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Abstract: Nanoparticles of tungsten oxide (WO3) and zinc oxide (ZnO) enriched polyethylene se-
bacate (PES) nanocomposites were prepared through the coprecipitation process and condensation
polymerization reaction. The obtained nano-sized particles of WO3 and ZnO, PES, and nanocom-
posites (WO3-PES NC and ZnO-PES NC) were investigated. The average molecular weight of
the cured PES was measured by employing the gel permeation chromatography (GPC) technique.
Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) spectra assured the
formation of the polymeric nanocomposites.WO3 and ZnO nanoparticles supposed a condensed
porous spherical phase found implanted in the polymer structure, as detected by scanning electron
microscopy (SEM) and transmission electron microscopy (TEM) methods. These nano-scale systems
achieved an electrical activity based on the conductive nanoparticles embedded matrix as a result
of the ion–ion interactions. The microbial influence of the nanocomposites was examined against
pathogenic bacteria; Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis,
and Fungi; Aspergillus niger, and Candida albicans. Results exhibited that these nanocomposites have
antimicrobial effects from moderate to slightly high on bacteria and high on fungi which was con-
firmed by a clear zone of inhibition. This study contributes to the design of reasonable composites to
be under evaluation for their catalytic effect.

Keywords: polyester; metal oxide; nanocomposites; microbial activity; nanotechnology

1. Introduction

On the ever-accelerating progress of technology towards sustainable development,
there are considerable research outputs in respect of the fabrication of eco-amiable nano-
sized material systems with formidable characteristics [1]. Recent advances and upcoming
technologies are mainly focused on the overall coverage of the principles and methods
concerning productions, properties, and implementations of nanomaterials [2,3]. By their
distinguished properties, polymer-metal oxide composites have been widely investigated
in recent years [4–8]. In this context, convenient processing procedures for fabricating
metal oxides on elastic polymeric materials are highlighted. Metal oxides grafted semicrys-
talline and partially polymeric films such as polydimethylsiloxane (PDMS), polyethylene
naphthalate (PEN), polyethylene terephthalate (PET), and polyimide (PI) have been stud-
ied [9,10]. Even though, a number of these amorphous polymeric films do not expose all
the coveted characteristics regarding their morphology, stability, resistivity under ambient
conditions [10]. Otherwise, soft composites based on linear aliphatic polyester (PE) are suc-
cessfully employed to modify the polymer structure with new categories of strengthening
components owing to their characteristics [11–15]. Predominately, positive reinforcement
materials in nano-sized scales were embedded in the cast polymer composites to improve
their physicochemical and electromechanical properties [16–19]. Metal oxides of Al, Ti,
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Zr, and In with appropriate components are utilized in flexible devices based on their
crystalline phases [20]. Compared to these oxide materials, nanoflakes, nanosheets, and
nanowires of WO3 based polymeric composites were employed efficiently in various
usages such as sensitive gas sensors [21,22], dye-sensitized solar cells [23], lithium-ion
batteries [24], photochromic agents [25], photocatalytic and antibacterial agents [26,27],
supercapacitors [28], water splitting [29,30], wastewater treatment [31], dye removal [32],
smart windows [33], and anticancer agents [34]. As a result of the properties of zinc oxide,
it has appeared a potential interest in the formulation of nano-sized polymeric systems [35].
Newly, the preparation of convenient components containing ZnO nanoparticles provides
effective composites for several implementations such as acetone sensing [36], photocataly-
sis [37,38], photodegradation [39], microbial activity [40], cancer therapy [41], and wound
dressing [42], food packaging [43] and water splitting [44]. Furthermore, the enhanced
catalytic activity and promoted thermal-catalytic stability of ZnO nanostructures and its
based hybrid materials under visible light effects were reported [45–48]. Consequently, the
present research work endeavored to fabricate a polyester matrix composite of polyethylene
sebacate enriched with nanocrystalline oxides of tungsten and zinc. These nano-oxides
donate free electrons to the polymer matrix based on the difference in oxidation state.
The sequential preparation of PES nanocomposites was achieved by condensation and
deposition procedures. The composite systems were investigated. As well, the electrical
conductivity and microbial performance of the obtained nanocomposites were examined.

2. Experimental
2.1. Materials

Experimental fabrication of polyethylene sebacate resin has been reported [49]. Sodium
tungstate dehydrates, ferrous ammonium sulfate hexahydrate, zinc chloride hexahydrate,
and cetyltrimethylammonium bromide were obtained from ADWIC (Qalyubia, Egypt),
Sigma-Aldrich (Saint Louis, MO, USA) and Merck (Kenilworth, NJ, USA).

2.2. Nano-Oxides Fabrication

Sodium tungstate and ferrous ammonium sulfate (mole ratio 2:1) were dissolved in
DW individually and mixed under sturdy stirring. A dark-colored suspension appeared
which was dissolved by the addition of oxalic acid [50]. Eventually, a transparent colored
solution was obtained with a pH value of 1. The solution was shifted to a proper auto-
claving system and aged for 2 days at 180 ◦C to get the final product. Further, zinc oxide
was prepared through the coprecipitation process in presence of CTAB [51]. CTAB based
zinc chloride hexahydrate was dissolved in distilled water (mole ratio of 0.8), 2 M aqueous
NaOH medium was gradually added until pH raised to 11. Then the mixture was stirred
for 2 h, shifted to autoclave, and aged for 2 days at 120 ◦C. After that centrifuged, washed,
dried, and calcified for 4 h at 450 ◦C. The obtained nanocrystalline oxides are described as
nWO3 and nZnO. The condensed porous crystalline phase was appeared with a particle
size around 6–40 nm by using the Scherrer equation.

2.3. Nanocomposite Fabrication

Nanocomposites of WO3 and ZnO nanoparticles dispersed PES resin was fabricated
throughout sequential proceedings as described in Figure 1. As an initial step, unbundling
and dispersion of solid PES was operated by addition of about 10 g of resin to 50 mL of
distilled water with sturdy stirring for 3 h at ambient temperature (Figure 1a). Thereafter,
0.05 g of nano-sized WO3 and ZnO as a solid powder was added quietly under vigorously
stirring for 3 h (Wt.% 0.05 MOx/PES) [51]. Ultimately, the suspension was strongly stirred
for 3h and aged for 48 h at 100 ◦C in a proper autoclaving system. Subsequently, the product
was centrifuged, washed, and dried overnight. The yield was described as tungsten oxide
and zinc oxide-based polyethylene sebacate nanocomposites (WO3-PES NC) and (ZnO-PES
NC) (Figure 1b,c).
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Figure 1. Sequence-based modeling of (a) PES, (b) PES-WO3 NC, and (c) PES-ZnO NC.

2.4. Characterization Techniques

Evaluation of weight throughout GPC analysis was performed by employing a Supre-
mamax 3000 column at Polymer Standard Service with 2% acetic acid/0.2 M buffer sodium
acetate as eluent (1 mL/min). FTIR technique was performed by employing an ATI Mattson
model Genesis Series (Fremont, CA, USA), infrared spectrophotometer adopting KBr tech-
nique. XRD analysis was performed by employing a Philips Powder Diffractometer and
monochromatized Cu Kα1 radiation in the range of 2θ = 4–80◦ at a potential of 40 KV and a
current value of 40 mA with a running step of 2◦ in 2θ/min. SEM analysis was performed
by employing a Jeol 5410 (Tokyo, Japan) instrument operated at a potential of 30 kV. TEM
technique was performed by employing a Jeol instrument 2010 at a potential of 130 kV. The
electrical activity was measured by using a Keithley test equipment-6517A Model-digit
Electrometer (Solon, OH, USA). The microbial effect was examined by using the agar diffu-
sion technique [52]. The tested composites were evaluated against Gram-positive bacteria
(Bacillus subtilis ATCC 6633, Staphylococcus aureus ATCC 35556), Gram-negative bacteria
(Escherichia coli ATCC 23282 and Pseudomonas aeruginosa ATCC 10145), Yeast (Candida albi-
cans IMRU 3669), and Filamentous Fungus (Aspergillus niger ATCC 16404). The negative
control was DMF showed no antimicrobial activity against the tested microorganisms, and
the positive control was Erythromycin for bacteria and Metronidazole for yeast and fungus.
All examinations were carried out in duplicates and the listed data are the average of the
obtained results.

3. Results and Discussion

GPC values of the prepared PES were illustrated in detail in Table 1. Broadly, varied
molecular weight measurements and determinations are detected owing to the step-growth
melt polycondensation polymerization procedures. Under the extraordinary role of catalyst,
a significant impact was exposed to molecular weight measurements of the polymer [53].
In the present work, the cured PES resin attained a total weight “Mn” of 2103, which
takes into account all the polymeric molecules that exist. The attained mode “the highest
peak” molecular weight distribution “Mp” value was 2422. Mass of the total polymeric
chains “Mw” value was 2621. As well, the catalytic action diminished the glycol overtaking
and accordingly minimized the whole period of the reaction. The PES reveals the crucial
mechanism and kinetics of the catalytic esterification process [54].
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Table 1. GPC of the prepared polyethylene sebacate (PES).

No. Retention
Time Mn Mw MP

(Daltons)
Mz

(Daltons)
Mz + 1

(Daltons)
Poly-

Dispersity

1 28.883 2103 2621 2422 3240 3888 1.246

FTIR spectra of PES, WO3-PES NC, and ZnO-PES NC are shown in Figure 2. From
the obtained spectra patterns, soft broad absorption peaks for OH groups manifested at
3350 cm−1. Two common symmetric stretching bands for CH– and CH= were revealed
at 2852 and 2917 cm−1. Associated with ester chain formation, strong and sharp spectra
were present at 1739 cm−1. Moderate spectra are shown at 1465 cm−1 due to the methylene
group. Functional OH bending appeared as a medium absorption at 1389 cm−1. Two bands
at 1292 and 1217 cm−1 were due to C–O of ester. C=C bending of CH= was exposed as two
peaks at 894 and 754 cm−1. Owing to the low content of nano-sized oxides in PES, there are
no considerable distinctions among the diagrams in which the spectrometric techniques
are mainly employed to detect the hydrocarbon components [54].
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Figure 2. FTIR charts of (a) PES, (b) PES-WO3 NC, and (c) PES-ZnO NC composites.

XRD plots (Figure 3) for PES, WO3-PES NC, and ZnO-PES NC reveal the presence
of multiple diffraction patterns observed. The reflections of the crystalline structure were
recorded in the 2θ range of 6–45◦. The characteristic crystalline peaks appeared at around
2θ = 6.06◦ (30.4%), 21.75◦ (100%), and 24.64◦ (57.12%). The exposed value at 2θ = 21.75◦ is
correlated to the high content of the ester series. Medium appearance at 2θ = 6.06◦ was
due to rough form. The PES backbone contains prolonged polymer chains referring to
various arrangements of polyester bindings [55]. ASTM 24-1148 and ASTM 89-0598 were
reported in the diffraction plots of WO3 and ZnO. Otherwise, the characteristic strong and
sharp diffraction peaks reveal the good crystallinity of the composites of PES-WO3 NC and
PES-ZnO NC. The characteristic peaks at 2θ = 6.0◦, 13.4◦, 20.4◦,21.7◦, 24.5◦, 29.8◦, 30.6◦,
38.8◦, and 41.5◦ are related to the (020), (120), (032), (131), and (220) patterns of PES (JPDS:
04-0783). The high intensity and narrow peaks are detected at 2θ = 6.0◦, 7.2◦, 21.7◦,21.9◦,
24.6◦, 24.7◦, 30.6◦, 38.8◦,41.7◦, and 45.4◦ are correlated to the (020), (020), (200), (120), (111),
(120), (131), (200), (202), and (222) crystalline planes of the spherical phase of WO3 (JPDS:
43-0679). The strongest diffraction peaks observed at 2θ values of 5.9◦, 8.0◦, 11.4◦, 17.3◦,
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20.2◦, 21.6◦, 24.5◦ 30.3◦, 35.8◦, 38.7◦, and 41.2◦ corresponding to the planes (020), (120),
(101), (100), (131), (002), (101), and (110) of ZnO (JPDS: 36-1451). The size of crystals was
measured using the Scherrer equation to the peaks at 2θ = 24.64◦ and 2θ = 21.75◦ around
36 and 16nm.
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The surface morphology of metal oxide nanoparticles was characterized using the
SEM technique. Before the discussion, metal oxides were found to be granulated particles.
The agglomeration performance is mostly similar to all metal oxide particles prepared at
relatively low temperatures [56]. With the elevating temperatures, the highly agglomerated
crystalline domains were found to have fused spherical-shaped nanoparticles as shown
in Figure 4. In the case of nanoparticles-based polymer (WO3-PES NC and ZnO-PES NC),
SEM images (Figure 5) were found to have condensed porous shape for WO3-PES NC
(Figure 5a) and diverged rode shape for ZnO-PES NC (Figure 5b).
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Figure 5. SEM graphs of (a) PES-WO3 and (b) PES-ZnO nanocomposites.

TEM micrographs of nano-sized oxides and polymer nanocomposites were studied.
Regarding this issue, some micrographs of their polymeric structure and dispersed metallic
particles are exhibited. As images display, pure nanoparticles were spherical flaked and
randomly distributed in several areas, whereas particle agglomerates still existed and
remained almost free areas (Figure 6).
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In general, the electrical conductivity of the polymeric composites can be promoted by
adding a conductive nanomaterial into the polymer phase. The enhancement performance
is owing to the formation of a permanent conductive network along with the polymer
structure. The electrical conductivity values of polymer materials containing conductive
nanofillers depend on nanophase content, dispersion area, temperature, and the particle
size of the nanocomposites [57]. The electrical conductivity of PES, WO3-PES NC, and
ZnO-PES NC is displayed in Figure 7. From the graphs, conductivity measurements
progressively increased by increasing temperature. This action corresponds with the typical
ionization performance of functional COOH in the polyester matrix. High conductivities
are correlated to the nano solids and heat effects [58].
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The microbial impacts of PES and its nanocomposites were evaluated against
pathogenic Gram-negative bacteria, (Pseudomonas aeruginosa ATCC 10145 and Escherichia
coli ATCC 23282), Gram-positive bacteria (Staphylococcus aureus ATCC 35556 and Bacillus
subtilis ATCC 6633), and fungi (Aspergillus niger ATCC 16404 and Candida albicans IMRU
3669) at a concentration of 5 mg/mL. The bacteria and yeast were grown on nutrient agar
while the fungus was grown on Czapek’s Dox agar medium. Data in Table 2 indicate
that the obtained composites’ antimicrobial effects range from moderate to slightly high
on Gram-negative bacteria and from slightly high to high on Gram-positive bacteria
and very high effect on fungi compared to the drug reference used. The values of the
inhibition zones indicate the cytotoxic efficacy of these compounds against the studied
fungi. The inhibition diameter values showed that the cytotoxic efficacies of these com-
pounds are strongly related to their surface properties and the type of transition metal.
The bactericidal effect of metal nanocomposite has been assigned to their small size
and high surface to volume ratio, which allows them to interact closely with microbial
membranes and is not solely owing to the release of metal ions in the medium. A cell
wall exists around the outside of the microorganism cell membrane and it is essential
to the survival of bacteria. Such a phenomenon can be explained based on Overtone’s
concept and chelation theory [59–61].
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Table 2. Antimicrobial activity of PES, PES-WO3, and PES-ZnO, measured by (mm).

Compound ID

Test Organism (+ve) Bacteria (-ve) Bacteria Fungi

Bacillus
subtilis

Staph.
aureus

Escherichia
coli

Pseud.
aeruginosa

Candida
albicans

Aspergillus
niger

PES 13 18 12 12 28 25
PES-WO3 13 16 13 13 17 20
PES-ZnO 12 17 13 12 19 19
Reference 32 34 32 33 26 28

4. Conclusions

The current study presents the preparation of WO3 and ZnO nanoparticles dispersed
PES nanocomposites through the precipitation process and esterification reaction. Mass,
structure, composition, morphology, conductivity, and microbial activity of the obtained
systems were evaluated. Spectra of FTIR and XRD techniques confirmed the fabrication of
polymer nanocomposites. It reveals the existence of several patterns for PES composites.
The grain size of WO3 and ZnO were found in the nano-crystalline regime. SEM and TEM
images show condensed spherical shaped nanomaterials embedded in the PES lattice. The
nanocomposites based on nWO3 and nZnO exposed an electrical conductivity effect due
to the interaction of ions in which the values are increased under heat. The antimicrobial
results revealed a moderate effect on bacteria and a high effect on fungi for the nanocompos-
ites based on inhibition zone. As a result, the current research contributes to the fabrication
of reasonable nanomaterials to be under evaluation for their catalytic activity.
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