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Abstract

Individuals with chronic kidney disease have elevated levels of oxidative stress and are at

a significantly higher risk of skeletal fracture. Advanced glycation end products (AGEs),

which accumulate in bone and compromise mechanical properties, are known to be driven

in part by oxidative stress. The goal of this study was to study effects of N-acetylcysteine

(NAC) on reducing oxidative stress and improving various bone parameters, most specifi-

cally mechanical properties, in an animal model of progressive CKD. Male Cy/+ (CKD) rats

and unaffected littermates were untreated (controls) or treated with NAC (80 mg/kg, IP)

from 30 to 35 weeks of age. Endpoint measures included serum biochemistries, assess-

ments of systemic oxidative stress, bone morphology, and mechanical properties, and AGE

levels in the bone. CKD rats had the expected phenotype that included low kidney function,

elevated parathyroid hormone, higher cortical porosity, and compromised mechanical prop-

erties. NAC treatment had mixed effects on oxidative stress markers, significantly reducing

TBARS (a measure of lipid peroxidation) while not affecting 8-OHdG (a marker of DNA oxi-

dation) levels. AGE levels in the bone were elevated in CKD animals and were reduced with

NAC although this did not translate to a benefit in bone mechanical properties. In conclusion,

NAC failed to significantly improve bone architecture/geometry/mechanical properties in our

rat model of progressive CKD.

Introduction

Ten percent of Americans suffer from chronic kidney disease (CKD) [1]. Individuals with

CKD are at a significantly higher risk of skeletal fracture and associated death, compared to
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the normal population [2]. The pathophysiology underling skeletal-related phenotype develop-

ment in CKD is complex and driven primarily through disturbances in bone and mineral

metabolism [3]. Yet there is a growing appreciation for factors outside of mineral metabolism

that contribute to skeletal fragility in CKD [4][5].

Advanced glycation end products (AGEs) represent a heterogeneous group of modified

proteins and fat that derive from the addition of a carbohydrate to an amino acid or lipid in a

non-enzymatic reaction involving sugar. AGE accumulation in the body is influenced by vari-

ous factors including levels of blood glucose (such as in diabetes), levels of dietary AGE intake,

and as both downstream and upstream consequences of increased oxidative stress [6]. Bone

represents the largest collection of long-lived proteins in the body, principally collagen, and

thus is highly susceptible to AGE accumulation [7]. In vitro [8][9,10], preclinical [11,12], and

clinical studies [13] have associated AGE accumulation/collagen cross-linking with reduced

bone mechanical properties.

In patients with CKD, regardless of the presence or absence of diabetes, there are increased

circulating levels of AGE proteins compared to age-matched controls [14,15]. We and others

have found increased skeletal AGE levels in CKD animal models, and we have shown these lev-

els are independent of PTH levels and bone turnover [12][16]. Thus AGE accumulation in

bone of patients with CKD may contribute to the poor fracture resistance similar to the reduc-

tion in mechanical properties that we have observed in our animal model of CKD [17–19] and

impaired bone quality in humans with this disease [20][21][22][23].

The anti-oxidant N-acetylcysteine (NAC) is commonly used in CKD as it has been shown

to reduce systemic oxidative stress and AGE formation [24][25]. Whether this translates to

reduced levels of AGEs in bone and, most importantly, improved mechanical properties, is

unclear. Therefore, the goal of this study was to test the hypothesis that NAC reduces oxidative

stress and improves the bone mechanical properties of bone in an animal model of progressive

CKD.

Methods

Experimental design

Cy/+ rats are characterized by an autosomal dominant mutation in Anks6, a gene that codes

for the protein SamCystin, and which has been linked to nephronophthisis in humans [26]. In

this rat model, the mutation leads to a slow and gradual onset of CKD, paralleling human

CKD conditions through the gradual development hyperphosphatemia, hyperparathyroidism,

and skeletal abnormalities [27,28].

Male Cy/+ (CKD) rats (n = 25) and unaffected normal littermates (NL; n = 18) were placed

on a casein diet (Envigo TD.04539; 0.7% Pi, 0.7% Ca, 15.9% Protein, 5.2% Fat) at 24 weeks of

age in order to produce a more consistent kidney disease phenotype [29]. A higher number of

CKD animals were started in the study due historical variability in disease and response to

treatment. At 30 weeks of age, a subset of CKD (n = 12) and NL (n = 9) rats began treatment

with N-acetylcysteine (NAC, 80 mg/kg, IP) for 5 weeks while the remaining animals served as

non-treated controls (without vehicle treatment). The 5-week treatment duration was chosen

as we have previously shown it to result in dramatic changes to bone properties in this model

[18,30]. The NAC dose was based upon previous studies [31][32] and pilot dosing studies in

our lab.

At 35 weeks of age, animals were anesthetized with isoflurane and underwent cardiac punc-

ture for blood collection followed by exsanguination and bilateral pneumothorax to ensure

death. Tibiae were fixed in 10% neutral buffered formalin and femora were stored in PBS-

soaked gauze and frozen at -20C for analysis. All procedures were approved by and carried out
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according to the rules and regulations of the Indiana University School of Medicine’s Institu-

tional Animal Care and Use Committee.

Biochemistry

Blood plasma was analyzed for BUN, calcium, and phosphorus using colorimetric assays

(Point Scientific, Canton, MI, or Sigma kits). Intact PTH was determined by ELISA (Alpco,

Salem, NH). Serum levels of an oxidative stress marker, 8-hydroxy-2’ -deoxyguanosine

(8-OHdG) were measured using an ELISA kit (Enzo Life Sciences, Farmingdale, NY) and

TBARS were measured using TBARS assay (TCA method) kit (Cayman Chemical, Ann Arbor,

MI).

Micro-Computed Tomography (microCT)

Proximal tibia were scanned with microCT (Skyscan 1172) using a 12 micron isotropic voxel

size for determination of trabecular bone volume (BV/TV, %) and cortical porosity, using

methods previously published [18]. BV/TV was measured within a region of interest in the

proximal metaphysis starting at ~0.5 mm below the most distal region of the growth plate and

extending downward for 1 mm. The ROI was manually drawn to excluded cortical bone. Cor-

tical porosity was assessed on a single slice at the most distal edge of the trabecular ROI with

the isolation of the cortex achieved through manual segmentation. Whole femur were scanned

(Skyscan 1176) at a nominal resolution of 18 microns to assess geometric properties including

total tissue area (TA), bone area (BA), polar cross-sectional moment of inertia (CSMIp) and

cortical thickness (Ct.Th) on a single slice located at 50% of bone length [33]. Scans and analy-

ses were done in accordance with standard guidelines [34].

Whole bone mechanics

Structural mechanical properties of the left femur were determined by four-point bending as

previously described [35]. The anterior surface was placed on two lower supports located ±9

mm from the mid-diaphysis (18 mm span length) with an upper span length of 6 mm. Speci-

mens were loaded to failure at a rate of 2 mm/min, producing a force-displacement curve for

each sample. Structural-dependent mechanical properties were obtained directly from these

curves, while apparent material properties were derived from the force-displacement curves,

CSMIp from microCT, and the distances from the centroid to the tensile surface using stan-

dard beam-bending equations for four-point bending [36].

Measurements of skeletal collagen cross-linking of femoral cortical bone

After mechanical testing, segments of the femoral cortex (~3 mm in length) were processed for

assessment of enzymatic collagen crosslinks and an AGE crosslink (pentosidine) by a high per-

formance liquid chromatography (HPLC) system (Beckman-Coulter System Gold 168) as pre-

viously published [12,37,38]. Briefly, the femoral shaft was flushed with saline to remove

marrow followed by incubating with Immunocal (Decal Chemical Corporation, Congers, NY)

to demineralize the bone for 2–3 days. Demineralization end-point determination assays

(Polysciences, Warrington, PA) were used to verify demineralization of each specimen. The

demineralized bone tissues were then hydrolyzed in 6 M HCL at 110˚C for 16 hours. Standards

of pyridinoline (PYD; Quidel), deoxypyridinoline (DPD; Quidel), and pentosidine (PE; Inter-

national Maillard Reaction Society) were used. Hydroxyproline levels, also measured by

HPLC, were used to normalize crosslink concentration (mol/mol collagen).
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Measurement of total AGEs in bone tissue

The same demineralized bone tissues that were hydrolyzed for enzymatic cross-links were

assessed for total AGE content using previously published methods [10,39]. Briefly, fluores-

cence readings taken with a CLARIOstar high performance microplate reader (BMG LAB-

TECH Inc, Cary, NC) at wavelengths of 370nm/440nm excitation/emission against a quinine

sulfate standard and normalized by the collagen content for the sample. The amount of colla-

gen for each bone specimen was based on the amount of hydroxyproline determined by a

hydroxyproline assay kit according to manufactures’ instruction (Sigma-Aldrich USA,

St. Louis, MO).

Statistics

Comparisons among groups were assessed by two-way ANOVA with the main effects being

disease (NL and CKD) and treatment (control vs. NAC). When a significant interaction was

found in the two-way ANOVA Fisher’s LSD post-hoc tests across all four groups were per-

formed. A priori α-levels were set at 0.05 to determine statistical significance. Data are pre-

sented as mean ± standard deviation.

Results

The effect of NAC on kidney function, mineral metabolism and oxidative

stress in CKD rats

CKD animals had significantly higher BUN (4-fold), phosphorus (1.7-fold) and serum PTH

(8-fold) compared to NL (Table 1). NAC did not reduce PTH or BUN but did result in signifi-

cantly lower phosphorus and significantly higher calcium in in CKD animals. There was no

difference in levels of serum oxidative stress markers 8-OHdG (Fig 1A) or TBARS (Fig 1B)

between NL and CKD rats. NAC had no effect on levels of 8-OHdG but decreased levels of

TBARS (Fig 1A & 1B).

The effect of NAC on skeletal morphology of femoral mid-diaphysis in

CKD rats

There was no significant effect of phenotype, treatment, or an interaction on proximal tibia

trabecular BV/TV (Fig 2A). Cortical porosity showed a significant main effect of phenotype

(higher in CKD), but it was not affected by treatment (Fig 2B). At the mid-diaphysis, bone

area, cross-sectional moment of inertia, and cortical thickness were all significantly affected by

genotype (lower in CKD) without being significantly affected by NAC. Only CKD animals had

Table 1. Systemic biochemical markers.

Normal CKD Main effect of

disease

Main effect of

treatment

Disease x treatment

interactionControl

(n = 9)

NAC (n = 9) Control (n = 13) NAC (n = 12)

Calcium, mg/dL 6.8 ± 1.2 7.3 ± 1.2 5.6 ± 1.9 8.0 ± 1.7 � 0.628 0.004 0.048

Phosphorous, mg/

dL

5.1 ± 1.1 5.8 ± 2.8 8.8 ± 3.3 7.6 ± 3.3 0.004 0.808 0.281

BUN, mg/dL 14.1 ± 2.4 14.7 ± 2.9 57.8 ± 12.2 54.4 ± 12.5 <0.001 0.650 0.513

PTH, pg/mL 190 ± 64 - 1499 ± 1117 994 ± 746 <0.001 0.201 NA

Data presented as mean and standard deviation. CKD, chronic kidney disease; NAC, N-acetylcysteine; BUN, blood urea nitrogen; PTH, parathyroid hormone.

�p< 0.05 versus control within disease.

https://doi.org/10.1371/journal.pone.0230379.t001
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measurable cortical porosity at the mid-diaphysis and levels were not affected by NAC treat-

ment (Table 2).

The effect of NAC on bone mechanics in CKD rats

The majority of mechanical properties, both structural and estimated material-level, exhibited

significant main effects of genotype, with CKD animals having inferior properties compared

to NL (Table 3). There was no main effect of NAC treatment nor an interaction between geno-

type and treatment.

Fig 1. The systemic marker of oxidative stress. Serum 8-OHdG (A) and TBPARS (B) in NL and CKD rats treated with or without NAC. Data presented as mean and

standard deviation with point plots of individual data. (n = 8–12 each group).

https://doi.org/10.1371/journal.pone.0230379.g001

Fig 2. The effect of CKD and NAC on bone architecture. Cortical, but not trabecular bone is affected by CKD with no effect of NAC on either compartment. A)

Proximal tibia trabecular bone was not significantly affected by NAC in either genotype. B) Cortical porosity was significantly higher in CKD animals while NAC did

not affect levels in either genotype. Data presented as mean and standard deviation with point plots of individual data. (n = 8–12 each group).

https://doi.org/10.1371/journal.pone.0230379.g002
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The effect of NAC on total bone AGE accumulation and skeletal collagen

cross-linking of femoral cortical bone

Total AGEs in femoral bone tissue from untreated CKD rats were significantly higher com-

pared to normal animals (Fig 3). There was a significant interaction for total bone AGE with

NAC-treated CKD rats having lower total bone AGE levels whereas NL rats treated with NAC

had no effect compared to untreated NL rats (Fig 3). Assessment of enzymatic collagen cross-

links and pentosidine by HPLC revealed that pyridinoline levels per unit collagen were signifi-

cantly lower in CKD animals compared to NL with no effect of NAC treatment (Table 4).

There was a significant interaction for pentosidine levels with NAC-treated NL animals having

lower skeletal pentosidine levels while CKD animals treated with NAC were not significantly

different compared to untreated controls (Table 4). Total AGE levels were negatively corre-

lated to a number of mechanical properties with r values of ~0.3 that were statistically signfii-

cant (Table 5).

Discussion

The systemic disruptions in mineral metabolism associated with chronic kidney disease are

profound and result in pathophysiological changes in numerous organ systems including

skeletal changes and calcification of arteries. Oxidative stress is common in many diseases

including chronic kidney disease [40]. Although the cause is often multi-factorial, reducing

oxidative stress represents a general approach to lessen the consequence of disease. In the pres-

ent study we demonstrated that NAC, an anti-oxidant, given beginning at 30 weeks of age

Table 2. Skeletal morphology of femoral mid-diaphysis.

Normal CKD Main effect of

disease

Main effect of

treatment

Disease x treatment

interactionControl

(n = 8)

NAC (n = 8) Control

(n = 11)

NAC

(n = 11)

Bone area, mm2 8.8 ± 0.8 9.1 ± 0.5 7.9 ± 1.0 7.5 ± 0.8 0.001 0.975 0.194

Cross-sectional moment of

inertia, mm4
9.9 ± 1.2 10.9 ± 1.3 9.4 ± 1.5 8.7 ± 1.1 0.003 0.701 0.071

Cortical thickness, mm 0.74 ± 0.04 0.77 ± 0.04 0.63 ± 0.09 0.61 ± 0.13 0.001 0.876 0.463

Data presented as mean and standard deviation. CKD, chronic kidney disease; NAC, N-acetylcysteine.

https://doi.org/10.1371/journal.pone.0230379.t002

Table 3. Mechanical properties of the femur mid-diaphysis.

Normal CKD Main effect of

disease

Main effect of

treatment

Disease x treatment

interactionControl (n = 8) NAC (n = 7) Control (n = 12) NAC (n = 10)

Ultimate load, N 261 ± 19 252 ± 23 184 ± 45 183 ± 45 <0.001 0.667 0.739

Stiffness, N/mm 441 ± 36 415 ± 48 364 ± 42 347 ± 38 <0.001 0.125 0.755

Total displacement,

μm

846 ± 101 883 ± 128 662 ± 137 768 ± 187 0.003 0.207 0.380

Work to failure,

Nmm

129 ± 22 120 ± 24 70 ± 33 80 ± 39 <0.001 0.972 0.381

Ultimate stress, MPa 150 ± 17 140 ± 22 110 ± 32 114 ± 26 <0.001 0.706 0.419

Modulus, GPa 7.2 ± 0.8 6.5 ± 0.8 6.3 ± 1.0 6.4 ± 0.6 0.065 0.258 0.175

Total strain, μE 30371 ± 4115 31088 ± 4297 22967 ± 5242 26338 ± 6739 0.002 0.263 0.465

Toughness, MPa 2.59 ± 0.54 2.34 ± 0.55 1.45 ± 0.74 1.70 ± 0.84 0.001 0.989 0.297

Data presented as mean and standard deviation. CKD, chronic kidney disease; NAC, N-acetylcysteine.

https://doi.org/10.1371/journal.pone.0230379.t003
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(approximately 60–70% reduction in kidney function) for 5 weeks did not alter kidney func-

tion, assessed by BUN, or mineral metabolism in CKD rats. While NAC marginally lowered

serum levels of TBARS, a marker of lipid oxidation, it had no significant effect on serum

Fig 3. The effect of CKD and NAC on AGE accumulation. There was increased accumulation of AGE in femoral shaft from CKD rats compared to control rats

(Disease effect). There is no treatment effect overall but there is a significant interaction in which treatment with NAC reduced bone AGE accumulation in CKD rats but

not in NL rats. Data presented as mean and standard deviation with point plots of individual data (n = 8–12 each group). �p< 0.05 vs all other groups.

https://doi.org/10.1371/journal.pone.0230379.g003

Table 4. Skeletal collagen cross-linking of femoral cortical bone.

Normal CKD Main effect of

disease

Main effect of

treatment

Disease x treatment

interactionControl

(n = 8)

NAC (n = 9) Control

(n = 13)

NAC (n = 12)

Pyridinoline/mmol collagen 0.195 ± 0.03 0.20 ± 0.02 0.163 ± 0.02 0.168 ± 0.03 0.001 0.679 0.817

Deoxypyridinoline/mmol

collagen

0.131 ± 0.02 0.127 ± 0.02 0.119 ± 0.03 0.114 ± 0.03 0.138 0.595 0.976

Pentosidine/mmol collagen 70 ± 27 53 ± 10 � 59 ± 14 75 ± 31 0.444 0.925 0.023

Data presented as mean and standard deviation. CKD, chronic kidney disease; NAC, N-acetylcysteine.

�p< 0.05 versus control within disease.

https://doi.org/10.1371/journal.pone.0230379.t004
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8-OHDG, a marker of DNA oxidation. Furthermore, we found no end-organ effects of NAC

on the skeleton in CKD animals.

A major negative finding of this work is the absence of systemic oxidative stress elevations

in the CKD animals and modulation of levels in either treatment. We chose to assess oxidative

stress using 8-OHDG as it has shown to be elevated in our model of progressive chronic kid-

ney disease [41] and can be modulated by NAC [40]. Surprisingly, not only was there no effect

of disease, but there was no effect of NAC in either normal or disease conditions. Conversely,

there was a significant effect of NAC on lowering of TBARS, a common assessment of lipid

peroxidation. Previous work has shown that 7 weeks of NAC treatment (dosed orally at 150

mg/kg/day) reduced sodium fluoride-induced oxidative stress, as assessed by 8-OHDG [42].

Whether our conflicting results are due to different etiologies of oxidative stress, the need for

additional measures of oxidative stress, different dosing routes (or doses), or treatment time

are not clear. It is also unclear why there was no disease effect on oxidative stress given we

have seen this previously in our animals. This could be due to the heterogeneity in disease

severity we see across cohorts, although we observed many disease-induced changes that are

typical in our model, such as changes to BUN, PTH, and bone outcomes.

The influence of oxidative stress on bone has been studied predominantly in the context of

signaling bone cells. A lesser appreciated effect of oxidative stress is the effects it has on the

existing matrix. AGE accumulation in bone is associated with negative effects on bone

mechanical properties [7]. Their accumulation has been proposed to be responsible for the

bone fragility associated with diabetes, a result of high blood sugar and circulating AGE levels

(measured as HbA1c). Here we used a rat model of progressive CKD and demonstrated that

total bone AGE, but not pentosidine levels, are increased in CKD rats compared to NL. Previ-

ous studies in this same CKD model have documented both higher [12] and unchanged [38]

pentosidine levels in CKD animals. However, our current work documents that NAC lowered

total bone AGE levels, with no effect on bone pentosidine levels in in CKD animals. It is well-

known that pentosidine is just one of many AGEs within bone and that it’s concentration is

relatively low compared to some others [43] Given the link between AGEs and bone is in part

through their effects on mechanical properties [8][44][45], it is important to note that we

found there was no appreciable benefit of NAC on any mechanical properties, despite CKD

inducing many of the expected effects on reducing mechanical properties. This certainly points

to the concept that AGEs are not the whole story and that the metabolic disturbances in CKD

are having other tissue-level effects.

Table 5. Correlation matrix between oxidative stress/collagen parameters and bone geometry/mechanics.

Ultimate

Force

Total

Displacement

Stiffness Total

Work

Ultimate

Stress

Total

Strain

Modulus Toughness Bone

area

CSMI Cortical

thickness

Total bone

AGE

-0.360 -0.335 -0.288 -0.368 -0.298 -0.353 -0.103 -0.347 -0.376 -0.223 -0.478

8-OHdG -0.388 -0.316 -0.364 -0.335 -0.357 -0.335 -0.177 -0.347 -0.025 -0.040 -0.134

PYD per

collagen

0.280 0.144 0.340 0.196 0.232 0.139 0.254 0.165 0.255 0.038 0.336

DPD per

collagen

0.324 0.324 0.194 0.297 0.361 0.339 0.202 0.328 0.248 0.243 0.290

PE per

collagen

-0.220 -0.168 -0.131 -0.148 -0.098 -0.155 0.110 -0.079 -0.325 -0.335 -0.272

Data presented as r values with red highlighted cells noting correlations with p < 0.05. AGE, advanced glycation end products; PYD, Pyridinoline; DPD,

Deoxypyridinoline; PE, Pentosidine; CSMI, cross-sectional moment of inertia

https://doi.org/10.1371/journal.pone.0230379.t005
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In addition to those discussed above, this work is limited in that assessments of the degree

of redox in the bone were not assessed. Therefore it is possible that changes (or lack of change)

in the serum does not reflect what is happening in the bone tissue.

In summary, NAC failed to alter the skeletal abnormality of our rat model of progressive

CKD. While it is plausible that higher doses or longer treatment may have had more benefit, it

is more likely that the pathophysiology of bone in CKD-MBD are multifactorial in etiology

and that oxidative stress treatment is insufficient to prevent negative skeletal effects.
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