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Abstract: Influenza virus infections continue to be a significant and recurrent public health problem.
Although vaccine efficacy varies, regular immunisation is the most effective method for suppressing
the influenza virus. Antiviral drugs are available for influenza, although two of the four FDA-
approved antiviral treatments have resulted in significant drug resistance. Therefore, new treatments
are being sought to reduce the burden of flu-related illness. The time-consuming development of
treatments for new and re-emerging diseases such as influenza and the high failure rate are increasing
concerns. In this context, we used an in silico-based drug repurposing method to repurpose FDA-
approved drugs as potential therapies against the H7N9 virus. To find potential inhibitors, a total of
2568 drugs were screened. Promacta, tucatinib, and lurasidone were identified as promising hits in
the DrugBank database. According to the calculations of MM-GBSA, tucatinib (−54.11 kcal/mol) and
Promacta (−56.20 kcal/mol) occupied the active site of neuraminidase with a higher binding affinity
than the standard drug peramivir (−49.09 kcal/mol). Molecular dynamics (MD) simulation studies
showed that the C-α atom backbones of the complexes of tucatinib and Promacta neuraminidase were
stable throughout the simulation period. According to ADME analysis, the hit compounds have a
high gastrointestinal absorption (GI) and do not exhibit properties that allow them to cross the blood–
brain barrier (BBB). According to the in silico toxicity prediction, Promacta is not cardiotoxic, while
lurasidone and tucatinib show only weak inhibition. Therefore, we propose to test these compounds
experimentally against the influenza H7N9 virus. The investigation and validation of these potential
H7N9 inhibitors would be beneficial in order to bring these compounds into clinical settings.

Keywords: virtual screening; drug repurposing; in silico method; molecular dynamics simulations;
influenza A virus; H7N9; FDA-approved drugs

1. Introduction

In March 2013, an avian influenza A (H7N9) virus infection was discovered in humans
in East China. Since then, it has infected 1565 people and killed approximately 39% of
those who have been confirmed to have the Asian H7N9 virus infection [1,2]. Some
influenza A (H7N9) virus-infected humans developed pneumonia and acute respiratory
distress syndrome, with high case fatality rates [3,4]. The influenza A virus (IAV) has two
major surface glycoproteins that dominate the virus surface: neuraminidase (NA) and
hemagglutinin (HA). The cleavage of α-(2-3 or 2-6)-ketosidic linkage between terminal sialic
acid and adjacent surface glycoprotein is catalysed by NA. Furthermore, this promotes the
budding of newly formed viral particles from the infected cell, allowing progeny viruses to
infect uninfected host cells and infect respiratory tract mucins [5,6].

HA is responsible for the attachment of the influenza virus to the infected host cell’s
surface glycoprotein’s sialic acid. Avian virus HA proteins specifically recognize an α-2,3-
linkage found on the epithelial cells of duck intestines. On the other hand, human virus
HA proteins prefer sialic acid linked to galactose via an α-2,6-linkage expressed on the
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surface of human respiratory epithelial cells [7–9]. The influenza A (H7N9) virus has a
higher affinity for the human α-2,6-linked sialic acid host cell receptor and a lower affinity
for the avian α-2,3-linked sialic acid host cell receptor [10]. Serological studies have found
no pre-existing immunity to H7 subtype influenza viruses present in humans [8,11]. As
a result, the influenza A (H7N9) virus should be closely monitored due to its potential
to cause a pandemic. Research on the development of more potent anti-influenza drugs
should be prioritized.

NA and adamantanes drugs are the two traditional classes approved for the treatment
of IAV infection [6,12]. NA inhibitors are the only way to treat influenza infection in most
countries due to the mutation and subsequent resistance to adamantane drugs (amantadine
and rimantadine) [13]. There are three Food and Drug Administration (FDA)-approved NA
inhibitors for treating influenza infection: zanamivir, oseltamivir, and peramivir. At present,
laninamivir is only licensed in Japan [2,14,15]. The FDA recently approved a polymerase
inhibitor baloxavir marboxil in Japan and the United States as a possible antiviral option
against IAV and IBV infection [16,17].

The NA from IAVs is divided into two phylogenetic groups: group 1 (N1, N4, N5, and
N8) and group 2 (N1, N4, N5, and N8) (N2, N3, N6, N7, and N9). NA is a homotetramer
with an active site in each subunit [6,18]. In IAV and IBV, the active site forms a pocket
composed of 19 highly conserved amino acid residues. The inner cavity contains eight
highly conserved enzymatic residues (N2 numbering) that interact directly with the sialic
acids responsible for enzymatic activity (Arg118, Asp151, Arg152, Arg224, Glu276, Arg292,
Arg371, and Tyr406) (Figure 1). Furthermore, the rim contains 11 highly conserved frame-
work residues that stabilize the enzymatic binding pocket (Glu119, Arg156, Trp178, Ser179,
Asp (or Asn in N7 and N9) 198, Ile222, Glu227, His274, Glu277, Asp294, and Glu425) [5,19].
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While vaccination remains one of the primary prevention strategies, it may not provide
adequate protection in some seasons [6]. As such, preventive and therapeutic agents, and
antiviral drugs are critical to the control of seasonal influenza epidemics as well as the ongo-
ing fight against a pandemic outbreak. Consequently, it is critical that more novel medical
therapies be identified as soon as possible for both preventive and therapeutic purposes.
Developing novel therapeutic drugs, on the other hand, is a lengthy, time-consuming, and
resource-intensive process that is plagued by more failures than successes [20].

In silico modelling is a useful approach for reducing the cost and time required for
drug development [21]. The in silico technique has received a lot of attention as a tool for
finding new drug leads, understanding disease mechanisms, and researching drug–target
interactions [22,23]. As a result, it has been recognized as a valuable tool in balanced
planning and the discovery of potential novel drugs [24]. Virtual screening has improved
drug discovery and is now one of the most promising in silico approaches for drug design
and development [24].
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Existing, licensed drugs could be repurposed to produce more therapeutic drugs
faster. When compared to the process of generating a drug from scratch, drug repurposing
has the potential to significantly reduce development time and cost. This is due to the
availability of toxicity and safety data from previous clinical trial phases. In the current
study, we used molecular docking studies to perform in silico-based repurposing of FDA-
approved drugs against influenza A (H7N9). Peramivir was utilized as a control drug
in the comparative investigations. The stability of hit compounds complexed with viral
NA was investigated using molecular dynamics (MD) simulations. In addition, in silico
approaches were employed to predict the pharmacokinetic and toxicological properties of
the hit compounds.

2. Results and Discussion
2.1. Molecular Docking Analysis

The DockRMSD server v1.1 was used to evaluate the accuracy of AutoDock Vina
v.1.1.2 docking for higher hit rates in our virtual screening. The RMSD (without considering
hydrogen atoms) value of co-crystal bound peramivir and re-docked peramivir was found
to be 1.78 Å, indicating the great reliability of the docking process [25]. The interaction
profiles of the three highest-scoring docking poses were examined and compared to the
peramivir binding profile (Table 1). The binding affinities of the hit compounds were found
to be greater than those of the peramivir compound (−6.8 kcal/mol), with Promacta having
the greatest binding affinity (−10 kcal/mol), followed by lurasidone (−9.9 kcal/mol),
and finally tucatinib (9.8 kcal/mol). The top 20 highest-scoring docking poses have been
provided in Table S1 of the Supplementary Material.

Table 1. Virtual screening results of the hit compounds.

DrugBank ID Generic
Name

Physicochemical
Properties Structures Binding

Residues

Binding
Affinity

(kcal/mol)
Function

DB06614 Peramivir

Mw = 328.41
logP = 0.08

HBA = 5
HBD = 6
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2.2. Binding Pose Analysis

The NA binding site is made up of five subsites: S1, S2, S3, S4, and S5. The S1 site is
made up of three positively charged arginine residues: Arg118, Arg292, and Arg371. The
S2 site is a positively charged region composed of Glu119 and Glu227 residues, whereas
the S3 site is a small hydrophobic region composed of Trp178 and Ile222 residues. The
S4 site is a hydrophobic area that includes the residues Ile222, Arg224, and Ala246. Site
S5 is a mixed polarity area composed of Glu276 and Ala246 residues. Our studies have
demonstrated that Promacta, tucatinib, and lurasidone interact with the NA protein and
share the same binding pocket, with interaction profiles comparable to that of peramivir’s
binding pattern (Figure 2).
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When compared to other hit compounds, peramivir indicated the least favourable
binding affinity of −6.8 kcal/mol. According to our findings, peramivir occupies the bind-
ing site and interacts with residues through hydrogen bonds and hydrophobic interactions.
Our results suggest that peramivir accommodates in the S1, S2, S3, and S4 binding subsites
(Figure 2A). Peramivir established hydrogen bonds with Trp178, Arg292, and Tyr406 in the
framework amino acids Glu119, Asp151, Trp178, Ile222, Arg227, Glu227 Ala246, Glu277,
Arg292, and Tyr406 (Figure 3A).
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Lurasidone appears to accommodate more in the S1 and S2 subsites of the binding
pocket (Figure 2B). Lurasidone also interacted with enzymatic amino acid residues in
the active site, including Asp151, Arg292, Arg371, and Tyr406, and framework residues
such as Glu277. As seen in Figure 3B, the lurasidone compound formed hydrogen
bonds with Arg292, Arg371, and Lys342 amino acids, showing potential good inhibitory
activity (Figure 3B).

Tucatinib exhibited a binding energy of −9.8 kcal/mol, which is more favourable
when compared to peramivir (−6.8 kcal/mol). Our study showed that tucatinib interacts
with Ile149, Asp151, Arg152, Arg224, Ala246, Arg292, Asp294, Arg371, Ile427, Lys432,
and Pro431, where it forms hydrogen bonds with three of the active site residues, Asp151,
Arg152, and Asp294 (Figure 3C). Tucatinib also showed interactions with enzymatic amino
acid residues Asp151, Arg152, Arg224, Arg292, and Arg371, and a structural framework
residue Asp294. These interactions appear throughout all the subsites (S1, S2, S3, S4, and
S5) located within the NA binding pocket (Figure 2C).

Promacta showed the most favourable binding energy of −10.0 kcal/mol in this study.
It was found that Promacta forms an interaction with conserved enzymatic residues such
as Arg118, Asp151, Arg224, Arg292, and Arg 371 (Figure 3D). Along with these residues,
interaction with the framework residue Ser179 was also found. Additionally, Promacta
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formed hydrogen bonds with Arg371 and Ser179. Promacta appears to accommodate more
in the binding pocket’s S1, S2, and S4 subsites (Figure 2D). The interaction with these
residues is the most critical determinant in the orientation and stability of the NA complex
with Promacta.

2.3. Molecular Dynamics Trajectory Analysis

To further evaluate the potential ability of lurasidone, tucatinib, and Promacta to act
as an efficient inhibitor of NA, MD simulations were performed. In addition, MD analyses
were performed to analyse and compare the dynamic behaviours of NA complexes with
lurasidone, tucatinib, Promacta, and the reference ligand peramivir.

2.3.1. Root Mean Square Deviation (RMSD)

All four systems’ stability was investigated using RMSD of the C-α atoms. We analysed
the structural stability of the docked compounds in the binding site and their effects on
the overall system stability. During the simulations, the RMSD values of the entire system
gradually converged and finally reached equilibrium at around 50 ns (Figure 4). The
apo-enzyme showed an average RMSD value of 1.71 Å during the entire run. Lurasidone,
tucatinib, and Promacta as well as the reference ligand, peramivir, complexed with NA
exhibited average RMSD values of 1.48 Å, 1.31 Å, 1.53 Å, and 1.17 Å, respectively, which
are lower than that of apo-enzyme. This shows that the presence of a ligand stabilizes the
structure of the NA protein. The average RMSD for all the systems was found to be 1.40 Å,
which is lower than the ideal 2 Å RMSD value [26]. According to the findings, all three
systems were stable, which could be due to strong hydrogen bond interactions between the
protein–ligand complexes.
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2.3.2. Root Mean Square Fluctuation (RMSF)

RMSF was used to measure the flexibility of the protein residues in terms of the C-α
atom fluctuations throughout the MD simulation. As shown in Figure 5, the RMSF for
individual amino acids correlates with the trend observed in the RMSD of complexes.
The average RMSF was found to be 0.90 Å in the apo-enzyme, 0.78 Å in the lurasidone,
0.69 Å in the tucatinib, 0.67 Å in the Promacta, and 0.67 Å in the reference peramivir–NA
complex. According to our findings, the presence of a ligand at the binding site reduces
amino acid flexibility. In all systems, the pattern of residual flexibility is almost identical.
Lower fluctuations were observed in the active site residues ranging from residues 110–120,
150–151, 152–160, 230–230, and 270–280, corresponding to the S1, S2, S3, S4, and S5 binding
subsites, respectively. These findings show that the target protein is stabilized by binding
all three compounds docked against it.
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2.3.3. Radius of Gyration (RoG)

The RoG communicates information about the complex’s stable and unstable folding
behaviour during the interaction of a protein and a ligand. A high RoG value indicates
low structural compactness, whereas a low RoG value indicates high structural compact-
ness [27]. RoG was therefore used to determine our system’s compactness during the
simulation. Figure 6 demonstrates that the apo-enzyme had a higher average RoG value
of 20.1 Å across the 250 ns simulation period than the complexes. Peramivir, lurasidone,
tucatinib, and Promacta complexes exhibited average RoG values of 19.7 Å, 19.9 Å, 19.8 Å,
and 19.8 Å, respectively. Contrary to lurasidone, the presence of peramivir, tucatinib, and
Promacta at the NA active site appears to exert conformational stability and compactness.
The NA–lurasidone complex’s higher fluctuations between 100 and 190 ns are assumed
to be due to the binding and unbinding of lurasidone in the active site, thus affecting the
overall compactness of the complex.
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2.3.4. Hydrogen Bond Analysis

Hydrogen bonding between residues is an important metric for determining a pro-
tein’s stability. A protein structure’s stability may be increased by the presence of more
intermolecular hydrogen bonds. Interactions at the binding site, such as hydrogen bonds,
hydrophobic interactions, and ionic interactions, largely determine ligand binding affin-
ity [28]. An average of 212 hydrogen bonds was consistently formed in the NA–lurasidone
complex (Figure 7). In the cases of the tucatinib– and Promacta–NA complexes, an average
of 214 and 217 hydrogen bonds were consistently formed throughout the simulation period,
respectively. Throughout the simulation, an average of 225 hydrogen bonds were formed
with the reference ligand, peramivir. In comparison to lurasidone and tucatinib, our analy-
sis revealed that Promacta formed more hydrogen bonds with other amino acids over the
simulation time. This could be attributed to the NA–Promacta complex’s conformational
stability, which could indicate a stronger binding affinity.

The phenomenon of hydrogen bonding was studied to determine which residues
at the bonding site contribute to hydrogen bonding. For this purpose, the percentage
occupancy of the hydrogen bonds was investigated. Throughout the 250 ns simulation
time, the percentage of hydrogen bond occupancy (%) between the ligands and the active
site residues was monitored (Figure 8). Based on our results, amino acid residues Arg118,
Asp151, Arg152, Glu227, Glu277, Arg292, Asp344, Arg371, and Try406 were identified as
the primary residues for hydrogen bonding between NA and the hit compounds, with the
highest percentage occupancy, suggesting a significant contribution to system stabilisation.
The interaction of the ligands with these primary residues has a significant impact on the
efficacy of the ligand. As shown in Figure 6, the complexes of peramivir–, Promacta–,
lurasidone–, and tucatinib–NA formed hydrogen bonds with Arg118 at 78%, 40%, 30%,
and 32% occupancy throughout the simulation runs. Furthermore, Arg118 and Asp151
were found in nearly all complexes.
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2.4. Binding Free Energy Analysis

The binding free energy contributions for NA–ligand complexes over the simulation
time are shown in Table 2.

Table 2. Binding free energy contributions for NA–ligand complexes.

Complexes ∆Gbind ∆Evdw ∆Eele ∆Gpol ∆Gnonpol

NA–lurasidone −22.59 ± 0.14 −28.20 ± 0.09 −32.20 ± 0.51 41.27 ± 0.44 −3.33 ± 0.01
NA–tucatinib −54.11 ± 0.11 −57.95 ± 0.09 −41.76 ± 0.25 51.50 ± 0.22 −5.91 ± 0.02
NA–Promacta −56.20 ± 0.19 −39.17 ± 0.12 −76.47 ± 0.43 65.07 ± 0.30 −5.66 ± 0.01
NA–peramivir −49.09 ± 0.13 −28.86 ± 0.08 −128.21 ± 0.35 115.11 ± 0.26 −15.12 ± 0.00

∆Gbind—binding free energy; ∆Eele—electrostatic interaction; ∆Evdw—van der Waals forces; ∆Gpol—polar salva-
tion energy; ∆Gnonpol—non-polar salvation energy.

Non-bond interactions, such as the van der Waal energy (∆Evdw) and the electrostatic
energy (∆Eele), have a major impact on the estimation of the binding free energy (Gbind) in
energy calculations. According to the binding free energy calculations, the compounds Pro-
macta and tucatinib have the highest binding affinity for NA with a ∆Gbind of −54.11 ± 0.11
and −56.20 ± 0.19 kcal/mol, respectively, compared to the reference compound peramivir
(−49.09 ± 0.13 kcal/mol). Compared to peramivir, the higher ∆Evdw energy plays an
essential role in the ∆Gbind binding energies of tucatinib and Promacta. This is due to
the presence of hydrophobic interactions between amino acid residues in the binding site,
which contribute to the stabilisation of the conformation of the Promacta–NA complex.
According to our findings, tucatinib– and Promacta–NA can effectively inhibit by binding
to the active site and impeding catalytic activity. Therefore, we recommend that tucatinib
and Promacta be investigated for their potential use in the treatment of influenza virus
infections. Due to limitations associated with approximations in the binding free energy
calculations, the binding free energy values represent a trend for NA–ligand complexes.

2.5. Interaction Energy Decomposition Analysis

Interaction energy decomposition analysis was performed to gain an insight into the
contributions of individual amino acids to the total free energy of binding of protein–
ligand complexes. As shown in Figure 9, the amino acids with the highest residual
energy contributions were Arg118 (−3.12 kcal/mol) and Asp151 (−5.74 kcal/mol) in
the NA–lurasidone complex, Arg118 (−29.74 kcal/mol), Arg152 (−13.21 kcal/mol), and
Arg156 (−18.29 kcal/mol) in the NA–tucatinib complex, Arg118 (−14.47 kcal/mol), Arg225
(−16.83 kcal/mol), and Arg292 (−42.90 kcal/mol) in the NA–Promacta complex, and
Arg119 (−15.91 kcal/mol), Arg292 (−24.47 kcal/mol), and Arg371 (−29.85 kcal/mol) in
the reference compound peramivir.

The electrostatic interactions contributed much more to the total binding energy than
the van der Waals interactions. These residues are thought to be important components of
the protein–ligand binding pocket. Compared to the tucatinib and Promacta complexes, the
NA–lurasidone complex contributed the least residue energy. The thermodynamic stability
and protein–ligand solid interactions in the tucatinib– and Promacta–NA complexes are
thought to be due to the overall higher electrostatic contribution and lower flexibility of the
backbone C-α atoms. Furthermore, Arg118 was found in all complexes.
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2.6. Pharmacokinetic Analyses

An assessment of how an active ingredient is absorbed into the body, distributed,
metabolised into its many components, and excreted from the body is very important
for optimising the active ingredient during drug discovery. This section evaluates the
absorption, distribution, metabolism, and excretion (ADME) properties of hit compounds
using an in silico Swiss-ADME server to understand pharmacokinetic properties.

Table 3 shows that, unlike peramivir, all hit compounds have high gastrointestinal
absorption (GI). The ability of a drug to cross the blood–brain barrier (BBB) is a prerequisite
for a drug to have effects on the central nervous system. However, if the effect of the drug is
needed in other tissues, passage through the BBB can have unfavourable consequences [29].
In the case of hit substances, they lack properties that allow them to pass through the BBB
and cause adverse effects.

Cellular efflux pumps such as P-glycoprotein (P-gp) act as a first line of protection
by transporting toxic xenobiotics and toxic substances out of the cell [30]. It is a substrate
for many structurally varied therapeutics, and it prevents drug absorption, permeability,
and retention, and expels them out of the cells [31]. Notably, our analysis indicates that
in contrast to tucatinib, lurasidone and Promacta are not P-gp substrates, suggesting the
possibility of successful drug delivery. The drug metabolism of pharmaceuticals and other
xenobiotics by cytochrome (CYP) enzymes produced variable results. All compounds
demonstrated favourable ADME properties, indicating a high potential for their use as
lead compounds.
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Table 3. Comparative pharmacokinetics analyses.

Parameters Lurasidone Tucatinib Promacta Peramivir

GI absorption High High High Low
BBB permeant No No No No
P-gp substrate No Yes No Yes

CYP1A2 inhibitor No Yes No No
CYP2C19 inhibitor Yes Yes No No
CYP2C9 inhibitor Yes Yes Yes No
CYP2D6 inhibitor No Yes No No
CYP3A4 inhibitor Yes Yes No No

2.7. Toxicological Analyses

In silico methodologies may now be used to determine the safety profiles of desired
substances thanks to computerized technologies. These chemicals might damage humans
and animals if they are not used properly. The server ProTox-II was used to analyse the
safety profiles of our hit compounds (Table 4). According to the findings, tucatinib is the
only compound with carcinogenic and immunotoxic adverse effects.

Table 4. Comparative toxicological analyses.

Parameters Lurasidone Tucatinib Promacta Peramivir

Carcinogenicity No Yes No No
Immunotoxicity No Yes No No

Mutagenicity No No No No
Cytotoxicity No No No No

LD50 (mg/kg) 660 3160 5000 1430
Class 4 5 5 4

hERG inhibition Yes (weak) Yes (weak) No No

Furthermore, all compounds show negative results for mutagenicity and cytotoxicity
prediction. According to the ProTox-II server, tucatinib and Promacta both belong to class 5,
with LD50 ranging from 2000 to 5000 mg/kg, and may be harmful when administered orally.
The LD50 value for lurasidone was less than 2000 mg/kg, indicating that oral ingestion
could be harmful, putting it in toxicity class 4.

Inhibition of human ether-a-go-go-related gene (hERG) channels is a widely accepted
predictor of cardiotoxicity. Screening compounds in the early stages of discovery and
development for their ability to inhibit the hERG channel has thus become an essential
procedure in the pharmaceutical industry. The Pred-hERG server was used to predict
the ability of the hit compounds to inhibit hERG, and the results show that Promacta is
non-cardiotoxic, while lurasidone and tucatinib only show weak inhibition.

3. Materials and Methods
3.1. Receptor and Ligand Preparation

The Protein Data Bank was used to obtain the X-ray crystal structure of the Anhui
N9–peramivir (PDB code: 4MWV) complex. AutoDock Tools (ADT) v.1.5.6 was used to
prepare the receptor for docking [32,33]. Water molecules, ions, and ligands were removed
from the protein, which was then followed by the construction of missing side chain atoms,
the addition of hydrogen atoms, and the protonation of individual residues. Following that,
1000 steps of receptor minimization were conducted with the conjugate gradient algorithm
using MMFF94 force field, and the PDB file was translated to PDBPT file format using
Open Babel v.2.4.1 [34].

A total of 2568 FDA-approved drugs available for virtual screening were obtained from
DrugBank database [35]. They were then filtered using Open Babel to select only drugs that
meet Lipinski rule of five [36], filtering only 4 descriptors: partition coefficient, molecular
weight, hydrogen bond donors, and acceptors, yielding 1597 drugs for virtual screening.
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The co-crystal bound peramivir, was used as a reference compound. The SDF files were
hydrogenated at pH 7.4, applied using 1000 steps of a conjugate gradient algorithm using
an MMFF94 force field, and then converted to PDBPT format using Open Babel.

3.2. Molecular Docking-Based Virtual Screening

Molecular docking was carried out using AutoDock Vina v.1.1.2 [33]. ADT was used
to calculate the grid, which includes the binding centre and dimensions. A grid box centred
at x = 63.17, y = 16.81, and z = −26.38 with the side lengths of x, y, and z set, respectively,
at 50.0, 50.0, and 50.0 was positioned in the centre of the receptor’s binding site. Prior to
conducting virtual screening with the selected compounds, AutoDock Vina was validated
for its ability to reproduce the crystallographic pose of co-crystallized peramivir with NA.
The RMSD values of docked peramivir and co-crystal bound peramivir were calculated
using the DockRMSD server v1.1 [25]. The docking data were evaluated and the top ten
drug conformations with the highest scores were chosen for additional docking. Using
an in-house bash script, these conformations were docked in triplicate to the binding site
using 24 exhaustiveness. The top 3 docked compounds with the best binding affinities
were visualized using Discovery Studio Visualizer version 20.1.0.19295 [37], and PyMol
v.2.5 [38].

3.3. Pharmacokinetic and Toxicological Predictions

The Swiss-ADME server was utilized to collect information on the physicochemical
and pharmacokinetic properties of the hit drugs in this study [39]. Assessment of toxicity
was performed using the ProTox II server [40]. The Pred-hERG server was used to predict
the capacity of the ligands to inhibit hERG (Kv11.1) [41].

3.4. Molecular Dynamics Simulations

MD simulations of 250 ns were run with the best-scored poses of the screening com-
plexes Promacta, tucatinib, and lurasidone, as well as the reference ligand peramivir. Amber
18 graphic processing unit (GPU) Particle Mesh Ewald Molecular Dynamic (PMEMD) was
employed in the MD simulations. The force field-related parameters and protein de-
scriptions were handled with FF14SB [42,43]. LEAP module was used in the addition of
hydrogen atoms to the protein and subsequent counter-ions addition [44]. The systems
were enclosed in TIP3P water box, with a 10 Å distance between the system surface and
box edge [45]. The system employed the periodic boundary conditions, while long range
electrostatics was managed with 12 Å Van der Waals cut off. The initial minimization was
performed using restrained potential of 500 kcal/mol/Å2 in 1000 steepest descent steps
and 1000 conjugate gradient steps on the solute [46]. This was followed by 1000 steps
unrestrained conjugate gradient minimization for the entire system. A gradual heating
from 0 to 300 K with 1 ps, 5 kcal/mol/Å2 (collision frequency and harmonic restraints, re-
spectively) settings using Langevin thermostat was applied to the system. An unrestrained
equilibration of the system was performed using NPT ensemble at 300 K and 1 bar constant
pressure [47]. MD simulation production run of 250 ns was performed using an isothermal
isobaric (NPT) ensemble and a Berendsen barostat [48]. The coordinates were saved at
intervals after each stage and the trajectories were analysed.

3.5. Molecular Dynamics Trajectory Analyses

The Amber18 implemented modules, PTRAJ and CPPTRAJ, were used to perform
post-MD trajectory studies such as root mean square deviation (RMSD) and root mean
square fluctuations (RMSF), radius of gyration (RoG), number of hydrogen bonds, and
hydrogen bond occupancy. All plots were created with Python v3.10.0 custom scripts and
the Pandas v1.4.1 and Matplotlib v3.5.0 libraries.
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3.6. Binding Free Energy Calculation

The binding free energy profiles of the best docking poses of Promacta, tucatinib,
and lurasidone, and also reference compound, peramivir, complexed with NA were
computed using the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA)
approach [49–52]. The following equations provide a full description of how to calculate
binding free energy:

∆Gbind = Gcomplex − Greceptor − Gligand (1)

∆Gbind = Egas + Gsol − T∆S (2)

Egas = Eint + EvdW + Eele (3)

Gsol = GGB + GSA (4)

In this equation, ∆Gbind indicates total free binding energy, whereas others reveal the
free energy of complex, the protein, and the ligand. The gas phase energy is denoted by
Egas, while internal energy is denoted by Eint. The temperature is represented by T, and
the total solute entropy is represented by ∆S. Interactions between bonded, electrostatic,
and van der Waals states are specified by Gbind, Eele, and Evdw, respectively. GGB and GSA,
on the other hand, represent the polar and non-polar interaction with free energy. The
MM/GBSA method was also utilized to calculate the energy contributions of individual
amino acid residues to the overall binding free energy.

4. Conclusions

The newly developed drugs showed binding in the active site of NA in a highly
specific binding pattern similar to that of peramivir with this in silico approach. According
to our findings, some of the selected compounds occupied the active site of NA with an
even higher binding affinity than peramivir. The MM-GBSA calculations showed that
lurasidone and Promacta had higher binding affinity than the standard drug peramivir
(−49.09 kcal/mol), with ∆Gbind values of −54.11 kcal/mol and −56.20 kcal/mol, respec-
tively. The MD simulation studies revealed that the backbone of C-α atoms in the complexes
of tucatinib and Promacta NA is stable throughout the simulation period and is not subject
to significant fluctuations. In contrast, RoG analysis of the NA–lurasidone complex revealed
higher fluctuations between 100 and 190 ns, affecting the complex’s stability. The major
amino acid residues with the highest energy contributions were identified, providing a
solid basis for future research into novel and effective influenza virus inhibitors. According
to ADME analysis, the hit compounds have a high GI and do not possess properties that
allow them to overcome the BBB. In silico toxicity prediction revealed that all compounds
tested negative for mutagenicity and cytotoxicity. In addition, Promacta is not cardiotoxic,
while lurasidone and tucatinib have only weak inhibition. Promacta and tucatinib could be
used as lead compounds to combat the influenza A (H7N9) virus.
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