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Introduction
Several evidences highlight the emerging impact of long non-
coding RNAs (lncRNAs) in cancer progression.1-4 The aim of 
this study is to identify the predictive capability of some onco-
genic lncRNAs in tumor progression and prognosis of breast 
cancer.

Breast cancer is the most common malignancy and the lead-
ing cause of cancer death in women. By focusing on a single 
type of genetic alteration such as copy number variation 
(CNV), scientists have identified significant genes that may 
contribute to cancer progression.5-8 Due to its complexity, the 
study of cancer should focus on incorporating data from mul-
tiple platforms ranging from genes, transcripts, and proteins 
found in cancer cells,9 to whole biological systems, represented 
by molecular pathways and cell populations.10 The integration, 
where multiple levels of omics data (ie, CNV, methylation, and 
gene expression) are gathered from the same subjects and ana-
lyzed, is known as vertical integration.10-12

In this study, we introduce an easy and simplified way to 
integrate multiple omics data to show that the survival predic-
tion due to the presence of lncRNAs increases significantly in 
breast cancer. We consider the genomic platform such as CNV, 
mRNA expression, proteomic platform such as protein expres-
sion, and the phenotype such as the survival of the patients. 
This study focuses only on the lncRNA expressions from The 
Cancer Genome Atlas (TCGA) breast cancer data. We con-
sider the target protein expressions as proteomics data.

An Integrative Model
We consider a 3-stage model here. Suppose that n is the num-
ber of patients, p is the number of lncRNAs, and L is the 
number of CNV expressions.

The mechanistic model for each lncRNA can be expressed 
as

 lncRNAk = + =∑
l

L

kl l kc k p
=1

, 1, , α Ο   (1)

where lncRNAk  is the level of gene expression for gene 
k k p, 1, ,=  , and is of dimension n×1 ; ckl  is part of the 
lncRNAk  expression that is attributed to the lth CNV; Ok  is 
the other (remaining) part of the gene expression which is not 
regulated by CNV and is of dimension n×1 ; and α  is the 
regression coefficient vector.

Next, the downstream target protein of each specific 
lncRNA was identified from PubMed articles, TCGA RNA-
Seq database, and other extensive analyses such as differential 
expression analysis. The mechanistic model for each protein 
(for every lncRNA) can be expressed as

 Protein C O O= + +γ γ1 2
*  (2)

where C = ×( )ckl p L  and O *  represents the “other” part of the 
protein expression that is not regulated by lncRNA. γ1  and γ2  
are the regression coefficients corresponding to the CNV 
expressions and the error part from equation (1), respectively.
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The clinical component part models the effect of the mech-
anistic parts of the genes on a clinical outcome of interest and 
can be written as

 log t lncRNA O= + +1 1 2 β  β*
2   (3)

where t  is the survival outcome,   is the error term, and β1  
and β2  are the usual regression coefficients corresponding to 
lncRNA and the estimated error part from equation (2), 
respectively.

The variable Protein  represents the vectorized downstream 
gene effects attributed to protein expressions and is estimated 
from the second-stage mechanistic model. Therefore, the clini-
cal component additively models the effects of all the gene 
expressions and their components—derived from different 
sources (gene expression, CNV) in a unified manner.

Assumptions such as O N In(0, )1
2σ  and O*

 N In(0, )2
2σ  

give rise to the usual linear model, whereas we obtain the log-
normal accelerated failure time (AFT) model when we assume 
 N In(0, )3

2σ .
In the presence of right censoring, we observe the tuple 

( , ), 1, ,*t i ni iδ =  , where δi = 1  if the event is observed (death 
in this case), and 0 otherwise; t t ci i i

* ( , )= min  with ci  being 
the censoring time. A standard statistical software can be used 
to fit a log-normal AFT model and the other linear regression 
models.

To quantify the prediction accuracy, we consider a standard 
comparative predictive approach Brier score (BS)13 which uses 
the predicted survival times
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where K( )⋅  denotes the Kaplan-Meier estimate of the censor-
ing distribution which is based on the observations ( ,1 )ti i− δ , 
and S( )⋅  stands for the estimated survival function. As the 
mathematical form suggests, BS provides a numerical com-
parison between the observed and estimated survival functions. 
Brier score is defined for each time point t  and hence  
can be added for the entire time range to obtain IBS, 
IBS BS= − ∫max

max
( ) ( )1

0

( )
t t dti

ti . We can see that models with 
smaller scores are preferred. We compute integrated Brier score 
(IBS) using ipred package.14

Nevertheless, we also compute the prediction square error 
by comparing the observed data and their posterior predicted 
values.

From TCGA database, we consider the information of 222 
breast tumor samples with their survival data. We observe that 
at least 82% data are right censored.

Along with the clinical observations, we also collected 
measurements of 12 lncRNA expressions (Table 1). Among 
those, we found the CNV information available for 9 genes (or 

lncRNAs). We also consider 64 target protein expressions for 
these genes.

We apply the integrative modeling in these data and obtain 
the results shown in Table 2. We notice that the mean squared 
prediction error and IBS are both lower for the proposed model 
than for the 2-stage model after omitting the protein expres-
sions from the analysis.

In this article, we have shown that when the contribution of 
lncRNA’s target protein expression measurement is not ignored, 
then the survival prediction has improved dramatically. Toward 
this, we have developed a simple yet integrative modeling strat-
egy which borrows strengths from all 3 platforms such as DNA 
CNV, mRNA expressions for the long noncoding genes, and 
their target protein expressions to predict the survival of the 
subjects. We have shown that this integrated model outper-
forms its closest competitor.

Table 1. The lncRNA considered for our experiment.

GENE FUNCTIoN

BCAR4a oncogenic, promotes invasion and 
metastasis15

BCYRN1 oncogenic, promotes tumor progression16

GAS5a Tumor suppressor17

H19a oncogenic, promotes proliferation and 
metastasis18

HOTAIRa oncogenic, promotes EMT, proliferation, and 
metastasis19

MALAT1a oncogenic, promotes proliferation, invasion, 
and migration20

MEG3a Tumor suppressor, induces accumulation of 
p5321

PVT1a oncogenic, promotes tumor progression22

SOX2OT oncogenic, promotes tumor growth and 
metastasis23

SRA1a oncogenic24

UCA1a oncogenic, promotes cell growth, suppresses 
the tumor suppressor p2725

XIST Tumor suppressor26

Abbreviation: EMT, epithelial-mesenchymal transition.
aThe copy number variation available (among those lncRNAs, SRA1 transcribes 
both long noncoding and protein-coding RNAs which are produced by alternative 
splicing).

Table 2. MSPE and IBS for fitted models in TCGA breast cancer data.

MoDElS MSPE IBS

2-stage 1.903 0.488

3-stage 1.196 0.395

Abbreviations: IBS, integrated Brier score; MSPE, mean squared prediction error; 
TCGA, The Cancer Genome Atlas.
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