorines, bromines, chlorines, and iodines.

Table 8. Optimal Hyper-Parameters for XGBoost
Regression Models

Model 1 Model 2

The hyper-parameters Eg Eg

colsample_bytree 0.5 0.5
learning_rate 0.01 0.01
max_depth 10 10
min_child_weight 5 5
n_estimators 1000 1000
objective reg:squarederror reg:squarederror
Subsample 0.7 0.7
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chlorines, display broader distributions, suggesting a greater
variety of band gap energies, which could reflect diversity in
the electronic or structural properties of the materials studied.
Fluorines have the highest band gaps (ranging from 6 to 8 eV).
The distribution occurs within three energy ranges, suggesting
the existence of separate energy groups or clusters within these
materials.

3.3.2.2. Removing Highly Correlated Features. To predict
the band gap energy (Eg) of 1252 new ABX3 halides and oxides

just from the chemical formula and proposed space group, we
selected the 7164 nonmetallic ABX3 compounds with their
space groups. We generate a correlation matrix using Python
codes for both the elemental features of the first model and the
mean of the elemental features of the second model to remove
highly correlated features when the coefficient between them
exceeds 0.95. Following removal, we obtained 60 features in
the first model and 27 in the second model.

We divided the 7164 ABX3 compounds into a train-test set,
comprising 5731 materials (80%), and a validation set,
comprising 1433 materials (20%). Subsequently, we divided
these 5731 train-test ABX3 compounds with a train/test ratio
of 80/20, upon which we constructed our XGBoost regression
models.

3.3.2.3. Hyper-Parameter Optimization. Before the pre-
diction processes begin, we need to optimize the hyper-
parameters to enhance the performance of our models and
attain heightened accuracy. Table 8 represents the optimal

Figure 8. SHAP plot of the band gap energy (Eg).

Table 9. Relationship between d B and Ef Clusters

Eg (eV) 6−9 3−6 1.5−3 0−1.5 0

d B fluorines 0 0, 10 0, 5, 10 0, 5−10 0, 5−10
chlorines /
bromines /
iodines / 0
oxides 0 0−2, 10 0−5, 10 0−10 0−10

Table 10. Evaluation of Band Gap Energy Models in the ABX3 Compounds

Model 1 Model 2

Accuracy (%) MAE (eV/atom) RMSE (eV/atom) Accuracy (%) MAE (eV/atom) RMSE (eV/atom)

Eg train 97.15 0.18 0.26 97.32 0.17 0.25
train + 10 cv 85.00 0.41 0.60 83.01 0.44 0.63
test 85.17 0.40 0.60 83.00 0.45 0.64
validation 87.00 0.39 0.57 85.46 0.42 0.60
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hyper-parameters for XGBoost regression utilizing both model
1 and model 2.

3.3.2.4. Features Importance Plot. By examining the SHAP
plots presented in Figure 8, we can discern the influence of
these features on our prediction. The primary factors affecting
the prediction of Eg are the number of d electrons in the B
atom (d B), the molar volume of the B atom, and the space
group. The most important family is fluorines, because they
have the highest band gaps (ranging from 6 to 8 eV), which
confirms the distribution in Figure 7. We can explain the Eg
clusters in Figure 8 with the SHAP plot of the band gap energy
(Eg) that confirms the importance of d B as in Table 9.

3.3.2.5. Model Evaluation. Table 10 represents the model
performance for train, train + 10 cross-validation, test, and
validation data, which summarizes the results that yield
regression accuracies greater than 86% across these materials.
For the band gap energy, model 1 achieves an accuracy of
85.17% and model 2 achieves 83.00% in the test set, while in
the validation set, model 1 achieves 87.00% accuracy and
model 2 achieves 85.46% accuracy. Figure 9 presents the parity
plot of the band gap energy for ABX3 materials in model 1.
The training data set is indicated by red circles, the test data set
is indicated by blue circles, and the validation data set is also
illustrated by green circles.

3.4. Generalization of Models to Encompass 1252
New Formulas. We use the previous XGBoost models with
1252 new ABX3 to find the possible space groups for each
formula (using the 20 models we built previously), and then,
we predict the volume and the formation energy for each space
group (see Supporting Information). Furthermore, we test
whether a compound is a metal; we identify instances where
the presence of a metal indicates a zero-band gap energy, while,
otherwise, we predict the band gap energy in addition to the
energy gaps not mentioned in the OQMD. Models 1 and 2
detect numerous ABX3 compounds, and when we consider the
space group intersection between them, we obtain a set of
1836 materials.

For example, we consider the compound AcAmO3. Both
models 1 and 2 suggest two space groups with the volume,
formation, and band gap energies at slightly different values.
Model 1: AcAmO3

= = =Pm m V E Eg3 : 86.68 A , f 3.04 eV/atom, 0 eV3

= = =R V E Eg3: 89.75 A , f 3.39 eV/atom, 2.72 eV3

Model 2: AcAmO3

= = =Pm m V E Eg3 : 86.58 A , f 3.05 eV/atom, 0 eV3

Figure 9. Prediction results of band gap energy (Eg) for ABX3 materials in training, testing, and validation data. Note: “actual” refers to reported
values in OQMD.

Figure 10. Comparison of volume, formation energy, and band gap energy results for new ABX3 materials: models 1 vs 2.
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= = =R V E Eg3: 86.57 A , f 3.38 eV/atom, 2.44 eV3

To clarify the compatibility between the two models, we
compare them in Figure 10. This figure presents the parity plot
for ABX3 materials, showing that model 1 and model 2 achieve
accuracies of 91.81%, 83.41%, and 94.08% for volume,
formation energy, and band gap energy, respectively. The
mean absolute errors (MAEs) for volume, formation energy,
and band gap energy are 8.14 Å3, 0.23 eV/atom, and 0.13 eV,
respectively. These values indicate reasonable convergence
among the models.

4. CONCLUSION
This work presents a comprehensive application of machine
learning (ML) techniques for the discovery and design of
ABX3 perovskite materials. By leveraging the XGBoost
algorithm, we developed predictive models capable of
identifying new potential ABX3 formulas and estimating their
fundamental properties solely on the basis of their chemical
compositions. First, we employed an XGBoost classification
model to predict the space group symmetry of known oxide
and halide ABX3 compounds from the OQMD database. The
model achieved remarkable accuracies ranging from 82.39% to
99.14%, demonstrating its ability to capture the intricate
relationships between chemical formulas and crystal structures.
Subsequently, we utilized XGBoost regression models to
predict three crucial material properties: volume (V),
formation energy (Ef), and band gap energy (Eg). These
properties govern the stability, structural characteristics, and
electronic behavior of perovskite materials, making them
essential for assessing their suitability for various applications.
The volume prediction model, trained on elemental features,
exhibited an impressive accuracy of 98.41% with a mean
absolute error (MAE) of 2.395 Å3 and a root-mean-squared
error (RMSE) of 4.416 Å3. Similarly, the formation energy
model achieved an accuracy of 97.36%, with an MAE of 0.075
and an RMSE of 0.132, indicating its proficiency in estimating
the thermodynamic stability of these materials. Furthermore,
we developed a classification model to distinguish between
metallic and nonmetallic compounds, as the electronic
properties of these two classes differ fundamentally. For
nonmetallic compounds, an XGBoost regression model was
employed to predict the band gap energy, a crucial parameter
governing the optical and electronic behavior of semi-
conductors and insulators. This model achieved an accuracy
of 87.00%, with an MAE of 0.391 and an RMSE of 0.574,
demonstrating its reliability in estimating this critical property.
By combining the predictions from these models, we identified
a set of 1836 potential new ABX3 formulas with estimated
properties, paving the way for further exploration and
experimental validation of these promising materials. The
findings presented in this paper highlight the power of machine
learning techniques in accelerating the discovery and design of
novel perovskite materials. By leveraging the ability of ML
models to capture complex patterns and relationships within
material data, we can efficiently navigate the vast chemical
space and identify promising candidates for targeted synthesis
and characterization.
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