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Abstract

Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum
malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium
falciparum chloroquine resistance transporter (pfcrt) are involved in chloroquine resistance, but the evolution of complex
haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific
populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure
in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to
explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In
the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the
decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in
prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt
haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations
(N75D and K76T) implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu) eight
years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in
pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was
relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to
malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.
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Introduction

Malaria caused approximately 243 million clinical cases and

863,000 deaths in 2008 [1]. The development of resistance to

chloroquine (CQ), once the mainstay of malaria treatment

worldwide, has exacerbated malaria morbidity and mortality over

the last few decades, especially in sub-Saharan Africa [2,3]. An

understanding of the evolution of CQ resistance in the malaria

parasite Plasmodium falciparum is crucial to providing important

insights into the mechanisms by which parasites respond to other

aminoquinolines such as amodiaquine, which are currently used as

partner drugs with artesunate in artemisinin-based combination

therapies (ACTs). Such insights are urgently needed, given recent

evidence of diminished efficacies of ACTs in Southeast Asia [4].

CQ resistant (CQR) P. falciparum show diminished accumulation of

CQ in the digestive vacuole (DV), and this phenotype is correlated

with amino acid substitutions in the DV membrane transporter, P.

falciparum chloroquine resistance transporter (pfCRT) [5]. In pfCRT,

the lysine to threonine substitution at codon position 76 (K76T) shows

the most consistent correlation with CQ resistance, but as many as

eight other amino acid substitutions are also involved in distinguishing

CQR from CQ sensitive (CQS) parasites [5,6]. Together with K76T,

substitutions at positions 72, 74, and 75 form complex CQR pfcrt exon

2 haplotypes that correspond to the geographical origins of CQ

resistance [6]. However, it is unclear how these CQR pfcrt haplotypes

arose due to the lack of previous genetic characterization of parasites

during the periods of CQ resistance emergence.

Multiple origins of CQ resistance in P. falciparum have been

suggested based on epidemiological data [7] and genetic analyses

[5,6]. CQ treatment failures first appeared simultaneously near the

Thai-Cambodian border and in Colombia in the late 1950s, and

CQR parasites spread from these original foci to neighboring

areas [7]. Characterization of pfcrt haplotypes from laboratory-

adapted P. falciparum clones provided strong support for these two

independent origins of CQ resistance, and the invasion of CQR

parasites from Southeast Asia to Africa [5,6].

In Papua New Guinea (PNG), CQ treatment failure was first

reported in 1976, and was initially assumed to indicate the expansion
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of CQR P. falciparum from Southeast Asia into the Pacific [7,8].

Examination of pfcrt polymorphisms showed that despite the

geographic proximity to the Southeast Asian focus of resistance,

CQR parasites from PNG harbored a pfcrt exon 2 haplotype similar

to one from South America [9]. Since these pfcrt substitutions were

associated with a different genetic background [6,10], it was argued

that PNG represented another independent focus of CQ resistance

[9].

In other malarious regions of the Pacific, the evolution of CQ

resistance in P. falciparum might have been more complex. Nagesha

et al. [11] identified four pfcrt haplotypes associated with CQ

resistance in field isolates from Indonesian Papua (West New

Guinea or WNG). These haplotypes were representative of both

the Southeast Asian/African (codon 72–76: CVIET) and the

PNG/South American (codon 72–76: SVMNT) CQR haplotypes,

and a third composite (codon 72–76: SVIET) haplotype. This

region of the Pacific is also characterized by very diverse ecologies

which affect parasite population dynamics that in turn play a

crucial role in the evolution of CQR parasites and their dispersals

[12]. In this regard, it is important to include parasites from

multiple locales and examine their interactions at a population

level over time.

Archival biological specimens have been shown to be useful in

studying past evolutionary events such as CQ resistance in P.

falciparum [13,14]. We reasoned that blood samples collected prior

to (and slightly after) the mid-1970s from populations residing in

the malarious Pacific might contain DNA from P. falciparum that

was under increasing CQ selection. Genotyping of pfcrt might

therefore provide important insights into the evolution of the

complex CQR haplotypes. Additionally, by including samples

from multiple locations collected at various time periods, we

sought to examine the spatial and temporal dynamics of the

evolution and spread of CQR P. falciparum across the diverse

environments in the Pacific [12]. Results from our study indicated

that pfcrt exon 2 was highly diverse prior to the CQ selective

sweep, and suggested that CQ resistance in the Pacific evolved in

situ and arose first in low transmission areas, where host

populations had minimal genetic resistance and acquired immu-

nity against malaria infections.

Results

Overall, 771 of 4598 (16.8%) specimens from 19 populations

were positive for P. falciparum (Figure 1, Table S1), as determined

by successful PCR amplification and DNA sequencing of a 195-bp

segment of pfcrt exon 2 corresponding to codon positions 36 to 99.

Rates of P. falciparum infection ranged from 0% in the Papua New

Guinea (PNG) eastern highlands sample of BAR62 and the West

New Guinea (WNG) coastal sample of MRK61 to 55.4% in the

WNG coastal sample of SWC60 (Figure 1, Table S1). When

analyzed by ecological zones, coastal populations from both WNG

and PNG showed the highest average rates of P. falciparum

infection at 26.9% and 20.3%, respectively, followed by those

from Island Melanesia at 17.4% and PNG Papuan Plateau at

13.6%, with those from the PNG eastern highlands showing the

lowest rate at 3.14% (Table S1). Our results from PNG were

consistent with the observation that malaria prevalence decreases

with increasing altitude [15].

For three of the five ecological zones, longitudinal samples

allowed for crude estimates of temporal variation in P. falciparum

Figure 1. Approximate locations of populations. Populations are denoted by their sample codes (Table S1) and assigned to one of five
ecological zones as indicated by colors as followed: WNG coast (purple), PNG coasts (green), PNG Papuan Plateau (blue), PNG eastern highlands (red),
and Island Melanesia (orange). Samples collected from the same locations in different years (e.g. SWC60, SWC62, and SWC69) did not represent
repeated samplings from the same populations.
doi:10.1371/journal.pone.0030213.g001
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prevalences. On the WNG coast, the infection rates remained high

from 1960 to 1969, while on the PNG coasts, there was a steady

decrease in prevalence from 1960 to 1979. In contrast, P. falciparum

prevalence increased slightly over the same period in the PNG

eastern highlands (Figure 2).

Approximately 8.95% (69/771) of P. falciparum-positive specimens

showed two distinct pfcrt exon 2 genotypes, yielding a total of 840

sequences (GenBank accession numbers HM019533–HM020128,

HM020130–HM020332, and HM202334–HM020374). Samples

from the PNG eastern highlands and Island Melanesia showed the

highest frequencies of individuals with multiple infections (Table S1).

Seventy eight unique pfcrt haplotypes were identified, of which the

wildtype pfcrt sequence accounted for 83.8% (704/840) of sequences.

We calculated pfcrt haplotye diversities to compare the amounts

of genetic variation among populations and ecological zones.

Haplotype diversity indices range between 0 and 1. A measure of 0

indicates that all haplotypes within a population or ecological zone

are identical to one another, whereas a measure of 1 indicates that

all haplotypes within a population or ecological zone are unique.

When analyzed by individual populations, pfcrt haplotype diversity

ranged from 0 in EHP60, WSP65, and ONB69, to 0.722 in

EHP79 (Table S1). When grouped into ecological zones, popula-

tions from the PNG eastern highlands and Island Melanesia had

higher haplotype diversities than those from the other ecological

zones, although the difference was not statistically significant

(ANOVA; p = 0.106) (Table S1). Pfcrt haplotype diversities did not

vary substantially over time along the WNG coast, but in both

PNG coasts and eastern highlands the levels of diversity showed

substantial fluctuations, with an appreciable increase over time in

the PNG eastern highlands (Figure 2).

Among the 77 mutant pfcrt haplotypes, non-synonymous

substitutions were more abundant (34 vs. 28) and occurred more

frequently (94 vs. 75) than synonymous substitutions. During the

two early periods (1959–61 and 1962–65), no differences were

found in the distribution of mutant pfcrt haplotypes among

populations (Figures 3, 4). Between 1969 and 1972, significantly

more (p,0.001) mutant pfcrt haplotypes were found in populations

from Island Melanesia than those from the PNG Papuan Plateau

and the WNG coast (Figure 5). In 1979, the PNG eastern

highlands have significantly more (p = 0.018) mutant pfcrt haplo-

types than the PNG coast (Figure 6). Fifty two (67.5%) mutant pfcrt

haplotypes contained at least one non-synonymous substitution.

Most mutations observed were either private or present at very low

frequencies. Only five mutant haplotypes (6, 14, 24, 26, and 39)

were found in five or more individuals (Figures 3–6). Three amino

acid substitutions previously implicated in CQ resistance were

detected in our samples. In NNH72, the N75D (codon 72–76:

CVMDK) and the K76T (codon 72–76: CVMNT) substitutions

were found individually in two specimens (Figure 5), while the

K76N (codon 72–76: CVMNN) substitution was found in one

specimen from EHP79 (Figure 6).

The relationship among pfcrt exon 2 haplotypes from each time

period is shown by a median-joining network diagram (Figures 3–

6). The wildtype pfcrt haplotype was shared by all populations.

Nine mutant pfcrt haplotypes (3, 6, 10, 11, 12, 14, 24, 25, and 26)

were found in samples from at least two time periods (Figures 3–6).

Figure 2. Temporal variation in P. falciparum infection rates (bar) and pfcrt haplotype diversities (line). Ecological zones are indicated by
colors as followed: PNG eastern highlands (red), WNG coast (purple), and PNG coasts (green).
doi:10.1371/journal.pone.0030213.g002
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Four of these haplotypes (6, 11, 24, and 26) harbored non-

synonymous substitutions while the remaining five had only

synonymous mutations (Figures 3–6). Overall, 83.3% (65/78) of

haplotypes were population specific. Of the 12 mutant pfcrt

haplotypes shared between two or more populations, 10 were

shared between populations from different ecological zones.

We also calculated pairwise FST genetic distances to infer gene

flow among parasite populations across ecological zones and

persistence of parasite populations within ecological zones over

time. Gene flow among populations from the same time period, as

defined by non-statistically significant (p.0.05) pairwise FST values,

is illustrated in Figure 7. During the two early periods (1959–61 and

1962–65), parasite populations from different ecological zones were

not significantly differentiated from one another (Figures 7A and

7B). Between 1969 and 1972, parasite populations in Island

Melanesia were significantly differentiated from those in the PNG

Papuan Plateau and the WNG coast (Figure 7C). In 1979, parasites

in the PNG eastern highlands were significantly differentiated from

those in the PNG coast (Figure 7D). No statistically significant

(p,0.05) FST values were found among temporally distinct samples

within the same ecological region, suggesting that parasite

populations within a particular region generally persisted through

time. The spatial and temporal patterns of gene flow as inferred

from pairwise FST distances suggested that P. falciparum CQ

resistance in the Pacific likely arose locally and evolved in situ.

Discussion

Malaria endemicity in the Pacific is inversely correlated with

latitude and altitude [15,16]. In PNG, malaria transmission is most

intense in coastal lowlands where both temperature and rainfall

remain high throughout the year, whereas in the highlands,

transmission is epidemic and coincides with the conclusion of the

rainy season [15]. In Vanuatu, a Y-shaped archipelago that

extends along the north-south axis in the southern hemisphere,

malaria transmission in the northern islands is in general more

intense than in the southern islands, with the southernmost island

of Aneityum being free of malaria since 1991 [16,17]. In our

archival samples, the pattern of P. falciparum prevalences as

determined by our PCR and sequencing assays was consistent with

that obtained by current malariometric surveys. Since all four

commonly recognized human malaria species are present in the

southwest Pacific [15], and our molecular techniques specifically

targeted template DNA from P. falciparum, it is likely that the rates

of malaria infections in these archival samples were higher than

reported here, especially in the PNG highlands, where unstable

malaria transmission has historically favored the predominance of

P. vivax [18,19].

The prevalence of P. falciparum infections in coastal and

highland samples of New Guinea showed opposite longitudinal

trends, which are consistent with changing social factors of the

Figure 3. Median-joining network of pfcrt haplotypes (A) and alignment of translated sequences (B) from 1959–61. In the network
diagram, each unique pfcrt haplotype is represented by a node, and the size of each node is proportional to the frequency of the haplotype.
Substitutions are represented by branches, with the branch length proportional to the number of substitutions. Non-synonymous substitutions are
represented by branches in bold. Pfcrt haplotypes that appeared in more than one time period are noted by their haplotype numbers. In the amino
acid sequence alignment, the shaded region represents transmembrane domain 1. Synonymous substitutions are represented by dashes (-) and
synonymous substitutions by asterisks (*). Populations are denoted by their sample codes (Table S1).
doi:10.1371/journal.pone.0030213.g003
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times. In the coastal lowlands of both PNG and WNG, the

decreasing prevalence over time coincided with the initiation of

malaria eradication programs. Malaria control measures began in

both PNG and WNG in 1952, consisting of residual insecticide

spraying, introduction of Gambusia spp. to swampy areas, and in

some places mass drug administration of CQ and/or pyrimeth-

amine [20]. Although complete eradication proved elusive,

notable reduction in malaria prevalence was accomplished in

many lowland areas despite technical and logistical difficulties [20–

23]. In contrast to the overall decrease in P. falciparum prevalence

in the lowlands, we observed a slight increase in infection rate in

the PNG eastern highlands over time. Radford et al. [24] argued

that social factors were important in changing malaria epidemi-

ology in the highlands. Increased contact and the opening of the

Highland Highways facilitated the movement of people and

malaria parasites from the highly malarious coastal areas to the

highlands, while many highlanders recruited as wage laborers in

lowland plantations served as parasite reservoirs when they

returned to the highlands. Establishment of plantations and

adoption of western-style housing in the highlands also created

additional mosquito breeding sites that led to increased malaria

transmission [19,24]. The increase in P. falciparum prevalence in

our PNG eastern highland samples might also represent a gradual

shift in species predominance from P. vivax to P. falciparum, as

recently noted by Mueller et al. [19], although this will require

molecular surveys of P. vivax to confirm.

In the Pacific, CQ treatment failure was first reported in WNG

(Irian Jaya) in 1974 [25] and by 1980 resistance had been

confirmed in all malaria endemic countries in the region [7]. Two

CQ resistance-implicated amino acid substitutions, N75D and

K76T were observed individually in two specimens from NNH72,

resulting in the haplotypes CVMDK and CVMNT, respectively.

The pfcrt K76T substitution has consistently been shown to

correlate with CQ resistance [5,16,26], and the CVMNT

haplotype has previously been described in CQR parasites from

South America [5] and Papua [11]. The N75D substitution was

associated with the K76T substitution in parasites from Cambodia

[27], Thailand and Laos [28], although in the absence of the

diagnostic K76T substitution, it is unclear if this CVMDK-bearing

parasite had an altered response to CQ. The presence of these

substitutions in parasites from northern New Hebrides in 1972

agrees with the long held suspicion that CQ resistance had been

present in New Hebrides many years before it was clinically and

experimentally confirmed in 1980 [29,30].

We also detected the replacement of lysine by asparagine at pfcrt

codon 76 in EHP79. This K76N substitution was previously

experimentally induced when the CQS laboratory clone 106/1,

which already had six of the seven pfcrt mutations found in CQR

parasites from Asia and Africa, was exposed to high levels of CQ

[31]. However, it is unclear whether the 76N bearing parasite we

identified in this study was CQR, since it was associated with a

different pfcrt genetic background. Whereas the mutant 106/1

Figure 4. Median-joining network of pfcrt haplotypes (A) and alignment of translated sequences (B) from 1962–5.
doi:10.1371/journal.pone.0030213.g004
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parasite carried the CVIEN haplotype [31], our parasite carried

the CVMNN haplotype. This rare haplotype has been reported

twice in parasite isolates from Indonesia, although in both studies

the in vitro response to CQ was not evaluated [28,32].

Archival biological samples from PNG provide crucial insights

into the evolution and spread of CQR parasites [13,14,28]. Using

samples collected from 12 locations in PNG during the early 1980s,

Mehlotra et al. [13] found a high frequency (97%; 33/34) of the

CQR SVMNT pfcrt haplotype, which was consistent with a nation-

wide epidemiological survey reporting widespread CQ resistance

conducted during that period [33]. In contrast, the CQS CVMNK

haplotype predominated (97%; 34/35) in our PNG samples

collected in 1979 (EHP79 and WSP79), indicating that strong CQ

selection resulted in the nearly complete replacement of CQS

parasites by their resistant counterparts in as few as three years, and

the latter’s persistence to the present [9,34]. It is unclear whether the

CVMNN haplotype observed in our sample represented a

transitional strain that ultimately gave rise to parasites carrying the

more ubiquitous SVMNT haplotype seen today, or was replaced by

invading parasites carrying the latter haplotype, nonetheless our data

are consistent with previous interpretation that CQ resistance in the

Pacific evolved in situ [9]. Analyses of additional samples from this

critical period are currently underway and will hopefully shed light

on the relationships among these haplotypes.

Of the 34 amino acid substitutions observed in our samples, 20

are considered to be non-conservative, involving a side-chain

property change in either polarity and/or charge that might affect

the function of the protein. Two such substitutions, I59T and I63T

were observed in 14 and 19 samples respectively. In particular,

mutant pfcrt haplotypes harboring the I63T substitution persisted

through time and later dispersed into multiple regions, suggesting

that these haplotypes may reflect a drug tolerant if not resistant

phenotype (Figures 3–6). Transfections of CQS P. falciparum clones

with I63T and other novel substitutions identified in this study are

currently underway to evaluate their effects on CQ response.

It remains unclear how the historical use of other antimalarials

prior to our earliest samples (1959) might have contributed to the

selection of pfcrt alleles observed in this study. During WWII,

malaria was a major cause of casualties for both the Japanese and

the Allied troops stationed in the Southwest Pacific [35,36].

Quinine and quinacrine, also known as mepacrine or Atabrine,

were used extensively to prevent and treat malaria infections,

especially among Allied soldiers [37]. The mode of action for

quinine is thought to be similar to that of CQ [38], and cross

resistance with CQ has been suggested [39,40], although the

association between quinine resistance in P. falciparum and specific

substitutions in pfcrt has been inconclusive [41]. Quinacrine

resistance was first noted in P. falciparum from the Wewak-Aitape

region along the north coast of New Guinea in 1944 [37]. We did

observe in our earliest sample from the same region (ESP61) a

non-synonymous substitution (F48L) at relatively high frequency

(6.1%; 3/49) (Figure 3), which might reflect previous selection by

Figure 5. Median-joining network of pfcrt haplotypes (A) and alignment of translated sequences (B) from 1969–72. Hypothetical
nodes are indicated by arrows.
doi:10.1371/journal.pone.0030213.g005

Figure 6. Median-joining network of pfcrt haplotypes (A) and alignment of translated sequences (B) from 1979.
doi:10.1371/journal.pone.0030213.g006

Malaria and Chloroquine Resistance in Pacific

PLoS ONE | www.plosone.org 7 January 2012 | Volume 7 | Issue 1 | e30213



quinacrine and warrants further studies. However, it should be

noted that the genetic basis for quinacrine resistance is unknown,

and the use of quinacrine was largely abandoned after WWII in

favor of CQ [42], such that little selective pressure was maintained

during the intervening years between the end of the war and the

collection of our samples.

Four factors may have contributed to the unexpectedly higher

levels of pfcrt exon 2 genetic diversity in parasites from the PNG

eastern highlands and Island Melanesia. First, in Island Melanesia

the high level of parasite genetic diversity might have resulted from

population structure. Samples from NNH72 and SSI72 were

collected from populations on 13 and three different islands,

Figure 7. Gene flow among P. falciparum populations from different ecological zones. Gene flow among parasite populations from (A)
1959–61, (B) 1962–5, (C) 1969–72, and (D) 1979, is represented by solid lines. Gene flow is inferred from pairwise FST distances determined to be non-
statistically significant (p.0.05).
doi:10.1371/journal.pone.0030213.g007

Malaria and Chloroquine Resistance in Pacific

PLoS ONE | www.plosone.org 8 January 2012 | Volume 7 | Issue 1 | e30213



respectively. While variable levels of travel among islands within

each archipelago were noted [43], more recently extensive human

contact has been essential for gene flow between parasites on

different islands [44,45]. When subdivided into individual islands,

parasites on some islands were found to be genetically distinct

from those on neighboring islands. For example, parasites from

Gaua in northern New Hebrides were significantly distinct from

those on nearby Mota Lava (FST = 0.04155; p = 0.03604) and

Vanua Lava (FST = 0.01819; p = 0.03604). This implies that

isolation and genetic drift on individual islands, although reducing

diversity locally, have increased the genetic diversity of the

archipelago as a whole.

Second, in these areas of relatively low transmission, the use of

antimalarials was often reserved for treatments only [43], such that

intermittent CQ pressure might have selected for a suite of

different non-synonymous substitutions that only slightly altered

the parasites’ response to CQ. In contrast to high transmission

areas where competition among different genetic strains is intense

[46], even in the absence of continuous CQ selection, genetic drift

may have maintained these non-synonymous substitutions in small

parasite populations as suggested by low rates of infection in these

low transmission areas.

Third, host immune status played an important role in the

occurrence of multiple infections. In high transmission areas the

host acquired immunity to malaria is constantly maintained by

recurrent infections, whereas in low transmission areas malaria

infections by multiple genetic strains might be more common since

parasite clearance in semi-immune individuals is less effective [47].

In this study, the frequencies of multiple infections were significantly

correlated with pfcrt haplotype diversities (R2 = 0.9361, p = 0.007),

suggesting that lowered host acquired immunity in the PNG Eastern

Highlands and Island Melanesia might have contributed to the high

level of parasite genetic diversities in these low transmission areas.

Lastly, differences in host genetics may have affected the degree

to which populations living in different ecological regions were

susceptible to infection by multiple genetic strains of P. falciparum.

Strong selection in the coastal lowland populations of PNG results

in the maintenance of a number of red cell polymorphisms con-

ferring resistance to malaria, including Southeast Asian ovalocytosis

[48–50], alpha-thalassemia [51], beta-thalassemia [52], and Ger-

bich negativity [53]. It is possible that in high transmission areas,

individuals with one or more of these malaria resistant alleles

present a less hospitable environment to parasites, such that only

those that are most adapted, i.e. either wildtype (with no pfcrt

mutations) or fully CQR (with a complete suite of CQR pfcrt

mutations), can survive. Conversely in low transmission areas, host

selection against parasites might be less severe, thus allowing slightly

less fit parasite strains, i.e. those with only one or two pfcrt mutations,

to evolve and persist.

Genetic characterization of P. falciparum in the Pacific from

the period of CQ resistance emergence revealed that prior to

complete CQ selective sweep, pfcrt exon 2 was highly diverse,

highlighted by a number of previously undescribed substitutions

including several implicated in CQ resistance, consistent with in

situ evolution of resistance within the Pacific. In addition to CQ

selection, isolation among parasite populations and reduced

strain competition in small parasite populations, combined with

lowered acquired immunity and genetic resistance to malaria

among hosts in low transmission areas, might have been crucial

to the evolution and initial establishment of CQR P. falciparum in

the Pacific. These data suggest that populations at the peripheries

of malaria endemic areas may be the most crucial to monitor for

parasites evolving tolerance and resistance to currently used

antimalarials.

Materials and Methods

Ethics Statement
This study was submitted to the Human Subjects Research

Review Committee of Binghamton University, where it was

reviewed and determined exempt because no human DNA was

examined (Protocol # 787-08).

Archival Human Serum Collections
Samples used in this study were provided by the Binghamton

University Serum Archive Facility at Binghamton, NY, USA, and

their use in this study was approved by the institutional review

board of Binghamton University. Samples were collected under

the ethical and legal guidelines of the United States National

Institutes of Health and all existing international standards of the

time, and their continued use for biomedical research has recently

been reaffirmed by the Papua New Guinea Medical Research

Advisory Committee (documentation available upon request). A

total of 4598 specimens from 19 Pacific populations sampled

between 1959 and 1979 was included in this study. The locations

of sample collections and brief descriptions are given in figure 1

and table S1, respectively. Samples collected from the same

locations in different years did not represent repeated samplings of

the same populations.

Nucleic Acid Extraction
DNA was extracted from 200 ml of human serum using either

the QIAamp Blood Mini Kit (QIAgen Biosciences, Germantown,

MD) or the automated Maxwell-16 system (Promega, Madison,

WI) according to the respective manufacturers’ instructions.

Eluted DNA was frozen at 220uC until use.

Molecular Analysis
A segment of the pfcrt exon 2 was PCR-amplified in a 12.5 ml

reaction containing 4 ml of DNA, 0.2 mM of dNTP, 2 mM of

MgCl2, 0.5 mM of each primer (CRT76-sense 59-GGTGGAGGT-

TCTTGTCTTGG-39 and CRT76-antisense 59-ATAAAGTTGT-

GAGTTTCGGATG-39) [54], and 0.25 unit of HotStar Taq DNA

polymerase (QIAgen Biosciences, Germantown, MD). The cycling

conditions consisted of 15 minutes at 95uC, 90 seconds at 61uC,

60 seconds at 72uC for 1 cycle; 10 seconds at 95uC, 90 seconds at

61uC, and 2 minutes at 72uC for 50 cycles, and a final extension for

10 minutes at 72uC. PCR amplicons were purified using the

Millipore Manu03050 Filter Plate (Millipore, Billerica, MA), and

were sequenced in both directions using internal primers, CRTD1

59-TGTGCTCATGTGTTTAAACTT-39 and CRTD2 59-CAA-

AACTATAGTTACCAATTTTG-39 [55], with the BigDye Ter-

minator Kit v.3.1 on an ABI 3730xl DNA Analyzer (Applied

Biosystems, Foster City, CA).

Electropherograms were visually checked using Sequencing

Analysis 2.1 (Applied Biosystems, Foster City, CA). Infection by

genetically distinct P. falciparum strains was inferred when

heterologous peaks were present in a single specimen. In cases

where heterologous peaks were observed at more than one

nucleotide position in a single specimen, pfcrt haplotypes were

constructed based on the relative peak heights at each nucleotide

position in question. Assuming that multiple substitutions in a

lineage arose in a stepwise manner, we examined the position of

the constructed halpotypes in the network diagrams (Figures 3–6)

[56]. Only two branches directly stemming from the wildtype pfcrt

haplotype contained hypothetical internal nodes (Figure 5),

indicating that most of these constructed haplotypes were derived

from simpler haplotypes that were also present in our data set.
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Statistical Analyses
Prevalence of P. falciparum infection was determined at two

hierarchical levels. Since malaria endemicity in the Pacific varies

by altitude and latitude [15,16], in addition to comparisons among

all samples, individual samples were assigned to one of five

ecological zones: (1) PNG eastern highlands, (2) WNG coast, (3)

PNG coasts, (4) PNG Papuan Plateau, and (5) Island Melanesia,

consisting of New Hebrides (now Vanuatu) and Solomon Islands

(Figure 1). Samples used in this study were collected over a span of

20 years (1959–79), and were therefore divided into the following

periods, (A) 1959–61, (B) 1962–5, (C) 1969–72, and (D) 1979, to

account for temporal variation and assess the persistence of

genotypes over time.

Pfcrt haplotype diversity was calculated for each population and

each ecological zone using the equation: H = n(12gXi
2)/(n21),

where n is the number of pfcrt sequences, and Xi is the frequency of

the i-th haplotype [57]. Mean pfcrt haplotype diversities among

ecological zones were compared using one-way analysis of

variance (ANOVA). For each time period, G-test for homogeneity

was used to compare the distribution of mutant pfcrt haplotypes

among populations. Median-joining network diagrams were

constructed using the software Network 4.600 to illustrate the

phylogenetic relationships among all pfcrt sequences for each

period [56,58].

To infer gene flow among populations, two sets of pairwise FST

genetic distances were calculated using Arlequin 3.1 [59]. The first

set consisted of comparisons of samples from the same time period

to examine gene flow across ecological zones, while the second

consisted of samples from the same ecological zone but were

collected in different periods to infer replacement (or persistence)

over time. The statistical significance (p,0.05) of the observed

values was evaluated by randomly permuting sequences among

populations approximately 10,000 times to generate a null

distribution against which the observed values were compared.

Supporting Information

Table S1 The approximate geographic locations of these

samples are shown in Figure 1. Samples collected from the same

locations in different years did not represent repeated samplings of

the same population. Ages of donors for the sample EHP79 were

not available.

(DOC)
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