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Purpose. Aspergillus fumigatus, as an opportunistic fungus, has developed a series of escape mechanisms under the host’s immune
response to obtain nutrients and promote fungal growth in the hostile environment. The immune escape of pathogens may be
through suppressing the inflammatory response mediated by regulatory T cells (Tregs). The aim of this study was to explore
whether A. fumigatus influences Gasdermin-D-dependent pyroptosis of the lung by regulating Toll-like receptor 2-mediated
regulatory T cell differentiation. Methods. Collect peripheral blood from patients with A. fumigatus. ELISA kits we used to detect
the expression levels of IL-1β, IL-6, IL-2R, and IL-10 in the serum and flow cytometry to detect the percentage of
CD4+CD25+Foxp3+ Tregs in the patients’ peripheral blood mononuclear cells (PBMCs). The mouse model of A. fumigatus
infection was constructed by tracheal instillation. The pathological changes in the lungs of the mice were observed under a
microscope. The fungal load in the lung tissue was determined by the plate colony count. ELISA kit was used to detect the lung
tissue homogenate proinflammatory cytokines TNF-α, IL-6, CCL2, and VEGF. Q-PCR was used for the detection of the
expression of Foxp3 and TLR2 genes in the lung. Western blot was used for the detection of the expression of TLR2,
Gasdermin-D (GSDMD), IL-1α, and IL-1β in the lung. Flow cytometry was used to detect splenic CD4+CD25+FOXP3+ Tregs.
Using magnetic beads to extract CD4+ T cells from mice spleen, the effects of A. fumigatus conidia or TLR2 inhibitor (C29) to
differentiate CD4+ T cells in vitro were tested. Results. The expression of Foxp3 and TLR2 in the lung tissue of mice infected
with A. fumigatus increased, and we observed that the proportion of Tregs in both A. fumigatus infection patients and mice was
upregulated. After using the CD25 neutralizing antibody, the number of Tregs in the mice spleen was significantly reduced.
However, lung damage was reduced and the ability to clear lung fungi was enhanced. We found that the Tregs in TLR2−/− mice
were significantly reduced and the nonlethal dose of A. fumigatus conidia did not cause severe lung damage in TLR2−/− mice.
Compared with that of wild-type mice, the fungal burden in the lung of TLR2-deficient mice was reduced and the knockout of
TLR2 changed the expression of GSDMD, IL-1α, and IL-1β in A. fumigatus. In in vitro experiments, we found that the
inhibition of TLR2 can reduce Treg differentiation. Conclusions. A. fumigatus triggers CD4+CD25+FOXP3+ Treg proliferation
and differentiation by activating the TLR2 pathway, which may be a potential mechanism for evading host defenses in
A. fumigatus. This effect can modulate GSDMD-dependent pyroptosis and may partly involve TRL2 signaling.

1. Introduction

Aspergillus fumigatus, as an opportunistic fungus, is one of
the common conidia species in the environment [1, 2] that
can cause lung and systemic infection in humans [3, 4], with
approximately 200000 cases of invasive Aspergillus (IA)
patients each year globally [5, 6]. Regulatory T cells (Tregs)

have been shown to control the host’s inflammatory
response. Studies have found that mice have a significant
increase in Tregs after infection with A. fumigatus [7] and
showed the conventional T lymphocyte response in the
amount and target specificity [8–10]. Treg cells can inhibit
excessive tissue inflammation by inhibiting Th1 and Th17
responses during the first few days after infection by A.
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fumigatus [9]. However, Tregs also promote immune toler-
ance and immune escape by restraining the body’s immune
response increasing the sensitivity of bacterial infections
[11]. TLR2 is a member of the pattern recognition receptor
(PRR) family and triggers host responses [12, 13], activated
by either A. fumigatus stimulation. Judging by the current
analysis and research, in addition to innate immune cells like
killer cells, dendritic cells, and macrophages exhibiting TLR2,
the same TLR2 expression is seen on several adaptive
immune cells like CD4+, CD8+ T cells [14], and CD4+Foxp3+

Tregs [15]. The proliferation of CD4 + Foxp3+ Treg cells can
be induced by the TLR2/MyD88 pathway in dengue infection
[11]. In a mouse test to analyze infection caused by Candida
albicans, reducing the expression of TLR2 lowers the quantity
of CD4+CD25+ Treg cells and decreases the fungal burden
[16]. Macrophages had a lowered secretion of proinflamma-
tory cytokines in response to Aspergillus-stimulated produc-
tion of IL-10 via TLR2-dependent mechanisms [17].

Thus, we hypothesized thatA. fumigatus stimulates TLR2
signal activation to induce an increase of CD4+CD25+-

FOXP3+ Tregs, thereby mediating inflammatory environ-
ment changes in the lung and promoting fungi’ persistence.
To clarify the assumption, we analyze seven clinical samples
of A. fumigatus infection. Then, we created a mouse model of
pulmonary infection of A. fumigatus in wild-type mice and
TLR2−/− mice and through in vitro experiments to detect
the role of TLR2 in the differentiation of CD4+ T cells.

2. Materials and Methods

2.1. Clinical Sample Collection. Fourteen blood samples were
collected in the study. Seven samples of the infection group
were from adult patients with Aspergillus fumigatus infection
in the First Affiliated Hospital of Chongqing Medical Univer-
sity, and seven healthy samples were included as the control
group of the study. Every participant provided their consent
before sample collections, and the Clinical Research Ethics
Committee of the University approved the protocol. The
number is Lot 2020-850.

2.2. Human Peripheral Blood Mononuclear Cell (PBMC)
Isolation. EDTA tubes were utilized to store the collected
blood samples. The samples were centrifuged at 2500 rpm
for 8min by density gradient (Histopaque, Sigma). Accord-
ing to the instructions, we used the Human Peripheral Blood
Lymphocyte Separation Solution Kit (TBDsciences) to obtain
lymphocytes.

2.3. Human Serum Cytokine and Peripheral Blood Treg/CD4+

Measurements. The blood samples were centrifuged at
2000 rpm for 15min at 4°C to obtain supernatant for serum.
The levels of IL-1β, IL-6, IL-2R, and IL-10 in the serum and
Treg/CD4+ (the percentage of CD4+CD25+Foxp3+ Tregs in
CD4+ T cells) in the PBMCs were analyzed at the Clinical
Molecular Testing Center of the First Affiliated Hospital of
Chongqing Medical University for measurements.

2.4. Animals. C57/BL6 mice (male, 6–8 weeks, 17–24 g) used
in our experiment were acquired from the Laboratory Ani-
mal Center of Chongqing Medical University. TLR2 knock-

out mice with a C57/BL6 background were purchased from
Jackson Laboratory. All procedures were approved by the
Institutional Animal Care and Use Committee at Chongqing
Medical University.

2.5. Strains of Fungi and Conditions for Cultivation. The
strain of A. fumigatus used was Af293 with the required spec-
ifications for infections and cultivation as previously
described [18]. Briefly, conidia were matured on Sabouraud
Dextrose Agar plates for seven days at 37°C and 5% CO2.
To prepare a spore suspension, rinse with 10mL sterile PBS
containing 0.1% Tween 20 and gently scrape the Aspergillus
colonies on the Petri dish [19]. Then, filter through eight
layers of sterile gauze. After adjusting the fungal suspension
to the desired concentration with a hemocytometer, the
conidia suspension was stored at 4°C.

2.6. The Mouse Model with Aspergillus fumigatus Infection
and Tissue Sample Collection. Mice were mildly anesthetized
and then placed in a flat position and administered intratra-
cheally at a concentration of 50μl of 1 × 107 viable spores
while maintaining an upright position to be used as the study
model for infections caused by A. fumigatus [20]. Within 1 to
2 hours after injection, the mice recovered completely and
had a healthy appearance. The mice were kept at the SPF lab-
oratory and euthanized at 24 and 72 h after the operation.
Blood was collected retro-orbitally. Lung tissue and spleen
of mice were obtained for subsequent research. Spleen was
taken out of mice and gently ground with a mesh screen to
obtain spleen cells for subsequent research.

2.7. Blockade of Treg Cells In Vivo.Mouse CD25/IL-2R alpha
antibody (AF2438, R&D Systems, Minnesota, MN, USA) was
used to suppress Treg cells. One hour before A. fumigatus
infection, each mice in the inhibitor group was intraperitone-
ally injected with 20μg of mouse CD25/IL-2R alpha anti-
body, and control mice were injected with antibody rat
IgG1 [21].

2.8. Histopathology. Samples of the lung were fixed in 4%
formaldehyde. Sectioning was done after the samples were
embedded in paraffin wax. Grocott’s methenamine silver
(GMS) was utilized to stain the lung samples for the detection
of fungus. For the histological analysis procedure, lung sam-
ples were stained with either hematoxylin and eosin (H&E).
Analyzed through the use of COOLSCOPE digital light micro-
scope (Nikon Co., Tokyo, Japan), lung injury was scored
according to criteria defined by Mikawa et al. [22] as follows:
(1) alveolar hyperemia, (2) hemorrhage, (3) interstitial or
aggregation of interstitial or neutrophils, and (4) thickening
of the alveolar septum or hyaline membrane formation. Pneu-
moniae pulmonary infection scores were approximated
through the method by the scoring standard published by
Cimolai et al. [23]. The scoring standard is based on (1) the
infiltration degree of inflammatory cells around the trachea
and bronchiole 0–3, (2) quality of trachea and bronchiole infil-
trate 0–3, (3) infiltration degree of inflammation in trachea
and bronchiole cavity 0–2, (4) infiltration of inflammatory
cells around blood vessels, degree 0–3, and (5) inflammation
of the lung parenchyma which involves the range 0, 3, and 5.
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The severity of the inflammation is directly proportional to the
magnitude of the score.

2.9. In Vivo Quantification of Viable Conidia. The fungal bur-
den in the lungs of mice was determined by the plate colony
counting method. Separate mouse lungs aseptically, weigh
their wet weight, add ice PBS, homogenize the tissue, and
dilute the tissue proportionally. Each concentration gradient
(10−1 and 10−2) was added to the sandcastle plate medium,
and each concentration gradient was inoculated with two
dishes and cultivated at 37°C for 72 hours. Count the colonies
and multiply by the dilution factor.

2.10. Cytokine Measurements. Lung tissue homogenates (10-
fold dilution) of WT mice and TLR2−/− mice were collected.
According to the instructions, tumor necrosis factor (TNF)-
α, IL-6, VEGF, and CCL2 were measured following the
enzyme-linked immunosorbent assay kit (ELISA) as mea-
sured (4A Biotech, China).

2.11. Extraction of RNA, Synthesis of cDNA, and Real-Time
Quantitative PCR. TRIzol (TAKARA BIO, Tokyo, Japan)
was used to extract total RNA from lung tissue and measure
the RNA concentration. The experiment pays attention to
prevent contamination of exogenous RNase. The specific
experimental procedures follow the instructions of TB
Green® Premix Ex Taq™ II (Tli RNase H Plus) (TAKARA
BIO, Tokyo, Japan). The added specific primers to the reac-
tion system to perform RT-PCR include TLR2, Foxp3, and
glyceraldehyde triphosphate dehydrogenase (GAPDH). The
primer sequences were as follows: TLR2 forward 5′-GATG
AAGTCAGCTCACCGAT-3′; reverse 5′-ACAGTTCCAAG
ATGTAACGC-3′; Foxp3 forward 5′-CCTATGCCACC
CTTATCCGATG-3′; reverse 5′-CGAACATGCGAGTAAA
CCAA-3′; GAPDH forward 5′-GGACACTGAGCAAGAG
AGGC-3′; and reverse 5′-TTATGGGGGTCTGGGATGG
AA-3′. Using a 25μl system, add TB Green Premix Ex Taq
II (Tli RNase H Plus) (2x), forward primer, reverse primer,
DNA template, and RNase-free dH2O according to the
instructions. Adopting a two-step PCR reaction program,
the 2ΔΔCðtÞ approach is used to determine the expression of
the relative target gene.

2.12. Western Blotting Assay. Utilizing a homogenizer,
homogenization of the lung tissue in 1ml 50mM Tris-HCl
(pH7.8) containing 15% glycerol, 150mM NaCl, 0.1%
Tween-20, and protease inhibitors was done and followed
by centrifugation. The protein concentrations were estimated
through the use of a bicinchoninic acid (BCA) Protein Assay
Kit (Beyotime, Shanghai, China). The supernatant (total
protein) was separated with sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and blotted
onto a polyvinylidene difluoride membrane. The membrane
was blocked with 5% (w/v) skimmed milk and then incu-
bated with TLR2 antibody (diluted at 1 : 300), Foxp3 (diluted
at 1 : 1000) antibody, Gasdermin-D antibody (diluted at
1 : 1000), IL-1α antibody (diluted at 1 : 1000), IL-1β antibody
(diluted at 1 : 1000), or GADPH antibody (1 : 2000) at 4°C for
14–17 h, and then, the horseradish peroxidase-conjugated

secondary antibody (diluted at 1 : 5000~8000) was reacted
at 37°C for 1 hour. The membrane is exposed to enhanced
chemiluminescence (ECL) reagents. Use ImageQuant TL
software to detect protein expression.

2.13. CD4+T Lymphocyte Isolation, Proliferation, and
Differentiation into Treg Cells In Vitro. The conidia of A.
fumigatus were heat inactivated after heating at 65°C for 60
minutes. Sabouraud Agar is applied to test the viability of
these conidia. The study indicates that the reagents used
should have 1 × 107/ml [24]. Spleen samples should be col-
lected from C57/BL6 mice according to the previous method
[25]. CD4+ T lymphocytes were isolated by the EasySep™
Mouse Naive CD4+ T Cell Isolation Kit (STEMCELL). About
5 × 105 CD4+ T cells are inoculated in each well of the 48-well
plate. The medium RPMI 1640 added 50ng/ml transforming
growth factor-β (TGF-β) (PeproTech), 5μg/ml anti-mouse
CD3 (eBioscience), 2μg/ml anti-mouse CD28 (eBioscien-
ce),10 ng/ml cytokines IL-2 (PeproTech, Rocky Hill, NJ,
USA), 50mM β-mercaptoethanol (Macklin, Shanghai,
China), and 2 mML-glutamine (STEMCELL Technologies,
Vancouver, Canada), with or without C29, incubated at
37°C, 5% CO2 for 3 days, and then performed flow cytometry
detection, with each group repeating 5 times. C16H15NO4
(C29) (MCE, New Jersey, USA) was dissolved in DMSO as
50mM stock solution [26].

2.14. Flow Cytometry. The cultured T cells, isolated PBMCs,
and splenocytes to be tested were incubated in the dark with
fluorescent antibodies to determine the percentage of CD4 +

CD25+ Foxp3 + Tregs in CD4+ T cells. According to the man-
ufacturer’s instructions, the collected cells are washed with PBS,
centrifuged to pellet, and then stained with antibodies (anti-
CD25-phycoerythrin-PE, anti-CD4-FITC, and anti-Foxp3-
APC) and a Fixation/Permeabilization Kit (eBioscience)) was
used in the dark for flow cytometry detection. At least 105 cells
were collected and detected with a FACS flow cytometer
(Becton, Dickinson), and data analysis was done by FlowJo
software V10.

2.15. Statistical Analyses. Statistical analysis was done using
SPSS 20.0 (IBM, Armonk, NY, USA) and GraphPad Prism
8.0 (GraphPad Software, San Diego, CA, USA). All experi-
mental data were expressed as either mean ± standard devia-
tion. Experimental data were assessed with Student’s
unpaired two-tailed t test, one-way ANOVA, or two-way
analysis of variance (ANOVA) attended by the Tukey Post
Hoc test. p < 0:05 was regarded as statistically significant.

3. Results

3.1. Aspergillus fumigatus Infection Causes Lung Damage in
Immunocompetent Mice. We found that IL-1β (p < 0:0001),
IL-6 (p < 0:001), and IL-2R (p < 0:0001) raised among
patient specimens infected with A. fumigatus; IL-10 was
slightly increased after infection (p < 0:05, Figure 1(a)). Then,
we establishedmice lung infection withA. fumigatus. The lung
infection of A. fumigatus in mice was confirmed by GMS
staining and the number of fungal colonies (Figure 1(b)). As
shown in Figure 1(c), we observed that H&E of lung tissue
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sections showed infiltration of inflammatory cells in the bron-
chiole, perivascular, and vascular lumen. The degree of lung
damage semiquantitative injury index includes hemorrhage,
alveolar hyperemia, interstitial or neutrophil infiltration or
aggregation, and severe inflammatory cell infiltration in the
A. fumigatus pneumonia compared to the control mice.
Appreciably enhancive quantities of inflammatory cells

and increased lung histopathology Mikawa scores and
Cimolai score were observed in the A. fumigatus infection
group (p < 0:0001). Simultaneously, A. fumigatus signifi-
cantly increases the concentration of chemokines or cyto-
kines, including TNF-α (p < 0:0001), CCL2 (p < 0:001), IL-6
(p < 0:0001), and VEGF (p < 0:001) in the lung tissue of mice
(Figure 1(d)).
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Figure 1: Aspergillus fumigatus infection caused the pulmonary inflammatory response. (a) IL-1β, IL-6, IL-10, and IL-2R are elevated in the
serum of patients infected with A. fumigatus (n = 7). (b) C57BL/6 mice were administered intratracheally at a concentration of 50μl of 1 × 107
viable spores and monitored for 3 days (n = 5/group). Grocott’s methenamine silver (GMS) and lung colony-forming units (CFUs) (n = 5
/group). (c) H&E staining of the lung tissues of A. fumigatus-infected mice at 100x and 400x magnification, compared with the
noninfected control, alveolar hemorrhage, and inflammatory cell infiltration were more after A. fumigatus challenge. (d) TNF-α, IL-6,
CCL2, and VEGF expression levels in lung tissues of mice were detected by ELISA. A. fumigatus upregulated the production of
proinflammatory cytokines/chemokines in lung tissues, including TNF-α, IL-6, CCL2, and VEGF (n = 3/group). Experiments were done at
least three times. ns: not significant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 by Student’s unpaired two-tailed t test. Error
bars represent SEM.
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3.2. Increase of Treg Cell Ratios after A. fumigatus Stimulated
in the Lung of Immunocompetent Mice. As illustrated in
Figure 2(a), the number of Treg cells in patients infected with
A. fumigatus slightly increased (p < 0:0001). To further
understand Tregs’ involvement in pulmonary A. fumigatus,
we studied the protein and mRNA levels of Foxp3 in the
lungs post A. fumigatus challenge by real-time quantitative
PCR and Western blotting. There was upregulated expres-
sion of Foxp3 in the lungs of mice who suffered A. fumigatus
infection compared with controls (p < 0:05, Figure 2(b)).
Simultaneously, we found that compared with noninfected
mice, the CD25+ Tregs (p < 0:05) and CD25+Foxp3+ Tregs
(p < 0:001) in CD4+ T cells of the spleen of mice treated with
A. fumigatus increased significantly within 72h after infec-
tion (Figure 2(c)). The above data suggested that the
increased ratio of Treg cells was associated pulmonary
Aspergillosis.

3.3. The Persistent Presence of Fungi in Lung Injury Induced
by Aspergillus fumigatus Is Related to Tregs. To further clarify
the role of Tregs in A. fumigatus infection, intraperitoneal
injection of CD25-neutralizing antibody 20μg was used to
inhibit Treg cells in WTmice. The quantities of CD25+ Tregs
(p < 0:0001) and CD25+Foxp3+ Tregs (p < 0:0001) were
decreased in CD4+ T cells of the spleen after being treated
with CD25 antibody compared with those of theA. fumigatus
infection group (Figure 2(d)). After A. fumigatus infection,
we found that mice treated with CD25 antibody were
observed to have a slightly lower load of A. fumigatus in their
lungs compared with the A. fumigatus infection group
(p < 0:05, (Figure 2(e)). As shown in Figure 2(f), a higher
number of inflammatory cells and hemorrhage in the alveo-
lus were discovered in mice treated with A. fumigatus. How-
ever, overall, after inhibiting Treg cells, the inflammatory
cells around the blood vessels are slightly lower and there
were mildly reduced lung histopathology Mikawa scores
and Cimolai scores compared to those of IgG1-treated mice
with A. fumigatus infection in the lung (p < 0:05).

3.4. TLR2 Is Increased in the Lung of Mice Treated with
Aspergillus fumigatus. TLR2 is one of the cell membrane
receptors involved in A. fumigatus [27]. We measured the
protein and mRNA levels of TLR2 in control and infected
wild-type mouse lungs by Western blot and RT-PCR. The
relative TLR2 mRNA expression levels were upregulated in
the infected mouse lung compared to the control group
(p < 0:01, Figure 3(a)). The TLR2 protein levels were also
increased in the infected mouse lung compared to the control
group (p < 0:01, Figure 3(a)). These results confirmed that
the TLR2 expression is higher after A. fumigatus infection
in the lung of mice.

3.5. TLR2−/− Immunocompetent Mice Are less Susceptible to
Aspergillus fumigatus Infection. To understand whether
TLR2 is involved in Treg-mediated persistence in lung A.
fumigatus, we infected TLR2−/− mice with 1 × 107 conidia
which were inoculated and compared with wild-type mice;
no deaths occurred in either of the two groups within 3 days
(data not shown). Surprisingly, TLR2−/− mice were observed

to have a slightly lower load of A. fumigatus in their lungs
compared with controls (p < 0:05, Figure 3(b)). As shown
in Figure 3(c), histology of the lung showed that there is
mainly infiltration of macrophages and monocytes in the
lungs of TLR2−/− mice with A. fumigatus, alveolar conges-
tion, and hemorrhage. However, compared with TLR2−/−
mice, WT mice suffered from interstitial congestion and
hemorrhage, more obvious after A. fumigatus infection, with
neutrophil infiltration being severe. Assessing changes in
lung tissue morphology, increased lung histopathology
Mikawa scores (p < 0:05) and Cimolai scores (p < 0:01) were
observed in the WT mice undergoing A. fumigatus. As illus-
trated in Figure 3(d), TNF-α and IL-6 were decreased in the
lungs from TLR2−/− mice compared with control wild-type
mice with A. fumigatus infection (p < 0:0001). However, the
expression levels of CCL2 and VEGF are not statistically
different compared with WT mice.

3.6. TLR2 Plays a Crucial Role in Inducing the Proliferation of
CD4+CD25+Foxp3+ Tregs in Lung Injury Induced by
Aspergillus fumigatus. To investigate the molecular mecha-
nisms of Treg cell differentiation and proliferation caused
by TLR2 in A. fumigatus infection, as shown in Figure 4(a),
the ratios of the CD25+ Tregs (p < 0:01) and CD25+Foxp3+

Tregs (p < 0:0001) in CD4+ T cells of the spleen of TLR2−/−
mice were significantly lower than those in the WT mice.
After A. fumigatus infection, the CD25+ Tregs (p < 0:05)
and CD25+Foxp3+ Tregs (p < 0:01) in CD4+ T cells of the
spleen of TLR2−/− mice were significantly also lower. The
results are in line with previous findings [11]. We also
detected the expression of Foxp3 in the lungs of mice after
infection with A. fumigatus. RT-PCR results showed that
the expression of Foxp3 in the lungs of the control group
TLR2−/− mice was reduced compared to that of wild-type
mice (P<0.001, Figure 4(b)). The expression of Foxp3 was
decreased in the lung of no-infection TLR2−/− mice com-
pared with WT mice in control (p < 0:05). Besides, although
the expression of Foxp3 was upregulated after infection with
A. fumigatus in the lung of TLR2−/− mice and WT mice,
those of TLR2−/− mice were also reduced compared to WT
mice (p < 0:05, Figure 4(c)).

3.7. The Inhibitor of TLR2 Reduces Aspergillus fumigatus-
Induced CD4+ CD25+ Treg Cell Differentiation in CD4+ T
Lymphocytes. To confirm whether TLR2 in A. fumigatus
infection can affect the differentiation of CD4+ T lympho-
cytes into Treg cells, we obtained primary CD4+ T lympho-
cytes from mouse spleens for subsequent in vitro cell
culture experiments. Intervention was done by adding C29
(TLR2 inhibitor) to the medium. It was observed that flow
cytometry analysis was performed after 72 hours of culture,
and we found that the ratio of CD4+ T lymphocytes differen-
tiated into CD25+ Tregs and CD25+Foxp3+ Tregs decreased
after C29 treatment (p < 0:0001, Figure 4(d)).

3.8. TRL2 Signaling Involves GSDMD-Dependent Pyroptosis
in Aspergillus fumigatus. Gasdermin-D-dependent pyrolysis
signal molecules play an important role in lung damage
caused by infection [28]. We infected the lungs of TLR2−/−
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mice and WT mice with 1 × 107 conidia and evaluated
GSDMD, IL-1α, and IL-β proteins by Western blot. As
shown in Figure 5, GSDMD, IL-1α, and IL-β proteins in lung
tissue were induced after A. fumigatus stimulation, whether
WT mice or TLR2 knockout mice. Besides, the expression
of both IL1-β and GSDMD in TLR2−/− mice decreased
compared with that in WT mice (p < 0:001).

4. Discussion

A. fumigatus can cause a wide range of diseases, from hyper-
sensitivity to invasive infection. A. fumigatus usually occurs
in critical patients, which is accompanied by severely
immunocompromised and prolonged neutropenia mainly.
Although IA has been considered a rare condition among
critically ill patients, recent data indicate high incidence
and should be reconsidered as an emerging and devastating
infectious disease in ICU patients. The lung was the most fre-
quent site of infection (94%), and Aspergillus fumigatus is the
most commonly isolated species (92%) [29]. IA due to A.
fumigatus is associated with greater severity, high mortality,
and more frequent organ support.

Currently, therapy for diseases (such as cancer and auto-
immune disease), based on immune escape mechanisms, has
become increasingly attractive in the biomedical field. And
there are dynamic and complex interactions between the host
and A. fumigatus [30]. Immune recognition, escaping
immune recognition, and counteracting host responses con-

stitute the series of mechanisms after A. fumigatus invades
the host. Although inflammation is primarily a defense reac-
tion with detrimental consequences to the pathogen, its
downstream effects, such as changes in the metabolism or
influx of immune cells, might actually favor the growth and
tissue spread of the pathogen. Microbe-directed skewing of
the immune response by specific signals might further
diminish the antimicrobial effect and enhance the pathogen’s
benefit [31]. In the pathogen infection, Tregs although pre-
vent infection-associated inflammation and tissue damage
also dampen the protective immune response to pathogens
and enhance their persistence [32]. Tregs that specifically tar-
get A. fumigatus have been described in humans [33] and
mice [9]. Our study identified that IL-1β, IL-6, and IL-2R
were significantly elevated in clinical biological samples of
A. fumigatus patients (Figure 1(a)). In mice after A. fumiga-
tus infection of the lung, data showed that lung damaged
and increased cytokines in mice with A. fumigatus infection,
too (Figures 1(b)–1(d)). However, the ratio of CD4+CD25+-

Foxp3+ Tregs was heightened after A. fumigatus infection
in patients (Figure 2(a)). And we found that the levels of
CD4+CD25+Foxp3+ Tregs in the spleen and Foxp3 expres-
sion in the lung were increased after A. fumigatus infection
(Figures 2(b) and 2(c)). Tregs have been proven to inhibit
inflammation. So what role does the anti-inflammatory effect
of Tregs play on host A. f. infection in a normal immune
state? What is the significance of the increase in Tregs, which
is synchronized with the increase of lung injury and
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Figure 2: The persistent presence of fungi in lung injury induced by Aspergillus fumigatus is related to Tregs. (a) Increased
CD4+CD25+Foxp3+ Treg proportion significant in PBMCs of patients infected with A. fumigatus (n = 7). (b) Foxp3 mRNA levels in the
lungs were measured with q-PCR. Relative expression levels of the genes were expressed with the GAPDH housekeeping gene as an internal
reference (n = 5/group). The expression of Foxp3 protein levels in the lungs was measured with Western blotting. Relative expression levels
were expressed with the GAPDH as an internal reference (n = 3/group). (c) CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs in the spleen
were detected by flowcytometry, and FlowJo10 analyzed the proportions as prior described in Section 2. Increased CD4+CD25+ T cell and
CD4+CD25+Foxp3+ Treg proportion significantly in the spleen of A. fumigatus infection mice (n = 5/group).Decreased susceptibility of mice
to A. fumigatus infection after Treg depletion. (d) After pretreatment with CD25-neutralizing antibodies, the number of Treg cells in the
spleen of mice with A. fumigatus infection group was significantly reduced, each group (n = 5/group). (e) Fungal load (colony-forming unit)
after 1 day of infection (n = 4/group). Experiments were done at least three times. Data are presented as mean ± standard deviation.
∗Statistically significant difference (p < 0:05) against noninfected control. (f) Lungs from each experimental group were processed for
histological examination after H&E staining. Lung injury scores were evaluated by the method described previously. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 by Student’s unpaired two-tailed t test and the one-way ANOVA followed by the Tukey post
hoc test. Error bars represent SEM.
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inflammatory factor expression, after lung injury induced by
A. fumigatus infection? Is it a response to the anti-
inflammatory effects or other possible values? To further
understand the relationship between Tregs and fungal persis-
tence, we use CD25-neutralizing antibody to inhibit Tregs
(Figure 2(d)) and found that the number of fungal burden
in the lung was decreased in mice treated with CD25-
neutralizing antibody (Figure 2(e)). The study showed that
CD4+CD25+Foxp3+ Tregs are not generated in B7-2− or
CD28− deficient mice, these mice are capable of efficiently
restricting the fungal growth [34]. In A. fumigatus infection,
the fungal burden was higher and the inflammatory tissue
pathology was milder in WT than in CD4+CD25+Foxp3+

Treg-reduced mice [9]. Immune dysfunction contributes to
worse outcomes of pathogenic microorganism infection. Par-
tial depletion of Tregs elevated IL-17A, IL-1β, and IL-6 pro-
duction and decreased IL-10 levels, leading to lower bacterial
load and attenuation of lung injury in secondary P. aerugi-
nosa infection after sepsis [35]. The deleterious role of Tregs
on the innate immune response was underscored in the
improved resistance to C. albicans infection [16]. Our results
show that the lung could be partially rescued after depletion
of Tregs (Figure 2(f)). These results could imply that the
effects of Treg cells are deleterious when a pathogen, such
as A. fumigatus, is persistent.

Along with A. fumigatus infection developing, TLRs trig-
ger antimicrobial host immune responses. TLR2, as an

important pathogen pattern recognition receptor, plays a
vital role in infection [10, 24]. It is an important receptor able
to recognize the hypha and spores of A. fumigatus [17]. Our
study found that A. fumigatus infection can indeed stimulate
TLR2 expression to increase (Figure 3(a)). We observed that
the susceptibility of TLR2-deficient mice to A. fumigatus was
not different from that of controls, a finding suggesting that
the mice are fully competent at the level of innate antifungal
resistance, as documented by reduced fungal growth in mice
with primary disseminated candidiasis [36]. Interestingly, 3
days after A. fumigatus infection, we observed that the fungal
burden and injury in TLR2−/− mouse lungs were decreased
compared to those in controls (Figures 3(b) and 3(c)). It
implies that A. fumigatus could evade host defense through
TLR2-mediated signals probably. And the expression of
TNF-α and IL-6 was marginally impaired in TLR2−/− mice
(Figure 3(d)). It suggested that TLR4 [37], C-type lectin
receptors (CLRs) [38–40], and galectin family proteins
involved in A. fumigatus-induced proinflammatory cytokine
release, too. Different TLRs may modulate the adaptive
immune response through either stimulation or inhibition
of Treg cell functions. Accumulated evidence has demon-
strated that CD4+Foxp3+ Tregs can sense pathogens and
modify their behavior through TLRs [41]. Previous studies
have shown that CD4+Foxp3+ Tregs can express an array of
several TLR mRNA, including TLR1, 2, 4, 5, 6, 7, and 8 but
stimulation of only a few TLRs (such as TLR2, TLR5, and
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Figure 3: C57BL/6 mice and TLR2−/− mice were infected with A. fumigatus spores and monitored for 3 days. (a) The expression of TLR2
protein in the lungs of mice which was infected with A. fumigatus for 3 days was detected by Western blot and analyzed by imager
systems described in Section 2, and the mRNA levels of TLR2 were determined by q-PCR (n = 3/group). (b) Fungal load (colony-forming
unit) after 3 days of infection (n = 5/group). (c) H&E staining of the lung tissues of A. fumigatus-infected WT mice and TLR2−/− mice at
100x and 400x magnification, mainly infiltration of macrophages and monocytes in the lungs of TLR2−/− mice with A. fumigatus, with
alveolar congestion and hemorrhage. TLR2−/− mice suffered from interstitial congestion and hemorrhage less obviously after A. fumigatus
infection than WT mice. (n = 5/group). (d) TNF-α, IL-6, CCL2, and VEGF expression levels in the lung of mice were detected by ELISA.
TLR2-deficient downregulated the production of proinflammatory cytokines/chemokines in lung tissues treated by A. fumigatus,
including TNF-α, IL-6, CCL2, and VEGF (n = 3/group). Experiments were done at least three times. ns: not significant; ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 by Student’s unpaired two-tailed t test and the two-way ANOVA followed by the Tukey post
hoc test. Error bars represent SEM.
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TLR8) affects the proliferation and/or suppressive function
of CD4+Foxp3+ Tregs [42, 43]. IL-10 induces the develop-
ment of CD4+ Tregs in a costimulation- and TLR-
dependent fashion in fungus infection [44–46]. The study
shows that C. albicans induces immunosuppression through
TLR2-derived signals that mediate increased IL-10 produc-
tion and Treg cells’ survival [16]. And another evidence
showed that dengue infection induced the proliferation of
functional CD4+Foxp3+ Tregs via the TLR2/MyD88 pathway
[11]. Our study found that TLR2-deficient mice have a signif-
icant decrease in Tregs of the spleen (Figure 4(a)) and the
expression of Foxp3 of the lung (Figures 4(b) and 4(c)). On
the other hand, starting from naive cells, CD4+ T cells can
differentiate into various effector cell subsets with specialized
functions. Tregs show strong plasticity allowing the func-
tional adaptation to various physiological and pathological
environments during immune responses [47]. TLR signaling
is involved in T cell population regulation [16, 48]. After
inhibiting the TLR2 pathway, the differentiation of Tregs
from CD4+ T cells promoted by A. fumigatus stimulation
decreased (Figure 4(d)). It suggests that TLR2-mediated sig-
nals are crucial for the generation of Treg cells. The present
data prompt that A. fumigatus infection induced the prolifer-
ation of CD4+CD25+Foxp3+ Tregs via the activation of the
TLR2 pathway.

A. fumigatus produces an abundance of spores, which are
able to activate multiple inflammasomes [49]. It can lead to
the host’s inflammasome activation, causing the activation
of the pyroptosis pathway [50]. Evidence suggests that fungal
DNA, spores, and cell wall-associated polysaccharides are
recognized by inflammasome sensors [51, 52], which often
leads to activation of a cytosolic macromolecular signaling
platform that mediates the release of the proinflammatory
cytokines IL-1 and IL-18 and cleavage of the pore-forming
protein Gasdermin-D (GSDMD). Pyroptosis is a highly pro-
inflammatory event because the proform of IL-1β is proc-
essed by inflammasome-dependent caspase-1 activation
and released during cell death [53]. In previous studies,
immunocompetent WT mice and mice lacking the inflam-
masome components like NLRP3 or absent in melanoma
2(AIM2) do not succumb to infection with A. fumigatus
[51]. Our research selected A. fumigatus to infect WT and
TLR2−/− mice, with immunocompetence. Then, we found
that the expression of GSDMD, IL-1α, and IL-1β increased
in WT mice after lung infection of A. fumigatus (Figure 5).
The NLRP3 inflammasome in monocytes is stimulated by
A. fumigatus, and hyphae upregulate pro-IL-1β expression
and induce IL-1β secretion in human monocytes [49]. Stud-
ies showed that the expression of NLRP3 was increased in
lung tissue from patients with allergic bronchopulmonary
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Figure 4: TLR2 affects the proliferation of CD4+CD25+Foxp3+ Treg in lung injury caused by Aspergillus fumigatus. (a) CD4+CD25+ T cells
and CD4+CD25+Foxp3+ Tregs in the spleen were detected by flowcytometry, and the proportions were analyzed by FlowJo10 as prior
described in Section 2. Reduced CD4+CD25+ T cell and CD4+CD25+Foxp3+ Treg proportion significantly in the spleen of A. fumigatus
infection TLR2−/− mice (n = 5/group). (b) Foxp3 mRNA levels in the lungs were measured with qRT-PCR (n = 3/group). (c) The
expression of Foxp3 protein in lungs of C57BL/6 mice and TLR2−/− mice was infected with A. fumigatus for 3 days which was detected by
Western blot and analyzed by imager systems described in Section 2 (n = 3/group). CD4+ T cells were sorted from the spleens of wild-type
C57BL/6 mice and cultured. Tregs were detected by flow cytometry on day 3 and analyzed by FlowJo10. (d) CD4+ T lymphocytes
differentiated fewer CD4+CD25+ T cells and CD4+CD25+Foxp3+ Tregs after treatment with C29. In each group, n = 5; three replicate
experiments were performed three times. ns: not significant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 by the one-way
ANOVA and the two-way ANOVA followed by the Tukey post hoc test. Error bars represent SEM.
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aspergillosis (ABPA) [54]. And inflammasome-mediated
IL-1β secretion requires some steps, including the engage-
ment of TLR signaling via proinflammatory stimuli,
induction the proform of cytokines, and activation of the
inflammasome promoting mature cytokine processing [41].
IL-1β mRNA was partially reduced in TLR2−/− compared
with WT macrophages during C. difficile infection [55]. H.
pylori activates the inflammasome in a TLR2- and NLRP3-
dependent manner, and H. pylori benefits from inflamma-
some activation, which ensures persistent infection [56]. In
TLR2−/− mice, the pyrolysis-related proteins (GSDMD, IL-1α,
and IL-1β) upregulated, which showed the immunocompe-
tence in the infection of A. fumigatus. But they were decreased
after the infection of A. fumigatus, compared with WT mice
(Figure 5). Although the intracellular receptor that engages
inflammasome activation and the physiological function of
the inflammasomes in response to A. fumigatus infection
remain to be elucidated, our results provided preliminary evi-
dence to suggest that TRL2 plays a role in GSDMD-
dependent pyrolysis of the lung after A. fumigatus infection
partially.

5. Conclusion

Susceptibility to A. fumigatus is associated with the quantity
of CD4+CD25+Foxp3+ Tregs in TLR2 knockout animals.
The infection leads to the proliferation and differentiation
of CD4+CD25+Foxp3+ Tregs via the activation of the TLR2
pathway. It is a potential mechanism to evade host defense
in A. fumigatus infection of the lung. And this effect can reg-

ulate GSDMD-dependent pyroptosis and may involve TRL2
signals partially.
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Figure 5: TRL2 signaling involves GSDMD-dependent pyroptosis in Aspergillus fumigatus. The expression of GSDMD, IL-1α, and IL-1β
protein in lungs was detected by Western blot and analyzed by imager systems described in Section 2 (n = 3/group). ns: not
significant; ∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001 by two-way ANOVA followed by the Tukey post hoc test comparing
the WT, WT+ A:f :, and TLR2−/−, TLR2−/− + A:f : groups. Error bars represent SEM.
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