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Tobacco mosaic virus, TMV for short, is widely distributed in the global tobacco industry

and has a significant impact on tobacco production. It can reduce the amount of

tobacco grown by 50–70%. In this research of study, we aimed to identify tobacco

mosaic virus proteins and healthy tobacco leaf proteins by using machine learning

approaches. The experiment’s results showed that the support vector machine algorithm

achieved high accuracy in different feature extraction methods. And 188-dimensions

feature extraction method improved the classification accuracy. In that the support vector

machine algorithm and 188-dimensions feature extraction method were finally selected

as the final experimental methods. In the 10-fold cross-validation processes, the SVM

combined with 188-dimensions achieved 93.5% accuracy on the training set and 92.7%

accuracy on the independent validation set. Besides, the evaluation index of the results

of experiments indicate that the method developed by us is valid and robust.

Keywords: feature extraction, physicochemical properties, identification, tobacco mosaic virus, machine learning

INTRODUCTION

Tobacco mosaic virus is worldwide distribution and is the furthest invasive virus which is most
harmful to crops. Tobacco is one of the important economic crops in our country, however, the
existence of tobaccomosaic disease has greatly reduced the yield and quality of tobacco. Since plants
do not have a complete immune system, once infected, the leaves can show mosaic symptoms or
even deformities and the growth can also be chronically diseased, which makes tobacco mosaic
virus is very difficult to control (Hu and Lee, 2015).

The study of viruses has attracted many scholars, and with the development of computer
machine learning algorithms, many scholars have applied machine learning algorithms to the study
of viruses. Metzler and Kalinina (2014) used one-class SVMmethod to detect atypical genes in viral
families based on their statistical features, without the need for explicit knowledge of the source
species. The simplicity of the statistical features used allows the method to be applied to a variety
of viruses. Salama et al. (2016) predicted new drug-resistant strains that facilitate the design of
antiviral therapies. In this study, neural network techniques were used to predict new strains, and
using a rough set theory based on algorithm to extract these points mutation patterns. For phage
virion proteins (PVPs) prior to in vitro, Manavalan et al. (2018) developed a SVM-based predictor
that exhibited good performance and avoided the expensive costs required for experiments.

Using biochemical experiments to study all tobacco mosaic virus is a challenge because it is
expensive and a waste of researchers’ time, and there is no specific predictor to predict tobacco
mosaic virus. So, in this research we evaluated the predictive performance of different classifiers
in combination with different feature extraction methods. We have chosen classical machine
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learning algorithms and classical feature extractionmethods. The
feature extraction methods AAC (Chou, 2001), 188-dimensions
(Dubchak et al., 1995) and CKSAAGP (Chen et al., 2018) and
their combination were chosen for the reasons. AAC is the
first proposed feature extraction method that is widely used
to predict the function of proteins. It based on their amino
acid composition. CKSAAGP describes the spatial distribution
information of amino acids, 188 dimensions in addition to
the physicochemical properties of amino acids. Three feature
extraction methods from different aspects, so these three
feature extraction methods were chosen. The combined feature
extraction method was attempted considering the expectation
of better results. We finally chose the combination of support
vectormachine (SVM)with 188-dimensions as the final predictor
because it has the best prediction effect.

MATERIALS AND METHODS

Our method was developed based on three steps (Figure 1). Step
1: we collected the data and preprocessed the dataset to obtain a
non-redundant benchmark dataset that does not contain non-
standard characters. Step 2: We used Amino Acid Composition
(AAC), feature extraction method based on the composition
of amino acid sequence and physicochemical properties
(188-dimensions), composition of k-spaced amino acid pairs
(CKSAAGP), and the combined methods AAC_CKSAAGP and
188_CKSAAGP which are proposed in this paper to extract
features from protein sequences. Step 3: Five algorithms and 10-
fold cross-validation are used to build and estimate the models,
which are Random Forest (RF), Bagging, K-Nearest Neighbor
(KNN), Naive Bayes (NB), and Support Vector Machine (SVM).
Then, we validated experimental results using an independent
validation set.

BENCHMARK DATASET

High-quality baseline data sets contribute to the accuracy of
model predictions (Yang et al., 2019b; Cheng et al., 2020; Zhu
et al., 2020). The dataset obtained for this experiment was
derived from the Swiss-Prot database in The Uniprot (2018).
Firstly, we used the keyword search method to collect data
from the UniProt database. By entering the keywords “Tobacco
mosaic virus” and “Tobacco leaf not virus” to obtain the positive
and negative data needed for the experiment. For the sake of
improving the reliability of the data, the following operations
were performed: (1), Deleted the protein sequences containing
non-standard letters, i.e. “B,” “X,” “Z,” etc.; thus, we obtained
5,309 protein sequences of tobacco mosaic virus and 45,827
protein sequences of non-tobacco mosaic virus. (2), If the
sample contains multiple similarity sequences, this sample is not
statistically representative. We used the CD-HIT program (Fu
et al., 2012) to delete sequences with similarity surpass 40% in
positive and negative data sets (Zou et al., 2018). After removing
the redundant sequences, we eventually obtained a dataset of 715
protein sequences of TMV proteins and 17,983 protein sequences
of tobacco leaf proteins.

There are 715 sequences in the positive datasets and 17,893
sequences in the negative datasets. Much more negative data
than positive data. For the purpose of balancing the datasets,
we took a downsampling approach. We split the negative data
by the size of the positive data. And randomly selected 10 of
these copies as the negative dataset, so we obtained a negative
dataset containing 7,150 sequences. The resulting positive and
negative datasets were divided proportionally. The final training
dataset consists of 500 positive data and 5,000 negative data. The
test dataset consists of 215 positive data and 2,150 negative data.
These data are available in our software package.

FEATURE EXTRACTION

Feature selection will affect the performance of machine
learning methods for bioinformatics problems (Zhao et al.,
2015). In the research of this paper, five feature extraction
methods are selected, including amino acid composition (AAC),
composition of k-spaced amino acid pairs (CKSAAGP), 188-
dimensions feature extraction method, and the combined
methods AAC_CKSAAGP and 188_CKSAAGP which are
proposed in this paper.

Amino Acid Composition (AAC)
The coded amino acid composition coding scheme (Bhasin and
Raghava, 2004) calculates the probability of occurrence of 20
natural amino acids (i.e., “ACDEFGHIKLMNPQRSTVWY”) in
protein sequences or peptide chains (Zhong et al., 2020). The
calculation formula for each amino acid is as follows:

vi =
ci

len
(

seq
) , i ∈ (A,C, · · · ,Y) (1)

Where ci and len(seq) represent the number of occurrences of
amino acid i in the sequence or peptide chain and the length of
the sequence or peptide chain, respectively (Lin et al., 2005; Lv
et al., 2020).

Composition of k-Spaced Amino Acid
Pairs (CKSAAGP)
The composition of K-spaced amino acid pairs (Chen et al., 2018)
can be regarded as a variant of CKSAAP, which calculates the
frequency of amino acid pairs separated by any k residues (the
default maximum for k is set to 5) (Chen et al., 2020). Taking
K= 0 as an e.g., a feature vector is defined as:

γ0 =
(

Cg1g1

Cn
,
Cg1g2

Cn
,
Cg1g3

Cn
, · · · ,

Cg5g5

Cn

)

25

(2)

wherein, (g1g1, g1g2, g1g3, · · · g5g5) represents 0-spacing amino
acid group pairs. There are 25 groups in total, and each descriptor
represents the composition of the corresponding residue pair in
the protein sequence (Zhu et al., 2020). Cg1g1 (Zhang et al., 2014)
represents the number of times the residue pair g1g1 appears in
the sequence and Cn represents the total number of residue pairs
with a gap of 0 in the sequence. In a protein sequence of length
N, for different values of K, the value of n can be defined as:

n = P − K − 1,K ∈ (0, 1, 2, 3, 4, 5) (3)
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FIGURE 1 | Schematic showing the workflow used to develop our method. AAC, CKSAAGP, 188-dimensions, AAC_CKSAAGP, 188_ CKSAAGP are our five feature

extraction methods. Naive Bayes, K-Nearest Algorithm, SVM, Random Forest and Bagging are our five classification algorithms.

When K takes each value, the CKSAAGP feature
vector (γ0, γ1, γ2, γ3, γ4, γ5) has a total size of
150 dimensions.

188-Dimensions
Each amino acid sequence has different physical and chemical
properties including amino acid composition, hydrophobicity,
normalized Van der Waals volume, polarity, polarizability,
charge, surface tension, secondary structure, and solvent
accessibility for each residue in the sequence (Cai et al., 2003).

The feature extraction method for protein P is formulated
as follows:

P = {C,Tr,D} (4)

Where C represents the frequency of a kind of specific attribute
(such as polarity) amino acid appearing in the global sequence. Tr
represents the global percentage of transitions between a specific
amino acid and another amino acid of a specific property. D is
used to describe the first, 25%, 50%, 75% and last position of each
specific amino acid in the peptide chain.
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Assume that the protein sequence
“VNVVVNVNNVVVVVNVNNNVVNNVNNNVVNVN”
has 17 valines (n1 = 17) and 15 asparagines (n2 = 15). The
components of these two amino acids are n1

n1+n2
×100.00 = 53.13

and n2
n1+n2

× 100.00 = 46.87, respectively. The number of
transitions from V to N or N to V is 17, so the percentage
of these transitions is (17/32) × 100.00 = 53.13. The first,
25, 50, 75% and last positions of valine in the peptide chain
are 1, 5, 13, 21, 31, respectively, so the D-attribute of valine
is DV = (3.13, 15.63, 40.63, 65.23, 96.88). In the same way,
the position of asparagine in the peptide chain can be found.
In summary, the amino acid composition descriptors are
C = (53.13, 64.87), Tr = (53.13), and D = (3.13, 15.63, 40.63,
65.23, 96.88, 6.25, 28.13, 68.75, 78.13, 100.00). Descriptors of
other attributes can be described through a similar process, and
then all the descriptors are combined to form a 188-dimensions
feature vector.

Sequence V N V V V N V N N V V V V V N V N N N V V N N V N N N V V N V N

Sequence index 1 5 10 15 20 25 30

Index for V 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Index for N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

V/N transitions | | | | | | | | | | | | | | | | |

Combined Method
A combination of AAC, CKSAAGP, and feature extraction
based on a combination of sequence and physicochemical
properties constitute a new feature extraction method. The
number of characterization dimensions for the AAC_CKSAAGP
combination is 170, and the number of characterization
dimensions for the 188_CKSAAGP combination is 338. Since
the information of amino acid content is included in the 188-
dimensions feature extraction method, the combination of AAC
and 188-dimensions feature extraction method is not used in
this paper.

Classifier
In this paper, five classifiers were used for the experiments. these
classifiers were implemented through Waikato Environment for
Knowledge Analysis software (Azuaje et al., 2006).

Random Forest
Random Forest (RF) is an integrated learning method first
proposed by Leo Breiman and Adele Cutler (Azuaje et al.,
2006; Goldstein et al., 2011; Cheng et al., 2018b,d), and it
is a combination of multiple decision trees. Nowadays, many
bioinformatics’ problems use Random Forest (Tastan et al., 2012;
Jamshid et al., 2018; Lyu et al., 2019; Ru et al., 2019; Lv et al.,
2020). For processing large amounts of data, Random Forest is
characterized by high accuracy, high speed and good robustness.
In RF, we need to input the prediction samples into each tree for
prediction, and finally use the voting algorithm to determine the
result of prediction. The voting algorithm is shown speed and
good robustness. The anti-noise capability of RF is strong, and it
often shows good robustness when processing high-dimensional

data. The voting algorithm is shown below:

result = sgn

(

n
∑

i=1

prelabel

)

(5)

Where result is the final prediction, prelabel represents the
predicted result for each decision tree, which equals to 1
or −1, and n represents the number of Decision Trees in
the model.

Support Vector Machine
Support Vector Machine (SVM) is often applied to classification
problems and is a supervised learning approach (Huang et al.,
2012; Jiang et al., 2013; Xing et al., 2014; Kumar et al., 2015;
Zhao et al., 2015; Liao et al., 2018; Wang et al., 2019). There
are already a number of software packages that support the SVM

algorithms. In this experiment, we used Libsvm (Chang and Lin,
2007) in Weka (version 3-8-2) (Hall et al., 2008) to implement
the SVM, where we chose RBF, a radial basis function, to classify
the proteins of tobacco mosaic virus. Then we determined the
regularization parameter C and the kernel parameter g through
grid search and 10-fold cross-validation (Wang et al., 2011).

K-Nearest Neighbor
The K-Nearest Neighbor (KNN) algorithm (Zhang and Zhou,
2007; Lan et al., 2013; Deng et al., 2016) which is one of the
simplest, most convenient, and highly effective algorithms. Now
it has been frequently used in the functional classification of
proteins problems. The key step of KNN prediction is to find the
K neighbors closest to the test data from the training set, and then
use the category with the most K neighbors as the final category
of the test data. In this experiment, we adopt the KNN algorithm
based on the Harmanton distance and the Harmanton distance
formula is summarized as follows:

L1(xi ,xj)=

n
∑

k=1

|x(k)i − x
(k)
j | (6)

where: xki (k=1, 2, 3, . . . . . . n) is characteristic of the training set

and xkj (k=1, 2, 3, . . . . . . n) is characteristic of the test dataset.

Naive Bayes
The Naive Bayes (NB) is a easily understand classification
algorithm (Xue et al., 2006; Wang et al., 2008; Feng et al., 2013),
which is based on the Bayesian classifier and assumes that the
feature attributes of the data are simple and independent. In the
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FIGURE 2 | ACC obtained by five feature extraction methods [(A–E) AAC, 188-dimensions, CKSAAGP, AAC_CKSAAGP, and 188-CKSAAGP] combined with five

classifiers (NB, KNN, SVM, RF, Bagging) through 10-fold cross-validation.

classification scenario, it greatly reduces the complexity of the
Bayesian classification algorithm. Suppose the sample data set is:

(

x
(1)
1 , x

(1)
2 , · · · , x(1)

n , s1

)

,
(

x
(2)
1 , x

(2)
2 , · · · , x(2)

n , s2

)

,

· · ·
(

x
(m)
1 , x

(m)
2 , · · · , x(m)

n , sm

)

(7)

there are m samples and each sample have n features. The data set
has a total of class variable. Generally speaking, them samples can
be classified into s categories, where n features are independent of
each other. The category of S is defined as follows:

S = {s1, s2, s3, · · · , sm} (8)

Among them, there are M class variables in the set S. Naive Bayes
formula is defined as follows:

P
(

yi|x1, x2, · · · , xn
)

=
Pyi
∏n

j=1 P
(

xj|si
)

∏n
j=1 P

(

xj
) (9)

Bagging
Bagging is a typical integrated learning algorithm (Abellán et al.,
2017), which is directly based on autonomous sampling. For
the input sample set D = {

(

x1, y1
)

,
(

x2, y2
)

, · · · , (xm, ym)}, a
weak learner algorithm is used to classify each time, and a total
of T iterations are made, and finally we will obtain a powerful
classifier. Since it samples each training model, it has a strong
generalization ability that can significantly reduce the variance of
the training model.
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FIGURE 3 | Different feature extraction methods were used to predict the performance of different classification methods. The average MCC value of the classifier

was tested by 10-fold cross-validation.

PERFORMANCE EVALUATION

There are five main parameters (Kou and Feng, 2015) to
evaluate the predictive performance of this experiment, namely,
sensitivity (Sn), specificity (Sp) (Ding et al., 2012; Tan et al., 2019),
accuracy (ACC) (Thakur et al., 2016; Cheng et al., 2018a,b),
Matthews correlation coefficient (MCC) (Yang et al., 2019a,b)
and area of ROC curve (AUC) (Lobo et al., 2008; Li and Fine,
2010;Wang et al., 2010; Hajian-Tilaki, 2014; Baratloo et al., 2015).
Defined as follows:

Sn =
TP

TP + FN
(10)

SP =
TN

TN + FP
(11)

ACC =
TP + TN

TP + TN + FP + FN
(12)

MCC =
(TP + TN) − (FP + FN)

√
(TP + FP) × (TN + FN) × (TP + FN) × (TN + FP)

(13)

AUC =

∑

i∈positiveClAss ranki−M×(M+1)

2

M × N
(14)

Where TP represents the amount of tobacco mosaic virus
correctly predicted by the model (Dong et al., 2015); TN
indicates the amount of non-tobacco mosaic virus correctly
predicted by the model (Niu et al., 2018); FN indicates the
amount of non-tobacco mosaic virus incorrectly predicted
by the model (Kim et al., 2016); FP indicates the amount
of non-tobacco mosaic virus predicted by the model; M

and N indicate the amount of positive and negative data,
respectively; and ranki is the score of the i-th positive
sample was calculated by classification. The higher the
value of the five evaluation indicators above, the better the
model prediction.

RESULTS AND DISCUSSION

Performance Evaluation of Different
Classifiers
The ACC and MCC of SVM and RF were mostly higher
than the predictors of NB, KNN and Bagging under different
feature extraction methods (Figures 2, 3). When the feature
extraction method selects 188_CKSAAGP or 188-dimensions,
SVM reach the highest ACC. When the feature extraction
method uses AAC, RF achieves the highest ACC. Through 10-
fold cross-validation, the MCC of SVM is higher than that of
RF (Figure 3).

However, when comparing predictor superiority, it is possible
to use not only the predicted ACC and MCC comparison,
but also the trade-off between Sn and Sp. The sensitivity
(Sn) and specificity (Sp) of SVM, RF, and Bagging predictor
variables are greater than those of NB and KNN (Table 1
and Figure 5). This result shows that SVM, RF, and Bagging
predict tobacco mosaic virus are better than NB and KNN
due to the difference in the ability of these five common
classification algorithms to handle multidimensional datasets.
NB is a naive algorithm based on the assumption that the
individual properties are independent of each other, and NB

Frontiers in Genetics | www.frontiersin.org 6 October 2020 | Volume 11 | Article 569100

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Chen et al. Identification TMV Using Combined Methods

TABLE 1 | Predictive effect of NB, KNN, SVM, RF, and Bagging on different trait

extraction methods for tobacco mosaic virus.

Method Feature Sp Sn ACC (%) MCC AUC

NB AAC 0.866 0.899 89.95 0.16 0.719

KNN 0.902 0.905 90.45 0.408 0.699

SVM (c = 9, g = 3) 0.901 0.918 91.80 0.351 0.61

RF 0.932 0.932 93.22 0.485 0.833

Bagging 0.922 0.928 92.76 0.437 0.799

NB 188-dimensions 0.882 0.862 86.16 0.281 0.732

KNN 0.899 0.897 89.65 0.389 0.699

SVM 0.936 0.936 93.58 0.523 0.657

RF 0.929 0.929 92.91 0.45 0.838

Bagging 0.924 0.93 93.04 0.469 0.807

NB CKSAAGP 0.859 0.561 56.05 0.09 0.64

KNN 0.868 0.839 83.87 0.199 0.618

SVM (c = 5, g = 3) 0.894 0.914 91.38 0.315 0.601

RF 0.917 0.916 91.58 0.259 0.779

Bagging 0.919 0.917 91.69 0.28 0.711

NB AAC_CKSAAGP 0.866 0.601 60.07 0.122 0.669

KNN 0.878 0.858 85.82 0.259 0.648

SVM (c = 3, g = 3) 0.923 0.931 93.15 0.494 0.675

RF 0.927 0.924 92.36 0.383 0.831

Bagging 0.921 0.927 92.75 0.435 0.795

NB 188_ CKSAAGP 0.885 0.814 81.40 0.277 0.726

KNN 0.887 0.878 87.80 0.316 0.669

SVM (c = 3,

g = −11)

0.936 0.936 93.58 0.523 0.657

RF 0.929 0.929 92.85 0.444 0.823

Bagging 0.925 0.93 93.00 0.463 0.803

Sp, specificity; Sn, sensitivity; ACC, accuracy; MCC, Matthews correlation coefficient;

AUC, area of ROC curve. AAC, amino acid composition; 188-dimensions, composition

based on sequence and physicochemical properties; CKSAAGP, composition of k-spaced

amino acid pairs; AAC_CKSAAGP, combination of AAC and CKSAAGP; 188_CKSAAGP,

combination of 188-dimensions and CKSAAGP. The bold values represent the highest

score of current feature extraction method in different classifiers.

is very friendly to low dimensional features. However, for
multidimensional datasets, there is often some correlation
between attribute features. The low ACC of KNN may be
because the small size of the training datasets. The SVM, RF
and Bagging classification algorithms do not require much in
terms of dataset dimensionality, and they can handle high-
dimensional, noisy and missing datasets with strong correlation
between attributes.

In addition, we also used the test datasets to verify the model.
The results are shown in Table 2. The results show that the
model constructed by SVM combined with 188-dimensions or
188_CKSAAGP achieves a high AAC, which shows that this
model is reliable. Although the model constructed by SVM
combined with 188-dimensions or 188_CKSAAGP is lower than
other algorithms in terms of AUC, evaluation indicators such as
Sp, Sn, and MCC have all achieved the best results. Therefore,
the SVM algorithm is very promising in TMV classification. Due
to the above reasons, this experiment chose SVM as the final
classifier to predict TMV.

TABLE 2 | Through the use of test data, the evaluation results of the prediction

model of NB, KNN, SVM, RF, and Bagging combined with different types of

extraction methods.

Method Feature Sp Sn ACC(%) MCC AUC

NB AAC 0.845 0.89 0.8905 0.051 0.677

KNN 0.896 0.901 0.9011 0.368 0.673

SVM 0.893 0.914 0.9142 0.289 0.508

RF 0.912 0.923 0.9226 0.372 0.781

Bagging 0.912 0.922 0.9222 0.372 0.734

NB 188-dimensions 0.877 0.859 0.8588 0.255 0.709

KNN 0.886 0.888 0.8875 0.311 0.653

SVM 0.925 0.928 0.9277 0.434 0.615

RF 0.92 0.924 0.9243 0.393 0.799

Bagging 0.909 0.922 0.9218 0.377 0.774

NB CKSAAGP 0.858 0.558 0.5577 0.086 0.634

KNN 0.86 0.832 0.8321 0.15 0.587

SVM 0.886 0.91 0.9099 0.268 0.582

RF 0.922 0.915 0.9146 0.235 0.736

Bagging 0.917 0.915 0.9150 0.243 0.692

NB AAC_CKSAAGP 0.861 0.589 0.5886 0.104 0.647

KNN 0.87 0.859 0.8592 0.213 0.615

SVM 0.915 0.926 0.9256 0.423 0.63

RF 0.922 0.919 0.9188 0.312 0.777

Bagging 0.915 0.923 0.9226 0.373 0.726

NB 188_CKSAAGP 0.879 0.811 0.8106 0.244 0.705

KNN 0.877 0.87 0.8702 0.257 0.636

SVM 0.925 0.928 0.9277 0.434 0.615

RF 0.92 0.925 0.9247 0.399 0.776

Bagging 0.915 0.924 0.9239 0.393 0.75

The bold values represent the highest score of current feature extraction method in

different classifiers.

FIGURE 4 | The AAC value obtained by the predictor constructed by SVM

combined with five feature selection methods (AAC, 188-dimensions,

CKSAAGP, AAC_CKSAAGP, and 188-CKSAAGP).

Performance Evaluation of Different
Feature Extraction Methods
Among different feature extraction, Bagging predictor combined
with 188-dimensions feature extraction to obtain the best
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FIGURE 5 | Sn, Sp, and AUC values obtained by 10-fold cross-validation through five feature extraction methods [(A–E) AAC, 188-dimensions, CKSAAGP,

AAC_CKSAAGP, and 188-CKSAAGP] combined with five classifiers (NB, KNN, SVM, RF, Bagging).

prediction performance. NB, KNN and RF predictors
combined with AAC feature extraction to obtain the best
prediction performance. The prediction models built by
SVM combined with 188-dimensions or 188_CKSAAGP

feature extraction have obtained the best prediction
results (Figure 4).

In addition, the classification effect of the classifier constructed
by 188-dimensions combined with different classification
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algorithms in terms of Sn, Sp, MCC, AUC is higher than other
feature extraction methods, which proves that the prediction
model of the former is better than other models (Figure 5). In the
test datasets, SVM combined with 188-dimensions obtained a
prediction accuracy of 92.77%, which proves that the prediction
model is reliable. Therefore, in this study, we use 188-dimensions
as the final feature extraction method.

CONCLUSION

Rapid and accurate identification of tobacco mosaic virus is
the key to successfully protecting tobacco from poison. Kumar
and Prakash (2016) used direct antigen coating enzyme linked
immunoassay (DAC-ELISA) technique to detect the TMV virus
from pepper samples. However, this method is very complicated
in sample preparation and detection processes, which is time-
consuming and labor-intensive. Our goal was to distinguish
between tobacco mosaic virus proteins and healthy tobacco leaf
proteins in a large amount of data. The work in this paper
provides an effective method to solve this problem.

In this experiment, first, we constructed a high-quality
benchmark tobacco mosaic virus protein data set, which ensures
the reliability of the classification tool. Secondly, we compared
the performance of five feature extraction and five classifier
constructs as predictors through 10-fold cross-validation, and
then validated eachmodel with the test datasets. The results show
that SVM combined with 188-dimensions feature extraction
method has the best prediction performance. It has obtained
93.58% accuracy on the train datasets and 92.77% accuracy on
the test datasets, which proves that the prediction model has

good robustness, so this paper chooses support vector machine
as the prediction engine. We hope that these findings will help
the development of identification of tobacco mosaic virus.

In future research, because feature selection technology
has been successfully applied to some biological information
experiments (Dong et al., 2015), feature selection on protein
data can improve the prediction effect of the classifier.
In addition, we will also try to use machine learning
methods to solve analytical problems in genomics (Cheng
et al., 2018c), epigenomics (Wang et al., 2017), and other
proteomics fields.
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