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Abstract

Alpha satellite domains that currently function as centromeres of human chromosomes are flanked by layers of older alpha
satellite, thought to contain dead centromeres of primate progenitors, which lost their function and the ability to
homogenize satellite repeats, upon appearance of a new centromere. Using cladistic analysis of alpha satellite monomers,
we elucidated complete layer patterns on chromosomes 8, 17, and X and related them to each other and to primate alpha
satellites. We show that discrete and chronologically ordered alpha satellite layers are partially symmetrical around an active
centromere and their succession is partially shared in non-homologous chromosomes. The layer structure forms a visual
representation of the human evolutionary lineage with layers corresponding to ancestors of living primates and to entirely
fossil taxa. Surprisingly, phylogenetic comparisons suggest that alpha satellite arrays went through periods of unusual
hypermutability after they became ‘‘dead’’ centromeres. The layer structure supports a model of centromere evolution
where new variants of a satellite repeat expanded periodically in the genome by rounds of inter-chromosomal transfer/
amplification. Each wave of expansion covered all or many chromosomes and corresponded to a new primate taxon.
Complete elucidation of the alpha satellite phylogenetic record would give a unique opportunity to number and locate the
positions of major extinct taxa in relation to human ancestors shared with extant primates. If applicable to other satellites in
non-primate taxa, analysis of centromeric layers could become an invaluable tool for phylogenetic studies.
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Introduction

Active human centromeres are made of great ape-specific alpha

satellite DNA (AS), comprised of ,171 bp tandem monomers

forming nearly identical higher order repeats (HORs) and

represented by the ‘‘new’’ suprachromosomal families (SFs) 1, 2

and 3. They are surrounded by much less homogeneous HOR-free

‘‘monomeric’’ AS (SF4 and SF5) often disrupted by transposon

insertions [1,2]. SF4 is usually composed of a single M1 class of

monomers with no evidence of higher-order periodicities. SF5 is

formed by two types of monomers, R1 and R2, alternating

irregularly. R2 is similar to M1 (class A), and R1 represents the first

appearance of novel class B monomers, which bind CENP-B

protein and presumably have invaded the A-arrays before the great

ape divergence [1]. High identity and high copy number of HORs

are presumably maintained by an active process called homogeni-

zation, which is driven by homologous recombination mechanisms

such as unequal crossover and/or gene conversion. The monomeric

AS is older than the HOR arrays and resembles AS of lower

primates [1]. Divergence patterns and transposon distribution

suggest that the ‘‘old’’ domains were once homogenous, but at some

point homogenization had stopped and accumulation of sequence

divergence and of transposable elements commenced [2]. Thus, old

AS arrays are likely the remnants of the centromeres of our primate

phylogenetic ancestors, once active and homogenous, but obsolete

and degrading since centromeric function and homogenization

have shifted to the new AS [1,2]. Furthermore, analysis of the

human X chromosome short arm (Xp) pericentromeric region, the

first one sequenced in its entirety, has revealed an age gradient, with

most distal Xp AS domain dating to early primate evolution, the

HOR domain to the time of great ape divergence and the domains

in between being of interim age [3,4]. Assuming that the succession

of AS layers on the long arm (Xq) side is symmetrical, it was

proposed that the primate X chromosome centromere ‘‘evolved

through repeated expansion events involving the central functional

AS domain, such that ancestral centromeric sequences were split

and displaced distally onto each arm’’ [4].

Previously, we proposed the existence of a kinetochore-

associated recombination machine (KARM) that homogenizes

only the active centromere, a model that accounts well for the

above observations [1,2]. Accumulating evidence suggests that

topoisomerase II, a DNA decatenating enzyme, is an important

part of this machine. In mitosis, it resides in the kinetochore [5–7]

and plays a crucial role in resolution of the recently discovered

chromatin PICH threads that connect chromatid centromeres [8–

12]. The enzyme introduces double strand breaks into human AS

arrays [13–15], and in dicentric chromosomes its activity is

observed only in the active centromere [16]. As topoisomerase II

breaks are known to initiate homologous recombination [17–19],

the enzyme is a likely candidate for KARM function.
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Here we present a complete analysis of AS layers of

chromosomes 8, 17 and X and for the first time provide

comprehensive comparisons of the entire layer patterns on both

arms of one chromosome and between different chromosomes. As

expected, the succession of multiple layers appears to be largely

symmetrical around the centromere. More surprisingly, the layer

structure is to a large extent shared between non-homologous

chromosomes, supporting a model of genome-wide expansion

events that give rise to new centromeres on many chromosomes

within an evolutionary short period of time. Primate comparisons

reveal that each major taxon in the human lineage corresponds to

a separate ‘‘suprachromosomal’’ centromeric layer, providing a

complete record of human ancestry. Comparisons of inter- and

intra-species divergence within a layer suggest that, after relocation

of the centromere, the dead arrays experienced an unusual burst of

mutability. Highly informative structure and their potential role in

‘‘centromeric speciation’’ [20,21] should make centromeric layers

extremely useful for phylogenetic analysis.

Results

Analysis of AS in chromosomes 8, 17, and X
In human chromosomes 8, 17 and X the pericentromeric

regions of both chromosome arms have been sequenced almost

completely, starting from the surrounding euchromatic regions

and into the HOR arrays that constitute current centromeres. We

used the genomic builds of these chromosomes (see Table S1 for

reference sequences) to identify and extract all AS monomers and

analyzed them using a cladistic approach [3,4,22–24] based on

construction of monomeric phylogenetic trees (Figure 1; see Text

S1 for details). This resulted in identification of a number of

distinct AS domains in each centromere (listed in Table 1 and

shown in different colors in Figure 2). The main criteria to assign

differently located arrays to the same-color suprachromosomal

layer was their structural similarity and ability to ‘‘mix well’’ on

phylogenetic trees with each other, but not with the other layers.

Our results do not contradict previous partial analysis of AS on

these chromosomes [3,4,24] and throughout the genome [1,2].

However, a few important new features were noted (Table 1 and

Text S1) and the entire complex pattern of AS relationships was

revealed for the first time.

Figure 2 shows that same-color AS layers are shared by both arms

of one chromosome, as well as by three different chromosomes.

However, two solitary domains, grey (H4) and olive-green (H1H2),

were observed. To find out if the counterparts of solitary domains

were present elsewhere in the genome, we scanned the databases

and found the arrays of sequences that mix well (Table S2 and Text

S1) on chromosomes 1, 3, 4, 5 and 18 (grey) and 5 and 7 (olive-

green). The yellow and blue layers corresponded to previously

characterized SF4 (M1) and SF5 (R1R2), respectively [25,26] (see

Table 1 and Text S1). The genome-wide distribution of these

families was documented previously [1], with additional examples

provided in Table S6. The fact that same-color arrays from different

chromosomes mix on phylogenetic trees (Figure 1C) confirms that,

contrary to the new AS, the old AS had no chromosomal specificity

and was homogenized genome-wide [1,22] within a ‘‘suprachro-

mosomal’’ layer.

The layers identified in Figure 2 showed no significant mixing

with each other on phylogenetic trees (Figure 1). However, within

some layers two or more closely related sub-domains could be

discriminated (Figures S1 and S2). These sub-layers mixed with

each other to some extent (Figure S3) and thus could not be

formally identified as individual layers within the framework of this

study. The nature and significance of this finer structure deserve

further investigation (see Text S1 for details and discussion).

The layer pattern depicted in Figure 2 shows the structures

partially symmetrical around the current centromere with most of

the layers being shared between chromosomes. Same-color

domains on different sides of the centromere mix well on

phylogenetic trees (Figure 1B). This confirms that in many cases

a new centromere arises in the midst of the old one, by

amplification of a new AS variant, and moves the remnants of

the old centromere sideways. However, emergence of evolutionary

new centromeres [27,28] and chromosomal rearrangements may

predictably cause partial asymmetry. The same layers on different

chromosomes combined with structural discontinuity in the

succession of layers (e.g. monomeric – dimeric – monomeric)

prove that the sequences seeding new centromeres were not picked

up independently on each chromosome, but rather have spread by

rounds of interchromosomal exchange and subsequent amplifica-

tion, as was shown previously for the new AS families [1,29,30].

An alternative scenario of genome-wide homogenization with

occasional exclusion of some domains or their parts is detailed in

the ‘‘Discussion’’ section. Such a scenario would not support

structural discontinuity and frequent symmetry and, therefore,

cannot be solely responsible for the patterns described. However, it

could explain the sub-layers noted above.

Interpretation of the layer structure proposed above allows a

number of predictions. Hence, we moved on to verify it by

phylogenetic, transposon distribution and divergence pattern

analyses.

The search for the last common human/primate AS
layers

One would expect the extant primate taxa to share a certain

number of ancestral layers with humans in a collinear succession up

to the layer corresponding to the last common ancestor of humans

and this particular primate. Ancestral layers may be followed by

some primate-specific ones, corresponding to evolution of a primate

branch after divergence from the human lineage. As this prediction

is a particularly valuable tool in the hands of molecular

Author Summary

The primate centromere evolves by amplification of alpha
satellite sequences in its inner core, which expands and
moves the peripheral sequences sideways, forming layers
of different age in the ‘‘pericentromeric’’ area. The
expanding centromere model poses two main questions:
(1) whether the succession of layers is symmetrical on both
sides of the centromere, and (2) whether different
chromosomes share the same layers. We have analyzed
and dated the layers on both sides of human chromo-
somes 8, 17, and X and shown that they were largely
symmetrical on one chromosome and largely shared and
arranged similarly in non-homologous chromosomes. The
layer pattern revealed that genome-wide waves of
expansion of new satellite variants have occurred repeat-
edly in the human evolutionary lineage. The layers which
are likely to be the relic centromeres of our common
ancestors with primate taxa follow each other in chrono-
logical order. The two layers that do not match any living
primate indicate the two completely extinct ancestral taxa
aged 26–40 and 18–23 million years. These could be
Propliopithecidae (Cathopitecus and Egyptopithecus) and
Pliopithecidae (Proconsul), aged 33–35 and 17–27 million
years, respectively. The possibility to reveal and date
extinct ancestors makes the analysis of satellite layers a
unique tool for the reconstruction of primate phylogeny.

The Origin of Man Is Written in Centromeres
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Figure 1. Phylogenetic trees of AS monomers in human chromosomes 8, 17, and X. Each terminal branch represents an AS monomer. The
major branches marked by colored arches correspond to colored AS arrays in Figure 2 and monomeric types in Table 1. The positions of runaway
monomers that appear in a ‘‘wrong’’ cluster are indicated by dots (1–3 monomers) or squares (4–15 monomers). (A) 1,434 monomers of Xp
pericentromeric region plus W1–W5 consensus monomers representing the current SF3 centromere (indicated by arrows, cluster with R1R2). ‘‘Old’’
clades are highlighted by a grey box. All other clades belong to the ‘‘ancient’’ group. The 171 bp AS clade is indicated by an open arch. Branches formed
by R1 and R2 monomers are indicated. (B) Monomers of Xq pericentromeric region were added to those shown in (A) (2,516 monomers total). Xp
monomers are shown in black and Xq monomers in khaki. No major new clades appear. Grey, olive, and green clades are Xp-specific, except for a few
runaway monomers. In blue, yellow, and yellow-striped branches, the monomers from both arms of X chromosome are well-mixed. (C) Phylogenetic tree
of the red, yellow-striped, and yellow monomers from chromosomes 8, 17, and X (2,588 monomers). Due to a large number of red monomers in
chromosome 8, every 5th 8p and every 4th 8q red monomer were taken into analysis. Monomers from different chromosomes (black, blue, and purple for
8, 17, and X, respectively) mix well on the tree. Subclades in the red branch are indicated by letters B, C, J, and G above the red arch.
doi:10.1371/journal.pgen.1000641.g001

The Origin of Man Is Written in Centromeres
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anthropologists, we tested it by demonstrating the human lineage

layers identified in this work in the genomes of various primate

species. Samples of each layer were used to identify the most closely

related sequences in the incomplete builds and collections of

shotgun primate sequences in the GenBank. The AS monomers

were extracted and aligned and phylogenetic trees constructed

independently of human sequences. Consensus monomers of the

branches were matched to consensus monomers of human layers

and ‘‘mixing tests’’ were occasionally performed to verify the

identity of the layers. As expected, each primate genome contained

counterparts to some human lineage layers as well as the sequences

specific for a particular primate branch. The results are summarized

below and in Table 2, reference sequences are listed in Table S6.

Notably, we failed to find any AS among abundant genomic

sequences available for lemurs and tarsiers (not shown). Only grey

layer (H4) sequences were found in the genome of a New World

monkey (NWM) Callithrix jacchus, along with NWM-specific AS

including S3S4 satellite [1]. The Old World monkeys (OWM) had

grey (H4), red (H3) and olive-green (H1H2) layers plus a number

of OWM-specific satellites including the one based on S1 and S2

types [1]. Therefore, we concluded that the grey layer belonged to

an ancestor that pre-dated the NWM/OWM separation while the

red and olive-green layers originated later, but were already

present in a common ancestor of humans and OWM. Addition-

ally, the yellow-striped (V1) and yellow (M1) layers, but no newer

types, were found in gibbons. This indicated the existence of at

least 2 entirely extinct taxa in the human lineage, the one with

‘‘red’’ (H3) centromeres between NWM and OWM, and the one

with ‘‘yellow-striped’’ (V1) centromeres between OWM and

gibbon ancestors. Recent analysis of HOR-like AS in gibbons

[22] and our preliminary data (see Table S6 and Text S1) indicate

the abundance of yellow-derived (M1) gibbon-specific AS

sequences. In orangutans, the blue layer (R1R2) was present

together with a number of the blue-derived orangutan-specific

families composed of R1R2 dimers and longer HOR-like R1/R2

repeats (Table S6 and Text S1).

Contrary to expectations based on the old hybridization data [1],

after an extensive search (over 11.4 Gb of WGS sequences screened),

Figure 2. Alpha satellite layers in human chromosomes 8, 17, and X. Each colored domain represents an AS array composed of monomers
that belong to the same branch on phylogenetic trees shown in Figure 1. Chromosome domains and the arches marking different branches are in the
same colors in Figures 1 and 2. Colored layers are partially symmetrical around the centromere on one chromosome and partially shared between
different chromosomes. The p and q arms of the chromosomes are indicated. The diagonally crossed white and light blue central boxes represent the
new AS HOR domains, which form current centromeres. They are shown not to scale. For chromosome 17, we show the presumed organization of
the HOR domain. The central D17Z1 16-mer HOR array is flanked by two homogenous 14-mer HOR arrays, D17Z1-B on the p arm [24], and a distinct
one termed D17Z1-C on the q arm (see Text S1 for details).
doi:10.1371/journal.pgen.1000641.g002

Table 1. Structural features in dead AS layers.

Layer Monomer length (bp) Monomer types* Arrangement Age group**

Blue 171 R1 (B), R2 (A) irregular old

Yellow 171 M1 (A) monomeric old

Yellow-striped 172 V1 (A) monomeric old

Olive-green 172 H1 (A), H2 (A) dimeric ancient

Red 172 H3 (A) monomeric ancient

Grey 172 H4 (A) monomeric ancient

*The monomer types for blue and yellow layers were assigned previously [25,26], and for the rest of the layers, in this paper. Division of AS into pure A type and AB type
was introduced previously [1,26].

**Division of the old AS into ‘‘old’’ and ‘‘ancient’’ groups is introduced in this paper as a result of primate and cladistic analysis.
doi:10.1371/journal.pgen.1000641.t001

The Origin of Man Is Written in Centromeres

PLoS Genetics | www.plosgenetics.org 4 September 2009 | Volume 5 | Issue 9 | e1000641



we failed to find new SFs in orangutans. Thus, the new AS is, in fact,

specific to African apes, not great apes, as it was supposed previously.

As expected, in gorilla and chimpanzee genomes, all the above layers

plus the three new SFs 1, 2 and 3 were present (not shown, see Table

S6 for reference sequences). As described above, certain types of AS

sequences that were absent in some primate WGS reads were readily

detectable in WGS collections of other primates. However, the

conclusions based on the absence of findings should be treated with

some degree of caution, as it is possible that the WGS reads were not

comprehensive.

L1 dating
To get another estimate of the age of AS layers identified in this

work, we typed L1 retroposons integrated therein, as described

previously [2–4]. The age of the oldest L1 elements found in an

AS layer would indicate the time when it stopped homogenization

and became available for insertions [2]. Table 2 (see also Table S3

and Text S1 for details) shows that the oldest L1 elements were

identified as follows: PA3 in the blue layer; PA3 and just one PA4

in the yellow; PA4 in the yellow-striped; mostly PA4 and just two

copies of PA5 in the olive-green layer. PA5 was the oldest L1

repeat in the red layer and PA7 in the grey (numerical number of

L1 family increases with age [31]).

In order to relate these results to living primates’ phylogeny we

scored the L1 elements in the genomes of various primates looking

for the elements active at the time of divergence of respective taxon

with human lineage. In each genome the youngest major L1 repeat

shared with humans was identified as follows: PB3 and PA15 (were

active simultaneously [31]) for lemurs; PA8 for tarsiers; PA6 for

NWM and PA5 for OWM. Gibbons had just a few PA3 and

abundant PA4, orangutans had abundant PA3, gorillas and

chimpanzees had abundant PA2 (Table 2 and Table S4).

Superimposing the above two sets of data, it can be concluded

that the blue layer was already available for insertion shortly after

orangutan divergence (PA3 was still active). The yellow layer,

which was exposed to only a residual PA4 activity, if any, and a lot

of PA3 activity, started to accumulate L1s between gibbon and

orangutan divergence from the human lineage. The yellow-striped

layer got its oldest L1s way after OWM divergence (PA4 is

abundant) and the olive-green layer right before or right after that,

as it still had PA5 activity. The red layer belonged to a more

distant OWM - human ancestor (PA5 abundant) and the grey one

to a common ancestor of OWM and NWM (PA7 present). The

age of the layers may be roughly estimated as follows: new AS

7 myr, blue (R1R2) 14–16 myr, yellow (M1) 16–18 myr, yellow-

striped (V1) 18–23 myr, olive-green (H1H2) 23–26 myr, red (H3)

26–40 myr, grey (H4) 40–58 myr.

As a temporary classification (see Table 1), we propose: (i) To

term the AS forming centromeres of monkeys in human lineage

‘‘ancient AS’’ (types H1–H4; without suprachromosomal family

names), (ii) to keep the term ‘‘old AS’’ only for lower ape layers,

namely V1 (yellow-striped; SF6), M1 (yellow; SF4) and R1R2

(blue; SF5) and, (iv) to apply the term ‘‘new AS’’ to African ape-

specific SFs 1, 2, and 3 [1] (see Text S1 for details).

Divergence analysis in AS domains
It is expected that the closer the layer is to a current centromere

the younger it is and the less is the divergence between monomers

(or dimers) within the array. Table 3 shows that in all cases the

pattern of divergence does not contradict this prediction.

Divergence figures for same-color domains on one chromosome

and on different chromosomes are in remarkable concordance.

We next tested if the divergence in each layer would match its

proposed age. Orthologous comparisons of the grey (H4) domains

from a number of primate species [4,24] (Table S5) yield a

‘‘normal’’ mutation rate of about 0.2% per million years (0.17%–

0.21%; see Text S1), similar to surrounding euchromatin [4,24]

and L1 repeats [31]. However, the age of the layers calculated

from intra-array divergence figures, using this rate, clearly

contradicts our primate and L1 dating (Table 4). This ‘‘calculated

age’’ is about twice as old and out of line with all accepted taxon

age estimates [32]. Conversely, mutation rate calculated using

intra-array divergence and the age of layers estimated from

primate and L1 dating, ranges 0.4%–0.6% and is 2 to 3 times

higher than normal. To explain this discrepancy we propose that a

period of hypermutability occurs in homogeneous AS array after

the centromere moves away and homogenization stops. The high

mutation rate may somehow be caused or conditioned by near

perfect identity of centromeric repeats and gradually subsides

upon accumulation of mutations and repeat divergence. The

normal rate applies only to the ‘‘long dead’’ arrays. The high rate

applies to the ‘‘hypermutability’’ stage (‘‘freshly abandoned’’

centromeres) and possibly to the ‘‘homogeneous’’ stage of array

evolution (active centromeres). In the latter case, it may drive the

rapid concerted evolution of homogenous HOR domains [24].

Hypermutability may be caused by low fidelity DNA synthesis, if

secondary structures in AT-rich satellite or high density of

replication origins [33] cause fork stalling and trigger repair

mechanisms using error-prone DNA polymerases [34] (see Text

S1 for more details).

Table 2. Search for human AS layers in various primates.

Primate
Grey H4
(PA7), 40 myr

Red H3
(PA5), 26 myr

Olive-green H1H2
(PA4/PA5), 23–26 myr

Yellow-striped V1
(PA4), 23 myr

Yellow M1
(PA3/PA4), 16–23 myr

Blue R1R2
(PA3), 16 myr NEW

Tarsier (PA8), 58 myr

C.jacchus, NWMs (PA7), 40 myr +

M. mulatta, OWMs (PA5), 25 myr + + +

Gibbon, apes (PA4), 18 myr + + + + +

Orangutan, great apes (PA3), 14 myr + + + + + +

Gorilla, African apes (PA2), 7 myr + + + + + + +

In the ‘‘Primate’’ column after the name of the primate and/or primate group, the youngest major L1 repeat shared with humans (in parentheses; our data) and the
proposed age of the taxon [32] in million years (myr) are indicated. In other columns, the AS layer, the oldest L1 repeat found in the layer (in parentheses; our data), and
the age of this L1 repeat estimated using mutation rate of 0.216% per myr [31] are indicated. In the new HOR arrays, L1 repeats are not present in significant numbers [2].
The presence of AS layers in certain species is indicated by ‘‘+’’.
doi:10.1371/journal.pgen.1000641.t002

The Origin of Man Is Written in Centromeres
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Discussion

The origin of species is written in centromeres
The record of human evolutionary lineage revealed in the

centromeres appears to be relatively consistent and easy to interpret.

There is remarkable concordance between primate studies, L1

dating and divergence grading. However, our conclusions have to

be verified further upon availability of more comprehensive primate

sequencing data. Notably, living primates faithfully represent the

succession of major taxa in the human lineage. The only two

entirely extinct taxa are represented by red (H3) and yellow-striped

(V1) layers. The controversial fossil record [32,35] offers at least

three candidate extinct families: Propliopithecidae (Catopithecus

and Aegyptopithecus; 33–35 myr), Pliopithecidae (Proconsul; 17–

27 myr) and Dryopithecidae (Dryopithecus; 9–14 myr). The first

two match the red (26–40 myr) and yellow-striped (18–23 myr)

layers pretty well and the third is not supported by a separate AS

layer, which may mean it is a sister clade of either African apes or

Pongidae (orangutan family). The exact positions of extinct taxa in

human lineage are hotly debated [35] and comprehensive analysis

of AS layers in extant primates and man would help to resolve this

problem. The possibility to number and locate the extinct ancestral

taxa on the evolutionary tree and to distinguish the ancestor from

the descendant even in two-species comparisons is unique to the AS

record. As there is every reason to believe that centromeric layers

are not limited to AS and primates, the method has vast potential for

phylogenetic studies.

Table 3. Average identity of monomers in AS layers.

Layer/chromosome Grey H4 Red H3 Olive H1 Green H2 Yellow-striped V1 Yellow M1

Xp 0.711 0.733 0.785 0.790 0.818 0.845

0.043 0.046 0.038 0.038 0.033 0.038

292 194 301 282 288 28

Xq 0.737 0.812 0.833

0.040 0.038 0.024

468 85 88

0.837

0.023

136

8p 0.732

0.039

1566*

8q 0.725 0.812

0.040 0.035

1238* 76

17p 0.730 0.803

0.042 0.039

168 101

0.723

0.045

143

17q 0.723 0.850

0.045 0.046

167 23

Mean within a monomer type (%) 71 73 79 79 81 84

Mean between monomer types (%) 66 67 70 70 72 69

The mean identity of monomers in pairwise comparisons within each array (upper line), standard deviation (middle line), and the number of monomers are indicated for
each AS layer, as depicted in Figure 2. In cases where two domains of the same color are present on one chromosome arm, figures for both of them are presented
separately; multiple red arrays in 8q are presented summarily. In cases marked by an asterisk, only 1,000 monomers were used in comparisons. In the two bottom lines,
the mean of each column representing the identity across a whole layer and the mean identity obtained in ‘‘between layers’’ comparisons (this layer to all the others)
are presented. It can be seen that the intra-array divergence and hence the age of the arrays decrease towards the centromere.
doi:10.1371/journal.pgen.1000641.t003

Table 4. Age of AS layers calculated by different methods.

Layer
‘‘Calculated age’’ by array
divergence (myr)

Age by primate & L1
dating (myr)

Grey (H4) 92 40–58

Red (H3) 84 26–40

Olive-green (H1H2) 62 23–26

Yellow-striped (V1) 55 18–23

Yellow (M1) 45 16–18

The ‘‘mock’’ age estimates calculated from intra-array divergence on the basis
of 0.2% mutation rate are compared to ‘‘valid’’ estimates obtained from L1 and
primate dating. The age calculated from the divergence figures is about twice
as old as provided by other estimates.
doi:10.1371/journal.pgen.1000641.t004

The Origin of Man Is Written in Centromeres
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Mechanistic scenarios of AS evolution
Figure 2 displays imperfect symmetry of AS layers around the

current centromere. One can potentially explain it in two different

ways. The process creating layers can be asymmetrical in nature,

and the elements of symmetry may appear randomly as a matter of

coincidence. Alternatively, the process may be intrinsically

symmetrical, but the symmetry is imperfect for a number of

random historical reasons like formation of evolutionary new

centromeres, chromosomal rearrangements, etc.

A possible scenario for the asymmetrical process would be

continuous genome-wide homogenization and concerted evolution

of active centromeres, identical on all chromosomes. From time to

time for various reasons (inversion, insertion of a long mobile element,

amplification of another tandem repeat, etc.) parts of individual

arrays get cut off the bulk of the array and hence are excluded from

homogenization (a ‘‘segment cut off scenario’’). As KARM

presumably brings efficient homogenization only to the current

centromere, and only one centromere per chromosome can be

maintained, the cut off part looses both homogenization and

centromeric function and becomes a dead segment. An epigenetic

mark [20] is likely to be involved in the stable choosing of only one of

the segments as a centromere, in this scenario. If two segments on

both arms of one chromosome die at about the same time, they would

form a symmetrical structure. Dead segments in different chromo-

somes, excluded from homogenization at the same time, would form

a ‘‘same-color’’ suprachromosomal layer. However, such coincidenc-

es and hence the elements of symmetry should be rare. Also,

structurally discontinuous patterns like a succession of monomeric –

dimeric – monomeric layers are hardly possible. Therefore, this

process cannot be solely responsible for centromeric evolution.

A mechanism for the symmetrical process was described as the

only one possible for the new chromosome-specific SFs [1,29,30],

which are represented by structurally different HORs on each

chromosome. It includes a series of interchromosomal transfers and

amplification events, facilitated, as we propose, by KARM, which is

also responsible for homogenization (‘‘interchromosomal transfer/

amplification scenario’’). In most cases, new variants come from

another location, insert into the active centromere, split and

inactivate it by luring the kinetochore to the new array and move

the remains sideways as a result of self-expansion. Potentially, this

process could be solely responsible for the layer pattern revealed in

chromosomes 8, 17 and X. However, depending on the extent of

symmetry and interchromosomal similarity of the layer patterns in

the rest of the genome, some combination of the two scenarios may

appear to be parsimonious. Notably, in this work we studied only

the centromeres with SF2 (chromosome 8) and SF3 (chromosomes

17 and X) HOR domains. However, our unpublished preliminary

results show that SF1 centromeres are flanked by the same types of

old and ancient AS sequences (see chromosome 7 sequences in

Tables S3 and S6).

Each new expansion of an AS variant covered many chromo-

somes and occurred in a relatively short time, as the order of layers is

more or less conserved between chromosomes. Obviously, an

expanding variant had to possess some sequence novelty, which

attracted the kinetochore [1,36]. For instance, a new or better fitting

protein-binding site might make a satellite repeat a more attractive

centromere, as may be exemplified by evolutionarily recent

recruitment of CENP-B protein to primate centromeres

[26,37,38]. Initially new sequence variants may arise in poorly

homogenized areas such as dead segments, borders of current

centromeric arrays, etc. A successful variant has to accidentally insert

into a current centromere, win over the kinetochore and self-expand.

Apparently, once such ‘‘better’’ centromeric sequence appeares on

one chromosome, it has a good chance to invade other chromosomes

very quickly. Together with the tendency of a new variant to

integrate/amplify in the current centromere, not in the old layers, it

suggests that KARM may take part in interchromosomal transfer

and/or integration and amplification in new locations. When a

neocentromere is formed on unique DNA, KARM may be used to

seed and amplify centromeric repeats at the new site. It is also likely

that only a sequence integrated in the current centromere may easily

acquire the centromeric epigenetic mark [20]. Additional details of

specific scenarios are provided in Text S1.

Centromere plasticity
The centromere is remarkable for its plasticity. Centromeric

DNA and proteins are subject to phylogenetic variation very much

unlike other components of chromatin and cell division machinery

[21]. Here we show that constant generation of new AS variants

and perhaps their competition for centromeric function resulted in

serial waves of AS expansion in the course of primate evolution.

Each wave led to emergence of new underlying sequences in active

centromeres of many chromosomes. It was demonstrated

previously that in the genomes of monkeys, A-type AS, as a rule,

is the same in all chromosomes and hence is homogenized

throughout the whole genome [1,22]. On the contrary, the new

AB-type AS which is present in the genomes of African apes is

chromosome-specific and, as a rule, is effectively homogenized

only within one chromosome. According to our model, an AS

layer unites the arrays which (i) have a common origin, (ii) were

active centromeres at the same time, and (iii) at that time were

homogenized throughout the genome as a single entity. Points i

and ii are also valid for the new SFs, but point 3 is not, otherwise

SFs and AS layers are the same. This difference reflects a shift

from genome-wide to chromosome-specific homogenization.

Centromeric function per se can be performed by unique

sequences as exemplified by neocentromeres [27,39] and the

centromeres of budding yeast [40]. However, natural centromeres

of all higher organisms are made of highly repeated sequences,

hinting perhaps at some additional function. Two such functions,

not mutually exclusive and perhaps even interrelated, have been

discussed. Cohesion of centromeres, tension sensing and signalling

to the spindle assembly checkpoint, may be provided by the

formation and resolution of PICH threads [8–12]. If PICH

threads are formed by recombination intermediates, they may just

show the proposed kinetochore-associated recombination machine

(KARM) at work. Vast satellite arrays provide phenotypically

silent DNA to form the threads, which, therefore, are indifferent to

breakage, occasional erroneous repair, etc. On the other hand, the

features of primate highly repeated centromeres, such as (i) tandem

structure prone to recombination, (ii) putative possession of its own

recombination machine, (iii) presence of a divergent dead zone

that provides a good source of new sequence variants, and finally

(iv) alleged propensity to go through hypermutability periods, seem

to constitute a special ‘‘plasticity’’ adaptation evolved to ensure

that from time to time a new centromere would arise in a

stochastic manner. The concept of centromeric speciation [21]

speculates on possible evolutionary benefit of such an adaptation.

It suggests that centromere plasticity may play a role in generation

of new species by providing partial reproductive isolation of a

karyological variant with a new centromeric layer. Establishment

and separation of incipient species may proceed via mechanisms

described for other types of chromosomal speciation [41].

Materials and Methods

The NCBI website (www.ncbi.nlm.nih.gov/) was used to extract

human centromeric regions and the BLAST server (www.ncbi.
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nlm.nih.gov/blast/Blast.cgi) to search for AS-containing human

and primate clones and WGS reads. AS monomers were identified

by PERCON similarity search [2], extracted and classed into

monomeric types and SFs by a Bayesian classifier [2] and aligned

by CLUSTALW [42]. After manual inspection, a small number of

evidently abnormal monomers were discarded. Phylogenetic trees

were constructed using the PHYLIP 3.65 package (http://

evolution.genetics.washington.edu/phylip.html). DNA distance

matrix was calculated using the F84 method and trees were

constructed by UPGMA and neighbor-joining methods. Similar

neighbor-joining trees were obtained with the MEGA4 package

(www.megasoftware.net) using the same monomer sets, and most

major branches were verified by an interior branch test (.90%) in

500 replicates as described [4]. To identify a group of monomers

as distinct AS domain we used four main steps: (i) The ‘‘branching

test’’ shows that monomers are on the same branch of the

monomer phylogenetic tree and hence are closely related and have

presumably arisen by amplification of a single ancestral sequence;

(ii) the ‘‘compact residence test’’ verifies that all these closely

related monomers are concentrated in separate array(s) without

significant interspersion with monomers from other branches; (iii)

the ‘‘structural test’’ evaluates the divergence in the group,

reconstructs the ancestral sequence by derivation of an appropri-

ate group consensus and places it in AS classification by

establishing the relationships with other AS monomeric types.

(iv) Finally the ‘‘mixing test’’ shows that the monomers from

differently located domains mix on one branch of a monomer tree

and hence have arisen from a single ancestor and were once

homogenized as one entity (i.e. belong to one AS ‘‘layer’’). Layer-

specific AS sequences, in human and primate genomes, were

searched by using samples of layers as queries in a BLAST search

of human or primate NCBI databases, including WGS assemblies

and trace collections of shot-gun sequences. WGS reads

containing AS were used as such without any experimental

verification of their centromeric location.

Non-AS repeats were identified by RepeatMasker (www.

RepeatMasker.org). The same program was used for L1

classification.

Mutation rates were calculated using Jukes and Cantor formula

[43] (see Text S1).

Supporting Information

Figure S1 Schematic representation of Xp (A) and Xq (B)

pericentromeric regions. A colored map is presented in the bottom

part. The colors of AS arrays (thick line; changes of directionality

are indicated) correspond to the ones in Figures 1 and 2. In

addition, the orange (Xp) and lilac (Xq) subdomains within the red

layer and bright green (Xq) subdomain within the yellow-striped

layer are depicted in respective colors (see Text S1 and Figure S2).

Interspersed repeated elements are shown as light blue raised

boxes with directionality indicated by the slope. Other satellites are

indicated similarly by thick bands. Above the map, the mean

similarity to 12-mer DXZ1 HOR (diamonds) and relative

similarity to the ALPHA-ALL [26] consensus monomer (triangles)

are plotted. In the HOR similarity plot, each dot corresponds to a

monomer and shows mean similarity of 12-mer starting with this

monomer to DXZ1 HOR. There are gaps around inversion

breakpoints and insertions, because a continuous unidirectional

stretch of 12 AS monomers to the right of a given monomer is

needed to calculate each point in this plot. In HOR arrays (light

blue thick line), the pattern is periodic, and three levels of similarity

corresponding to three types of alignment can be seen: between

95% and 100% for ‘‘in register HOR’’ alignment, between 75%

and 80% for alignment of pentameric ancestral repeats within the

HOR, and between 70% and 75% for completely non-register

alignment. In non-HOR regions, similarity ranges from a little less

than 60% to a little over 75%, and each layer has a characteristic

range. Transition between HOR and monomeric region is abrupt

with only 1–2 divergent HORs on the border. In the ALPHA-ALL

similarity plot, relative similarity (rs) to ALPHA-ALL is shown for

each monomer as well as a smoothing curve (over 4 monomers).

Rs is calculated as alignment score divided by reward for a match

multiplied by the length of alignment, where alignment score is a

number of matches multiplied by reward for a match minus

number of gaps multiplied by gap opening penalty minus a

number of nucleotides in gaps multiplied by a penalty for gap

extension minus a number of mismatches multiplied by a penalty

for mismatch (i.e. affine scoring scheme was used). A periodic

pattern is seen in HOR arrays, and every dead layer is

characterized by its own level of similarity. The most notable is

the transition between old and ancient AS (olive-green/yellow-

striped border in Xp and yellow-striped/red in Xq). Rs.0.6

defines old arrays and rs,0.6 defines ancient arrays.

Found at: doi:10.1371/journal.pgen.1000641.s001 (0.36 MB TIF)

Figure S2 Alpha satellite sublayers in human chromosomes 8,

17, and X. Same as Figure 2, but orange (Xp and 8q) and lilac (Xq

and 17) sublayers within the red layer and bright green subdomain

within the yellow-striped layer (Xq) are depicted in respective

colors, as described in Text S1.

Found at: doi:10.1371/journal.pgen.1000641.s002 (0.29 MB TIF)

Figure S3 Sublayers in the red and yellow-striped layers from

chromosomes 8, 17, and X. Same phylogenetic tree as in

Figure 1C, but orange and lilac sublayers within the red layer

and bright green (Xq) subdomain within the yellow-striped

domain on Xq are depicted in respective colors, as described in

Text S1 and shown in Figure S2. The yellow monomers are shown

in yellow and the yellow-striped monomers are shown in brass

color.

Found at: doi:10.1371/journal.pgen.1000641.s003 (1.35 MB TIF)

Table S1 Position of AS regions on chromosomes X, 8, and 17

with respect to genomic contigs and build 36.2. ‘‘Start’’ is a start of

a contig or clone in build 36.2. ‘‘Length’’ is the length of a contig

or clone.

Found at: doi:10.1371/journal.pgen.1000641.s004 (0.05 MB

DOC)

Table S2 X chromosome AS layers are found in multiple

locations on human chromosomes. For clones from chromosomes

17 and X, see Table S1. Where other layers are present, the

regions referred to are indicated in parenthesis. *See also

additional sequences in Table S6.

Found at: doi:10.1371/journal.pgen.1000641.s005 (0.03 MB

DOC)

Table S3 Statistics of human L1 types in various AS layers. The

upper part of the table presents the data obtained for sequences

listed in Tables S1 and S2. For the layers underrepresented in this

sample, ‘‘ADDITIONAL’’ sequences were identified and scored

(human sequences listed in Table S6). The total length of the

sequences scored in each layer is indicated in the ‘‘Length’’

column in kb. In other columns the figures represent the number

of L1 repeats scored in each layer. The figures for the oldest major

L1 family present in respective AS layer are marked in boldface

and for the minor oldest family are underlined.

Found at: doi:10.1371/journal.pgen.1000641.s006 (0.06 MB

DOC)
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Table S4 Statistics of human L1 types in various primate

genomes. *PA1 or L1Hs is a human-specific L1 species. ** There

is no PA9 family, but PA8 and PA8A instead, which were treated

collectively for the purposes of this analysis, because they were

active simultaneously and their combined copy number about

equals that of other families; the copy number of PA2, 6, and 10 is

about twice as little [31]. Bold and underline: The figures for the

youngest major family which was active in the genome of

respective primate species are marked in boldface and for the

minor youngest family are underlined. 1–3 copies were considered

as possible classification mistakes or rare recombination events.

Found at: doi:10.1371/journal.pgen.1000641.s007 (0.03 MB

DOC)

Table S5 Similarity between 3 kb of the most distal part of the

grey domain in various primates.

Found at: doi:10.1371/journal.pgen.1000641.s008 (0.02 MB

DOC)

Table S6 Human sequences used in ‘‘additional’’ L1 scoring in

Table S3 and reference sequences for primate AS layers.

Found at: doi:10.1371/journal.pgen.1000641.s009 (0.06 MB

DOC)

Text S1 Supplemental information on details of AS analysis, its

interpretation, and how it relates to previous data.

Found at: doi:10.1371/journal.pgen.1000641.s010 (0.09 MB

DOC)
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