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Abstract

RNA aptamers are oligonucleotides that bind with high specificity and affinity to target

ligands. In the absence of bound ligand, secondary structures of RNA aptamers are gener-

ally stable, but single-stranded and loop regions, including ligand binding sites, lack defined

structures and exist as ensembles of conformations. For example, the well-characterized

theophylline-binding aptamer forms a highly stable binding site when bound to theophylline,

but the binding site is unstable and disordered when theophylline is absent. Experimental

methods have not revealed at atomic resolution the conformations that the theophylline

aptamer explores in its unbound state. Consequently, in the present study we applied 21

microseconds of molecular dynamics simulations to structurally characterize the ensemble

of conformations that the aptamer adopts in the absence of theophylline. Moreover, we

apply Markov state modeling to predict the kinetics of transitions between unbound confor-

mational states. Our simulation results agree with experimental observations that the the-

ophylline binding site is found in many distinct binding-incompetent states and show that

these states lack a binding pocket that can accommodate theophylline. The binding-incom-

petent states interconvert with binding-competent states through structural rearrangement

of the binding site on the nanosecond to microsecond timescale. Moreover, we have simu-

lated the complete theophylline binding pathway. Our binding simulations supplement prior

experimental observations of slow theophylline binding kinetics by showing that the binding

site must undergo a large conformational rearrangement after the aptamer and theophylline

form an initial complex, most notably, a major rearrangement of the C27 base from a buried

to solvent-exposed orientation. Theophylline appears to bind by a combination of conforma-

tional selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+

ions are present the population of binding-competent aptamer states increases more than

twofold. This population change, rather than direct interactions between Mg2+ and theophyl-

line, accounts for altered theophylline binding kinetics.
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Introduction

Many RNAs exist as large ensembles of conformations in solution when they are unbound[1–

6]. Whereas in most proteins individual α-helices and β-sheets are unstable individually[7],

individual helical secondary structural elements in RNA are often highly stable[8]. This stabil-

ity enables RNAs to form partially folded states containing defined secondary structure but

limited or no tertiary structure[4,8–10]. These partially folded states are often structurally het-

erogeneous, forming a complex structural landscape, and RNA molecules transition frequently

between different conformational states in the landscape[11,12]. Such conformational transi-

tions underlie several fundamental biological processes involving RNA[11,12], including

metabolite sensing and gene regulation by riboswitches, RNA catalysis by ribozymes, and co-

transcriptional RNA folding. For example, several ribozymes have been shown to exist as a dis-

tribution of conformational states, and only a minor fraction of the equilibrium population is

in the catalytically active state; a conformational change is thus necessary for the active state to

become populated[13–16].

Another class of RNA molecules that often occur as heterogeneous ensembles of conforma-

tions in the unbound state are RNA aptamers. Aptamers are single-stranded oligonucleotides

whose function is to recognize and bind target molecules with high affinity and selectivity[17–

22]. These targets range in size from small molecules to proteins and cells. When they are

bound to their targets, aptamers form complex three-dimensional structures featuring intri-

cate motifs and stable target binding sites[23,24]. The complexity of these structures enables

aptamers to bind selectively to target molecules with dissociation constants as low as picomolar

values. Aptamers’ exquisite binding selectivity for target ligands makes them suitable for a

wide variety of applications, including their use as therapeutics[22,25–28], biosensors and

detectors [29,30], medical diagnostics[22], protective groups in the synthesis of natural prod-

ucts[31], probes in understanding the molecular basis of disease[32], and excellent recognition

domains in naturally occurring riboswitches[33]. Due to their heterogeneous structures when

unbound, aptamers also have complex structural landscapes in the absence of ligand, and con-

formational transitions throughout their landscapes are fundamental for aptamer function.

For instance, it has been demonstrated experimentally that the well-characterized theophyl-

line-binding aptamer[34] forms an unstable binding site in the absence of theophylline, and

that only ~30–60% of the equilibrium population has a structure conducive to ligand binding

[4]. Prior to ligand binding a conformational change is required, in which the unstructured

free RNA converts into a binding-competent species. This observation indicates that the the-

ophylline binding mechanism is characterized at least in part by a conformational selection

process.

There are more than one hundred published NMR and crystallographic structures of apta-

mers bound to their target molecules. This wealth of structural data has allowed the ligand-

bound structures of aptamers to be well characterized. Unfortunately, as a result of their con-

formational heterogeneity in the absence of ligand, it is difficult to determine at high resolu-

tion the secondary and tertiary structures of unbound aptamers, as well as other types of RNA,

using experimental techniques. Structural knowledge of these unbound RNAs generally has to

be inferred from indirect experimental methods, such as kinetic assays, or from methods like

RNA chemical footprinting[35,36], which yield only ensemble averages for molecules with

multiple states. Thus, there is only limited knowledge of aptamer structures in the unbound

state. However, characterizing the conformational ensemble of unbound aptamers at atomic

resolution would allow us to better understand features of their structural landscapes that are

currently difficult to probe, for example, the number and relative populations of equilibrium

conformational states, secondary and tertiary structures that characterize these states, and the
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free energy barriers that separate the states. A better understanding of these features would

help to further elucidate the structural and dynamical basis of aptamer function, including the

structural roles played by divalent ions and ligand binding mechanisms. Ligand binding mech-

anisms to aptamers, in particular, remain relatively poorly understood yet are critical for full

exploitation of aptamers as therapeutics[37] and in other applications.

In order to characterize at atomic resolution the conformational landscape of an unbound

model RNA aptamer, we applied 21 μsec of molecular dynamics (MD) simulations and Mar-

kov state modeling to the 33-nucleotide theophylline-binding aptamer in the absence of the-

ophylline. This well-characterized aptamer binds to theophylline with a measured Kd of

~0.3 μM while discriminating ~10,000-fold against the structurally similar compound caffeine

[34]. We report essential features of the modeled aptamer landscape, namely the secondary

and tertiary structures and equilibrium populations of kinetically connected metastable con-

formational states, along with the timescales and free energy barriers of conformational transi-

tions between these metastable states. Moreover, we present the complete binding pathway of

theophylline, including the order and nature of conformational transitions in the binding site

that lead from the binding-incompetent free RNA to the fully bound RNA observed in the

aptamer’s solution NMR structure[38]. Together, our findings suggest that the theophylline

binding mechanism involves conformational selection before ligand binding followed by addi-

tional conformational rearrangement of the binding pocket after ligand binding. This observa-

tion of a subsequent induced-fit step bolsters earlier conjecture that the slow association rate

constant of theophylline may be explained by conformational rearrangement in the binding

site after initial ligand association[4]. Finally, we show that the presence of Mg2+ ions at 10

mM concentration shifts the population of unbound RNA from binding-incompetent to bind-

ing-competent states over twofold relative to when Mg2+ is absent. Combined with the results

of our simulations of theophylline unbinding, this finding supports a prior hypothesis[39] that

the Mg2+-induced population shift, rather than any intrinsic interactions between Mg2+ and

theophylline, accounts for altered theophylline binding kinetics in the presence of Mg2+. The

methods we use to characterize the unbound state of this model RNA can be applied to other

RNA molecules of interest.

Computational methods

General molecular dynamics simulation parameters

All MD simulations in this paper were performed using the Gromacs 4.6 software[40,41] in

conjunction with the AMBER99SB force field[42,43], applying 2 fs time steps, particle mesh

Ewald periodic boundary conditions[44], and 1.0 nm non-bonded cutoffs. Bonds were con-

strained using the LINCS algorithm[45]. Temperature coupling was carried out using the

velocity-rescaling thermostat of Bussi et al[46]. Simulations in the NPT ensemble used the Par-

rinello-Rahman pressure coupling scheme[47,48] with a barostat relaxation time of 2.0 ps at a

pressure of 1 atm.

Replica-exchange molecular dynamics to generate distinct starting RNA conforma-

tions. Since RNA molecules have rugged free energy landscapes[49–51], launching multiple

MD simulations of an RNA molecule from a single starting conformation is likely to lead to

poor sampling of conformational space. Therefore, prior to conducting production MD simu-

lations of the unbound theophylline aptamer, we attempted to generate a diverse set of starting

conformations of the RNA located at different points on the molecule’s energy landscape. This

sampling was accomplished by using replica-exchange molecular dynamics (REMD)[52] sim-

ulations of the unbound aptamer over a wide range of temperatures, allowing barriers in the

free energy landscape to be surmounted more effectively. The temperatures for REMD were
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distributed exponentially such that the expected acceptance probability was 20%, as calculated

using an online temperature generator for REMD simulations (http://folding.bmc.uu.se/

remd/)[53]. The server yielded 32 replica temperatures over a range of 295–406 K, correspond-

ing to an average temperature spacing of ~3.5 K between replicas.

The starting structure of the unbound aptamer was taken as the first conformer of the solu-

tion NMR structure of the aptamer bound to theophylline (PDB entry 1EHT)[38]. After the

bound theophylline molecule was removed manually, the resulting ligand-free RNA structure

was minimized in vacuo by 100 steps of steepest-descent minimization. The minimized struc-

ture was solvated in a dodecahedral box containing 9117 TIP3P water molecules[54] such that

all RNA atoms were at least 1.1 nm from the box edge. Thirty-two Na+ ions were added to the

system to neutralize the overall system charge. A 10 mM Mg2+ ion concentration was gener-

ated by adding two Mg2+ ions and four Cl−counterions. The whole system was then minimized

for 1000 steps of steepest-descent minimization. Solvent molecules and ions were gradually

heated from 200 K to 298 K in the NVT ensemble over the course of 1 ns, while position

restraints of 1000 kJ mol–1 nm–2 were applied to all RNA atoms. The solvent was then equili-

brated in the NPT ensemble at 298 K for 1 ns; the same position restraints on all RNA atoms

were maintained. Finally, 32 replicas of the solvent-equilibrated system were gradually heated

or cooled from 298 K to each of the 32 REMD temperatures (ranging from 295–410 K) in the

NPT ensemble over 3 ns without applying any position restraints, followed by an additional 2

ns of unrestrained simulation at the final temperatures. After the replicas were heated to their

final temperatures, a 50-ns production REMD simulation was performed in parallel for each

replica, with replica exchange being attempted every 500 steps (1 ps). Structures were saved for

analysis every 1 ps. We note that we did not attempt to reach converged sampling results via

REMD, which would presumably require much longer REMD simulations. Rather, our aim

was simply to generate a wider range of starting conformations for our single-temperature

production simulations than would be possible when starting from a single experimental

structure.

To extract a set of dissimilar conformations for the RNA replica at 298 K, the replica’s 50-ns

REMD production trajectory was clustered into thirty clusters based on the root-mean-square

deviation (RMSD) of the RNA main chain non-hydrogen atoms relative to those of the starting

NMR structure. Clustering was performed using the k-means algorithm in the R statistical

package (http://www.R-project.org/). Structures from the time points corresponding to the

thirty cluster centroids were extracted from the trajectory and used as starting conformations

for the subsequent set of production simulations.

Production simulations of unbound aptamer

We performed 23 successive batches of production MD simulations of the unbound RNA

aptamer in the NPT ensemble at 298 K. Each batch consisted of 30 parallel 30-ns simulations,

yielding 900 ns per batch and ~21 μs of total production simulation time. RNA conformations

from all MD trajectories were saved for analysis every 100 ps.

To begin the first batch of simulations, the thirty RNA conformations from the REMD tra-

jectory at 298 K corresponding to the cluster centroids described previously were used as start-

ing conformations. Initial atomic velocities for each simulation were randomly assigned from

a Maxwell distribution at 298 K.

Starting conformations for each subsequent batch of MD simulations were selected using

the fluctuation amplification of specific traits (FAST) goal-oriented sampling method recently

introduced by Zimmerman and Bowman[55]. The FAST method enhances sampling of con-

formational space by initiating successive batches of simulations such that the starting points

Conformational landscape of a ligand-free theophylline-binding RNA aptamer
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for each batch are chosen from the set of all previously sampled conformations based on a

reward function. This reward function calculates the relative probability that simulations initi-

ated from different conformations will discover new conformations that minimize or maxi-

mize a user-defined molecular property of interest, for example, RMSD relative to a reference

structure, molecular surface area, free energy, etc., provided that the property follows a

gradient.

In the present work, the RMSD of all RNA non-hydrogen atoms relative to the starting

bound-state NMR structure was chosen as the molecular property f whose value we sought to

maximize. By maximizing this RMSD, we hope to efficiently explore conformations that are

dissimilar to the experimental bound-state structure. Starting conformations for each batch of

simulations (other than the first batch) were chosen using the following algorithm[55]:

(i). Cluster all MD simulation conformations sampled so far into 10 discrete states and select

the cluster centroids as representative state structures. Ten was chosen as the number of

clusters in order to yield an average of three simulations started from each representative

structure in the upcoming batch of 30 simulations (step iii).

(ii). For each of the 10 representative state structures, calculate a reward function

rf ðiÞ ¼ �f ðiÞ þ a�yðiÞ ð1Þ

where i is the state, �f ðiÞ is a directed component favoring states that optimize the struc-

tural property f of interest (in this case the non-hydrogen-atom RMSD relative to the

original NMR structure), �yðiÞ is an undirected component that favors states that have

been poorly sampled so far compared to other states, and a is a parameter that dictates

the relative importance of the directed and undirected terms. For a property that one

wishes to maximize, as we wish to maximize RMSD, the value of �f ðiÞ is given as

�f ðiÞ ¼
f ðiÞ � fmin

fmax � fmin
ð2Þ

where f(i) is the value of f for state i, and fmax and fmin are the maximum and minimum

values of the property of interest, respectively, over all previously sampled conforma-

tions. The value of �yðiÞ, which is applied to favor poorly sampled states, is computed as

�yðiÞ ¼
Cmax � Ci

Cmax � Cmin
ð3Þ

where Ci is the number of observations of state i, and Cmax and Cmin are the maximum

and minimum number of observations of any state, respectively. A value of a = 1 was

chosen in order to give equal weighting to the directed and undirected terms. Previous

work has shown that a values ranging from 0.5 to 1.5 often give similar results[55].

(iii). Start a new batch of 30 simulations, using as starting conformations the cluster represen-

tatives from the ten clusters in step i, such that the number of simulations launched from

each state is proportional to the state’s reward function. Initial atomic velocities were

randomly assigned from a Maxwell distribution at a temperature of 298 K for each

simulation.

(iv). Repeat steps i-iii until a desired cumulative sampling time has been reached. We per-

formed batches until>20 μs of total simulation time had been achieved, requiring 23

batches.
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Markov state modeling of unbound aptamer simulation data

Markov state models (MSM) are increasingly used to analyze large volumes of MD simulation

data to extract long-timescale kinetic information from many short MD simulation trajecto-

ries[56–61]. We used the MSMBuilder2 software package[60] to construct an MSM based on

~210,000 RNA conformations taken from the ~21 μs of simulation data. These conformations

were clustered into 5000 microstates using the hybrid k-centers/k-medoids clustering method

[60] based on the RMSD of all non-hydrogen atoms of the eight nucleotides whose bases are

located within 0.8 nm of the bound theophylline in the NMR structure (residues 6, 7, 8, 22, 23,

24, 26, and 28). These residues constitute the theophylline binding site. The number of transi-

tions between microstates at an interval of a certain lag time is counted, and the count matrix

is then symmetrized and normalized to obtain the transition probability matrix (T). The Mar-

kov time, the time scale at which the model is Markovian, is revealed by examining the implied

time scales at different lag times. At a given lag time t, the implied time scale can be calculated

as

kðtÞ ¼
� t

ln½mðtÞ�
ð4Þ

where k(t) is the implied time scale and m(t) is an eigenvalue of the transition matrix T(t). If

the model is Markovian at lag time t, the implied time scales should remain constant when

using longer lag times. The minimum lag time yielding a Markovian model was determined as

20 ns, and this lag time was used to build the microstate MSM.

To make interpretation of the microstate model easier, we coarse-grained the 5000-micro-

state MSM into a macrostate model containing a small number of macrostates. In order to

determine a suitable number of macrostates, we used the Bayesian agglomerative clustering

engine (BACE)[62]. The calculated Bayes factor as a function of the number of macrostates

was examined, and a number of eight macrostates was the smallest number that immediately

preceded a large increase in the Bayes factor. Accordingly, we coarse-grained the microstate

model into eight macrostates using BACE. The population of each macrostate was calculated

as the sum of the equilibrium populations of microstates belonging to the macrostate. The

mean first passage time (MFPT) between each pair of states in the coarse-grained model was

calculated using the CalculateMFPTs tool implemented in MSMBuilder2.

We assessed whether the macrostate and microstate MSMs for the unbound RNA meet the

Markov assumption by testing whether they satisfy the Chapman-Kolmogorov equation. Spe-

cifically, we checked whether the approximation

½TðtÞ�k � TðktÞ ð5Þ

holds within the limits of statistical uncertainty. T(t) is the transition matrix estimated from

the MD trajectory data at lag time t (the MSM), and T(kt) is the transition matrix estimated

from the same trajectory data at longer lag times kt. To perform this check, we applied the

method described by Prinz et al. [63], according to which one compares the probability

pMSM(A, A; kt) of being in a given set of states A at times kt as predicted by the MSM and the

corresponding probability pMD(A, A; kt) computed directly from the MD trajectory data. For

each individual state in the macrostate MSM and for a small sample of individual states in the

microstate MSM, a separate Chapman-Kolmogorov test was performed. In each test, only the

one given macrostate or microstate being evaluated constituted set A. The probabilities pMD

(A, A; kt) and pMSM(A, A; kt) were computed using Eqs 62–63 and Eq 64, respectively, of ref.

[63]. Uncertainties in pMD(A, A; kt) were estimated using Eq 65 of ref. [63]. Plots of pMD(A,

A; kt) and pMSM(A, A; kt) were generated, and an assessment was made of the extent to which
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values of pMSM(A, A; kt) fall within the range of uncertainty of the corresponding values of

pMD(A, A; kt).
To estimate uncertainties in calculated MFPTs, 80% confidence intervals of all MFPTs were

computed by transition matrix sampling. Specifically, a Metropolis Monte Carlo simulation

with one million steps was applied. At each step, the values in the transition matrix were modi-

fied using the nonreversible element shift method described by Noé[64]. After every 1000

steps the MFPT vector was recalculated from the most recently modified transition matrix by

solving the matrix equation [65]

p11� 1 p12 *) p1K

p21 p22� 1 *) p2K

. .
.

pðK� 1Þ1 *) pðK� 1ÞðK� 1Þ� 1 pðK� 1ÞK

0 *) 0 1
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where the matrix on the left side of Eq (6) is referred to as A, with rows ai, the vector on the left

side is the set of MFPTs from state i to the final state K, t is the lag time, and the final line is the

boundary condition that the MFPT from the final state to the final state must be zero. From

the 1000 sets of recalculated MFPT vectors, 80% confidence intervals were computed for each

MFPT.

Uncertainties in macrostate populations were likewise estimated by calculating 80% confi-

dence intervals using the same Metropolis Monte Carlo procedure in conjunction with the

nonreversible shift element method applied to the transition matrix. A new set of populations

was calculated after every 1000 steps by solving for the normalized first left-eigenvector of the

most recently modified transition matrix. From the set of recalculated populations 80% confi-

dence intervals were computed.

Estimating theophylline binding affinities to RNA conformers in each

MSM macrostate

In an effort to determine which MSM macrostates are competent for ligand binding, we pre-

dicted average theophylline binding affinities to the RNA conformations in each of the eight

macrostates in the coarse-grained MSM using molecular docking. The SaveStructures tool in

MSMBuilder2 was used to save 500 randomly selected conformations from each of the eight

macrostates. AutoDock Vina[66] was then used to dock theophylline in the binding site region

in all of the 4000 selected RNA conformations. Atomic charges for theophylline and the RNA

were generated automatically using the prepare_ligand4.py and prepare_receptor4.py tools,

respectively, contained in the AutoDock Tools package[67] with their default parameters. The

docking region was defined as a cube with sides of length 1.0 nm centered at the center of

mass of the bases of RNA residues 6, 7, 8, 22, 23, 24, 26, and 28. All RNA binding site residues

were held rigid during docking, while full flexibility was allowed for the theophylline ligand.

For each receptor-ligand complex the most negative binding score was tabulated for analysis.

For the purpose of comparison, theophylline was likewise docked in its binding site for the

first conformer of the NMR structure.

Simulating experimental structure of RNA-theophylline complex

The theophylline-bound state of the RNA aptamer was modeled to compare the dynamics of

the bound state with those of the unbound state. The first conformer of the NMR structure of
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the aptamer bound to theophylline was used as the starting structure. Force field parameters

and a topology file for theophylline were prepared by ACPYPE[68]. Charges were calculated

using the ACPYPE default semi-empirical quantum chemistry program[69]. The RNA-the-

ophylline complex structure was solvated in a dodecahedral box containing 8352 TIP3P water

molecules in the presence of 10 mM Mg2+ and equilibrated using the same protocol as for the

simulations of unbound RNA. Following equilibration, 80 separate 10-ns production MD sim-

ulations were performed at 298 K, using different initial atomic velocities for each simulation.

Structures were saved for analysis every 100 ps.

Mapping theophylline binding pathway

Mapping the complete theophylline binding pathway to the unbound RNA aptamer can pro-

vide insight into the theophylline binding mechanism. We performed this mapping by run-

ning multiple sets of MD simulations of theophylline at discrete stages of its binding to the

aptamer. The centroid RNA conformation of the most highly populated binding-competent

macrostate from the coarse-grained MSM described previously was selected as a representative

unbound RNA structure.

Mapping diffusion of theophylline into binding site and initial complex formation.

The diffusion of theophylline into its RNA binding site and subsequent formation of the initial

RNA–theophylline complex were modeled by 16 sets of MD simulations starting from differ-

ent points along theophylline’s approach pathway and entry pathway into the binding site. The

simulation sets had starting conformations with varying distances between theophylline and

its binding site. To generate these initial conformations with varying distances, we first per-

formed a single 20-ns MD simulation of theophylline unbinding from this representative RNA

structure at 298 K. Force field parameters for theophylline were the same as those used for sim-

ulating the RNA–theophylline complex. The starting structure for the unbinding simulation

was the bound complex between theophylline and the representative RNA structure as gener-

ated by AutoDock Vina. This structure was solvated in the presence of 10 mM Mg2+ and

equilibrated using the same protocol as for the simulations of unbound RNA. Theophylline

unbinding was forced to occur on a short time scale by applying well-tempered metadynamics

[70,71] as implemented with the PLUMED 1.3 plugin[72]. Well-tempered metadynamics gen-

erates on the fly a history-dependent biasing potential as a function of a set of user-defined col-

lective variables (CV), discouraging the system from becoming trapped in low-energy basins

of phase space and allowing long-timescale events, such as ligand unbinding, to be observed

within normal simulation timescales. In the present work, we selected as a single CV the dis-

tance between the center of mass of theophylline and the center of mass of the binding site

residues’ bases. This CV was biased using a starting Gaussian height of 2.0 kJ/mol, Gaussian

widths of σ = 0.01 nm, a bias factor of 10, and a Gaussian deposition rate of 500 time steps

(1 ps). Theophylline completely dissociated from the RNA during the simulation, entering the

bulk solvent and ending at a distance > 3.0 nm from its binding site. Sixteen snapshots of the

unbinding simulation were taken at approximately equally spaced values of the CV ranging

from 0.4 nm to 3.0 nm, providing a continuous set of conformations linking the bound state to

the fully unbound state of theophylline.

The 16 snapshots taken from the theophylline unbinding simulation served as starting con-

formations for 16 sets of unbiased MD simulations of the RNA-theophylline system performed

at 298 K. Each simulation set consisted of ten separate 20-ns simulations that began from the

same starting structure but had different randomly assigned atomic velocities. Structures were

saved for analysis every 20 ps. The average simulation box volume for all RNA-theophylline

system simulations is 155 nm3, yielding an average theophylline concentration of 10 mM.
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An MSM was constructed to analyze the 160,000 conformations taken from the aggregate

3.2 μs of simulation time for the RNA-theophylline system. The conformations were clustered

into 1000 microstates using the hybrid k-centers/k-medoids clustering method, applying as a

clustering metric vectors containing intermolecular distances between five pairs of atoms

located in theophylline and in the RNA binding site (theophylline atom N7—C22 atom N3;

theophylline atom N9—U24 atom N3; theophylline atom O6—C22 atom N4; theophylline

atom N9—U24 atom O4; theophylline atom O2—C8 atom O4’). Plotting of implied time

scales showed Markovian behavior beginning at a lag time of 2 ns, and this lag time was thus

selected as the lag time for model building. The 1000-microstate model was subsequently

coarse-grained into a MSM with 10 macrostates using BACE. The flux and MFPT between

macrostates were calculated using the FindPaths and CalculateMFPTs tools, respectively, of

MSMBuilder2.

Mapping conformational rearrangement/induced fit process following initial theophyl-

line binding. In the initial complex formed between the RNA and theophylline, the binding

site is in a non-ideal conformation that differs greatly from that of the full-affinity complex

seen in the NMR structure. As a result, further structural changes in the binding site must take

place. To model these changes, we employed 10 rounds of FAST, with each round consisting

of 30 individual 20-ns MD simulations, providing a total of 6 μs of simulation data. The

RMSD between the non-hydrogen atoms of the binding site residues relative to those of the

first conformer of the NMR structure was used as the structural property to minimize. The dis-

crete conformations and numbers of each conformation to use at the beginning of each FAST

round were determined using the protocol outlined earlier.

Following the MD simulations, microstate and macrostate MSMs of the trajectories were

generated. Conformations were clustered into 5000 microstates by the hybrid k-centers/k-

medoids method using the same RMSD metric as that used for the FAST protocol. A lag time

of 5 ns allowed Markovian behavior and was thus used for building the microstate MSM. To

determine a suitable number of macrostates into which the microstate MSM could be coarse-

grained, a plot of the BACE-generated Bayes factor as a function of number of macrostates was

examined. A quantity of six macrostates immediately preceded a large increase in the Bayes

factor, and hence the microstate MSM was coarse-grained into a MSM containing six macro-

states using BACE. A lag time of 5 ns likewise allowed Markovian behavior for the macrostate

MSM and was used as the lag time for model construction.

Modeling theophylline-bound and unbound RNA aptamer in the absence

of Mg2+

The theophylline-bound and the unbound RNA aptamer were simulated in the absence of

Mg2+ in an effort to assess at atomic resolution the effects of Mg2+ on RNA dynamics and the

basis for the influence of Mg2+ on theophylline binding kinetics. The structure of the theophyl-

line-bound aptamer in the absence of Mg2+ was prepared from the initial NMR structure and

equilibrated using the same procedure as for the theophylline-bound aptamer in the presence

of Mg2+ but without adding Mg2+. After equilibration 80 separate MD simulations of length 10

ns were performed at 298 K, applying different initial atomic velocities for each simulation.

MD structures were saved for analysis every 100 ps.

The structure of the unbound aptamer in the absence of Mg2+ was prepared starting from

the NMR structure after deleting the theophylline. Equilibration was conducted following the

same procedure as for the unbound aptamer in the presence of Mg2+, with the exception of

adding Mg2+ to the system. REMD and structural clustering of the replica at 298 K were subse-

quently performed identically to those described previously. Thirty cluster centroids were used
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as initial conformations for a batch of 30 MD simulations of length 30 ns at 298 K. Five addi-

tional batches of 30 simulations each were subsequently carried out in succession, where start-

ing conformations for each batch were determined using FAST. The RMSD of non-hydrogen

atom positions relative to those in the starting structure was used as the metric to maximize. A

total of 5.4 μs of simulation time was obtained. MD structures were saved for analysis every

100 ps. The conformational space of the unbound aptamer in the absence of Mg2+ was mod-

eled by a MSM. Conformations were first clustered into 5000 microstates based on the RMSD

of non-hydrogen atoms in residues 6, 7, 8, 22, 23, 24, 26, and 28 using the hybrid k-centers/k-

medoids clustering method, and a MSM was then constructed employing a lag time of 20 ns.

The 5000-microstates model was subsequently coarse-grained by BACE into a MSM contain-

ing 6 macrostates.

Predicting RNA–theophylline complex lifetimes

We estimated the kinetics of theophylline unbinding from its RNA binding site in the presence

and absence of Mg2+ by predicting the lifetime of the RNA–theophylline complex, which is the

inverse of the dissociation rate koff of theophylline. Starting from the equilibrated NMR struc-

ture of the RNA-theophylline complex in the presence of 10 mM Mg2+, a set of 40 independent

well-tempered metadynamics simulations using PLUMED1.3 was applied to accelerate theoph-

ylline unbinding at 298 K. The distance between the center of mass of theophylline and the cen-

ter of mass of the binding site residues’ bases was chosen as the first CV. The solvent

coordination number of theophylline was chosen as the second CV, using as parameters n = 6,

m = 12, r0 = 0.05 nm, and d0 = 0.25 nm. The first CV alone was biased using a starting Gaussian

height of 2.5 kJ/mol, Gaussian widths of σ = 0.05 nm, a bias factor of 10, and a Gaussian deposi-

tion rate of 2500 time steps (5 ps). Simulations were stopped once theophylline was unbound

and fully solvated, as determined by the theophylline solvent coordination number (second

CV) reaching a stable plateau. The unbiased rate of theophylline unbinding was obtained from

the biased rate using the method recently introduced by Tiwary and co-workers[73]. Briefly,

the acceleration provided by metadynamics for a process such as ligand unbinding can be

calculated from the bias deposited throughout the simulation. The acceleration factor a is

determined by a running average accumulated throughout the course of the metadynamics

simulation and is given by

a ¼ eVðs;tÞ=kBT

 �

ð7Þ

where s is the biased CV and V(s,t) is the bias experienced at time t[74–76]. The latter is

obtained from the COLVAR file produced by PLUMED during the metadynamics simulation.

To obtain the unbiased time for theophylline unbinding, the acceleration factor a, as calculated

at the time when complete unbinding has occurred, is multiplied by the observed simulation

time required for this complete unbinding. This process was repeated for all 40 independent

metadynamics simulations. The distribution of unbiased unbinding times was analyzed by

applying the method described in ref. [77]. This analysis yields an estimate of the characteristic

time required for theophylline unbinding, which is equivalent to the RNA–theophylline com-

plex lifetime. The standard error of the computed lifetimes was estimated using the bootstrap-

ping method[78].

This procedure was repeated for the equilibrated NMR structure of the RNA-theophylline

complex in the absence of Mg2+ and for a single structure taken from the aggregate simulation

data for the unbound RNA in the absence of Mg2+. The latter structure was obtained by clus-

tering all the saved conformations from the set of Mg2+-free simulations of unbound RNA
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into a single cluster and selecting the centroid structure, followed by docking of theophylline

into the binding site of the centroid structure using AutoDock Vina.

RNA secondary structure and base stacking calculations

RNA secondary structure and base stacking calculations were performed by the 3DNA-DSSR

suite of programs[79] for analysis of nucleic acid structures.

RNA images

All RNA tertiary structural images were produced using UCSF Chimera[80].

Results and discussion

In the following sections, we comment on validation of the Markov state model (MSM) for

MD simulations of the unbound RNA aptamer. Then we characterize the conformational

landscape of the unbound aptamer by analyzing both global structure and local structure

involving the theophylline binding site. We similarly characterize the conformational land-

scape of the bound aptamer and highlight its similarities and differences relative to the

unbound-state landscape. Moreover, we map the complete binding pathway of theophylline

and discuss its modeled binding mechanism. Finally, we analyze the role that Mg2+ plays in

stabilizing the aptamer and the structural basis for how Mg2+ affects the kinetics of theophyl-

line unbinding.

MSM validation for simulations of unbound RNA

MSMs are kinetic network models that model conformational dynamics of biomolecules as

transitions between metastable states[56–61,81]. A major advantage of applying MSMs in con-

junction with MD simulations is that MSMs offer an efficient sampling strategy permitting

many short MD trajectories to be used to sample transitions between metastable states, while

MSM networks describe long-timescale dynamics and equilibrium properties. The use of

MSMs thus often makes it unnecessary to conduct long-timescale simulations, instead allow-

ing brief simulations to be run in parallel. MSM methods have recently proven highly useful

for modeling conformational dynamics of biomolecules on long timescales[55,82–85], includ-

ing protein folding simulations on the millisecond timescale[86]. Consequently, we generated

both microstate and macrostate MSMs to probe the conformational landscape of the unbound

RNA aptamer at 298 K, including the distinct RNA conformations that characterize metastable

states and the kinetics and energetics of transitions between states.

We have validated that our MSMs for the aggregate ~21 μs of MD simulation data for the

unbound RNA are Markovian in nature. Adequate sampling is essential for determining valid

kinetic and equilibrium information from molecular simulations. MSMs allow extraction of

such information from large numbers of simulations that are individually much shorter than

the timescales of the phenomena being monitored, but Markovian behavior of the constructed

model must be confirmed. In MSM validation, a requirement for Markovian behavior is that

the MSM satisfy the Chapman-Kolmogorov equation and that implied timescales remain con-

stant at different lag times. We validated the latter by observing the implied timescale plot at

different lag times. The implied timescales for the 5000-microstate model cease to change after

a lag time of ~20 ns (Fig 1A), which was thus used to construct the microstate MSM. In the

present study the quantitative properties, including mean first-passage times (MFPTs), are

computed from the microstate MSM. We similarly evaluated the Markovian behavior of the

coarse-grained 8-macrostate model that was generated by BACE, and the implied timescales
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Fig 1. Implied timescales of Markov state models of unbound RNA. (A) Implied timescale plot for the

5000-state microstate MSM. (B) Implied timescale plot for the 8-state macrostate MSM. (C) Bayes factor as a

function of number of coarse-grained macrostates. The smallest number of macrostates immediately

preceding a large increase in the Bayes factor (8) was selected as the number of macrostates to include in the

macrostate MSM.

https://doi.org/10.1371/journal.pone.0176229.g001
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likewise remain constant after a lag time of ~20 ns (Fig 1B), which was applied to construct the

macrostate MSM. The selected number of eight macrostates was based on the plot of the com-

puted Bayes factor as a function of number of macrostates, which shows a marked increase

between eight and seven macrostates (Fig 1C).

Additionally, we evaluated the Markovianity of the macrostate and microstate MSMs of the

unbound RNA by applying a more rigorous test of whether the models satisfy the Chapman-

Kolmogorov equation. For the macrostate MSM, the probabilities pMSM(A, A; kτ) of being in

each macrostate at times kτ (ranging from 1 to 3) as predicted by the MSM were compared

with the corresponding probabilities pMD(A, A; kτ) as calculated directly from the trajectory

data (S1A Fig). The two probabilities agree reasonably well for many values of kτ for macro-

states 1, 4, 7 and 8, with the values of pMSM(A, A; kτ) occurring within the range of uncertain-

ties in pMD(A, A; kτ) (error bars in S1A Fig), but the probabilities agree less well for the

remaining macrostates. For the microstate MSM, due to the low individual populations of

most microstates, the uncertainties associated with pMD(A, A; kτ) are generally larger than

those observed for the macrostate MSM. For a small, randomly chosen sample of analyzed

microstates (1, 100 and 1000), there is agreement within error between pMD(A, A; kτ) and

pMSM(A, A; kτ) for a majority of kτ values, while for microstate 5000 there is poorer agree-

ment (S1B Fig). It should be noted that, although the maximum kτ value of 3 used here is not

particularly large for a thorough application of the Chapman-Kolmogorov test, it is the greatest

value that can be applied since the original τ is 10 ns and the individual simulations are of

length 30 ns. Overall, the Chapman-Kolmogorov test results do not indicate strong Markovian

behavior. Nonetheless, as is frequently noted by other authors, the invariability of the implied

timescales beyond the chosen value of τ strongly suggests that the overall behavior of the

model is reasonable[87], despite some individual states not being perfectly Markovian.

Analysis of conformational landscape of unbound RNA

In the presence of bound theophylline, the theophylline aptamer forms a stable structure with

well conserved secondary and tertiary structure (Fig 2). However, as shown by the modeling

data presented here and by prior NMR studies, in the absence of theophylline, the RNA apta-

mer has a complex conformational landscape, exploring a diverse range of three-dimensional

Fig 2. Solution NMR structure of theophylline aptamer in the bound state. (A) Secondary structure. (B)

Tertiary structure. The bound theophylline molecule is colored magenta. (C) Theophylline structure. Depicted

RNA structures are based on the first conformer of PDB entry 1EHT. Secondary structure diagram was

generated by the RNApdbee webserver[88].

https://doi.org/10.1371/journal.pone.0176229.g002

Conformational landscape of a ligand-free theophylline-binding RNA aptamer

PLOS ONE | https://doi.org/10.1371/journal.pone.0176229 April 24, 2017 13 / 34

https://doi.org/10.1371/journal.pone.0176229.g002
https://doi.org/10.1371/journal.pone.0176229


conformations. Our macrostate MSM indicates that two of the kinetically stable macrostates

dominate the overall conformational landscape of the unbound aptamer in terms of relative

populations (Fig 3). These two most populated macrostates, states 3 and 6, have relative popu-

lations of 43.9% and 38.9%, respectively, together accounting for approximately 83% of the

Fig 3. Conformational diversity of unbound RNA in the presence of 10 mM Mg2+. Shown are centroid

structures of the eight macrostates (M1-M8) taken from the macrostate MSM constructed from 21 μs of MD

simulation data. Within parentheses, binding-competent and binding-incompetent macrostates are labeled active

and inactive, respectively, and relative populations of macrostates are indicated. Free energies FEi (units of kT) of

macrostates relative to FEref, the free energy of the most populated macrostate (macrostate 6, labeled M6), are

listed. FEi values are computed as FEi = –ln(pi/pref), where pi and pref are respectively the relative populations of the

ith macrostate and the most populated macrostate. Average AutoDock Vina scores for theophylline docking to 500

randomly sampled conformations from each macrostate are listed below the RNA images. Nucleotides defining the

theophylline binding site are colored magenta, and C27 is colored green. To enable comparison with the

experimental bound-state structure, the first conformer of the solution NMR structure (PDB entry 1EHT) is also

shown; the molecular surface of bound theophylline is colored orange.

https://doi.org/10.1371/journal.pone.0176229.g003
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totality of microstate populations that were coarse-grained into the macrostate MSM. The

remaining six macrostates are much less populated, with relative populations ranging from

0.5% to 6.0%.

The mean time required for the RNA to reach a given ending macrostate j from a different

starting macrostate i, referred to as the mean first passage time (MFPTij) for that transition,

ranges from 50 ns to 4430 ns and has an average value of 1670 ns for all 56 possible transitions

(Fig 4). Transitions to the two most populated states (states 6 and 3) occur most quickly, with

average MFPTs of 90 ns and 110 ns, respectively, whereas transitions to the two least populated

states (states 7 and 8) occur most slowly, with average MFPTs of 4060 ns and 3820 ns, respec-

tively. Similarly, transitions out of the two most populated states take place on the slowest

timescale (average MFPTs of 1970 ns and 1980 ns), while transitions out of the two least popu-

lated states take place on the fastest timescale (average MFPTs of 1170 and 1420 ns).

The value of MFPTij is inversely proportional to kij, where kij is the rate constant for the

transition between macrostates i and j. Since rate constants are proportional to the exponential

of free energy barriers, assuming Arrhenius kinetics, differences in MFPTs reflect differences

in heights of free energy barriers between macrostates. Transitions from state 1 to state 6 and

from state 3 to state 6 are the fastest transitions, both having an MFPT of 50 ns, and thus the

free energy barriers for these two transitions are expected to be the lowest barriers separating

macrostates in the free energy surface of the unbound RNA. Heights of free energy barriers for

all other macrostate transitions relative to the lowest barriers can be estimated directly from

the set of MFPT values. As shown in Fig 5, the largest free energy barrier is ~4.5 kT higher

than the lowest barriers. This transition corresponds to the transfer from state 5 to state 7, the

least populated state featuring the highest relative free energy.

Four of the eight macrostates are amenable to theophylline binding. To estimate which

macrostates are competent for theophylline binding, we attempted to dock theophylline in its

Fig 4. Computed mean first passage times (MFPTs) between different macrostates. Average MFPTs

into each ending macrostate are listed above the columns, and average MFPTs out of each starting

macrostate are listed to the right of the rows. All times are in terms of nanoseconds.

https://doi.org/10.1371/journal.pone.0176229.g004
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binding site in 500 RNA conformations randomly taken from each macrostate. Since theoph-

ylline docks in its binding site in the NMR structure with an AutoDock Vina binding score of

–5.7 kcal mol–1, we selected a binding score of –5.0 kcal mol–1 as a cutoff separating binding-

competent and binding-incompetent states. A macrostate is designated as binding-competent

(active) if its average theophylline docking score is� –5.0 kcal mol–1 and is otherwise desig-

nated as binding-incompetent (inactive). As shown in Fig 3, only macrostates 1, 2, 5, and 6 are

binding-competent, having average docking scores of –5.7 kcal mol–1, –5.0 kcal mol–1, –5.3

kcal mol–1, and –5.3 kcal mol–1, respectively. These four macrostates collectively account for

58% of the relative population. This proportion of binding-competent states agrees well with

the experimental observation that 33–62% of the unbound aptamer is in a conformation that

permits theophylline binding[4].

The unbound RNA tertiary structure undergoes significant conformational changes

between the eight macrostates (Figs 3 and 6). To structurally characterize the major free energy

basins in the conformational landscape, we analyzed both the tertiary and secondary structures

of conformers within each macrostate. The RNA main chain (atoms P, O5’, C5’, C4’, C3’, and

O3’) adopts a wide range of tertiary structures throughout the 21 μs of simulations. These ter-

tiary structures have global main chain RMSD values relative to the NMR structure that range

from 0.2 nm to 1.4 nm, with an average value of 0.50 nm. The main chain conformation often

varies widely also between macrostates (Fig 6A). For example, the conformers in states 5 and 7

have an average main chain RMSD of 0.67 nm relative to one another, while the conformers in

states 4 and 5 have a similar average main chain RMSD of 0.62 nm. In contrast, states 5 and 8

are more similar to one another in terms of main chain conformation, with an average RMSD

of only 0.33 nm. As shown in Fig 6B–6D, not only does the global main chain conformation

Fig 5. Free energy barriers separating MSM macrostates relative to the two lowest free energy

barriers. Average relative free energy barriers for transitions into each ending macrostate are listed above the

columns, and average relative free energy barriers for transitions out of each starting macrostate are listed to

the right of the rows. All energies are in units of kT. (The two lowest free energy barriers correspond to

transitions from state 1 to state 6 and from state 3 to state 6.)

https://doi.org/10.1371/journal.pone.0176229.g005
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adopt heterogeneous structures, but different regions of the RNA structure also show varying

degrees of flexibility and ranges of motion. The G1 and C33 termini undergo the largest range

of motions, as their individual main chain RMSD values relative to the NMR structure span a

wide interval of ~2.5 nm. Similarly, the GAAA tetraloop (nucleotides 14–17) and five of the

nucleotides defining the theophylline binding site (nucleotides 6, 7, 8, 22 and 23) are highly

mobile, having per-residue RMSD value ranges of ~2.0 nm.

Similarly to the GAAA tetraloop and a portion of the binding site, C27 is dynamic and

explores a wide range of conformations. The C27 base alternates between being buried in the

theophylline binding site in macrostates 2, 3 and 5, partially exposed to solvent in macro-

states 4 and 7, and completely exposed to solvent in macrostates 1, 6 and 8 (Fig 3). For the

unbound-state simulations, the average solvent-accessible surface area (SASA) of the C27

Fig 6. Variability of RNA tertiary structure in the unbound state. (A) All-versus-all root-mean-squared

deviation (RMSD) chart for pairs of macrostates. Average main chain RMSD values (in nm) for all

conformations within each macrostate pair are listed. (B) Main chain overlay of 50 conformations selected

randomly from each macrostate. (C) Main chain RMSD ranges of individual nucleotides relative to the

reference NMR structure after main chain fitting. The NMR structure is depicted, and per-nucleotide RMSD

ranges are colored by nucleotide. (D) Bar plot of ranges of RMSD values of individual nucleotides relative to

the NMR structure after main chain fitting. Bars corresponding to nucleotides in the theophylline binding site

and nucleotides of the GAAA tetraloop are colored black and gray, respectively.

https://doi.org/10.1371/journal.pone.0176229.g006
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base is 0.65 ± 0.20 nm2 (mean ± standard deviation), whereas for the NMR structure of the

theophylline-bound state the corresponding SASA is 0.99 nm2. Moreover, the C27 base

forms base stacking interactions with nucleotides both above and below the plane of its base

in 35% of the sampled unbound conformations. These observations are consistent with prior

experimental work showing that C27 is predominantly buried and participates in extensive

base stacking interactions when the RNA is unbound but shifts outward into solution when

theophylline binds[38].

In the absence of bound theophylline, the secondary structure of the RNA also varies signif-

icantly. Throughout the 21 μs of simulation time, 39 unique secondary structures are observed

(Fig 7). The stem containing the G11-C20, C12-G19, and C13-G18 canonical Watson-Crick

(WC) base pairs, the stem containing the C8-G26 and C9-G25 WC base pairs, and the G4-C30

WC base pair remain intact in all observed secondary structures. However, in contrast to the

RNA secondary structures for the ten conformers of the bound-state NMR structure, the

G1-C33, G2-U32, and C3-G31 WC base pairs are formed only in a portion of the simulated

conformations of the unbound RNA. The G2-U32 and C3-G31 base pairs frequently rearrange

such that they adopt a non-WC conformation. Of the 46 hydrogen bonds occurring between

bases in the NMR structure, an average of only 30 ± 2 hydrogen bonds are formed in the aggre-

gate simulation time, further indicating that removal of theophylline perturbs the native

(bound-state) secondary structure. Moreover, when the RNA is not bound to theophylline, a

non-native base pair forms in the theophylline binding site between the bases of U6 and G29

in ~40% of conformations. This base pairing interaction helps to close the binding site to

make the RNA incompatible with ligand binding (see below).

The theophylline binding site is destabilized and takes on multiple heterogeneous confor-

mations among the eight macrostates that the unbound RNA explores. Several of the residues

that form the binding site adopt significantly different spatial arrangements relative to one

another in each macrostate (Fig 8). Although C8 and G26 consistently form a native WC base

pair and U6, C22, and A7 consistently form base stacking interactions, the bases of U23, U24,

and A28 are inconsistent in their relative positions. In macrostates 1 and 6, for instance, U24

and A28 form base stacking interactions with each other, whereas in macrostates 2 and 7 they

are separated by 0.9 nm and 1.7 nm, respectively. Similarly, the base of U23 pairs with the base

Fig 7. Six most frequently observed RNA secondary structures in the absence of bound theophylline.

Numbers denote proportions of all analyzed simulation snapshots in which the RNA adopts the depicted

secondary structures. Bases that participate in canonical and non-canonical base pairing interactions are

depicted in blue circles and yellow circles connected by dotted lines, respectively. Unpaired bases are

depicted in unconnected yellow circles. The secondary structure of the bound-state NMR structure is shown

on the far right. Secondary structure diagrams were generated by the RNApdbee webserver[88].

https://doi.org/10.1371/journal.pone.0176229.g007
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of U6 in macrostates 1, 2, 3, and 6, as well as in the NMR structure, but in macrostates 4 and 7,

it swings outward into solution to a position ~1.5 nm away from the U6 base. Moreover, as

described previously, the C27 base is highly mobile; it is located outside the binding pocket

and is completely solvent-exposed in macrostates 1, 6, and 8, yet remains buried within the

pocket in macrostates 2, 3, and 5.

As a result of the conformational heterogeneity of the binding site-defining residues, several

of the macrostates are characterized by only a partially formed or even a completely missing

binding pocket (Fig 8 and S2 Fig). For example, macrostate 3 features a close stacking interac-

tion between G26 and A28, whereas in the NMR structure and the binding-competent

unbound structures the G26 and A28 bases are separated by an average distance of ~0.8 nm.

This close stacking interaction seals off a large portion of the binding site, which relies on the

presence of a significant separation between G26 and A28. Similarly, in macrostates 4 and 7,

the bases of A7, C8, C22, G26, and A28 are clustered tightly together, leaving no binding

pocket and completely abolishing the ability of theophylline to dock inside the RNA. The aver-

age theophylline docking scores to 500 randomly sampled conformations from macrostates 3,

Fig 8. Spatial arrangements of the bases that form the theophylline binding site in macrostates 1–8. The base of nucleotide C27 is colored

green. Hydrogen bonds are depicted as dotted lines.

https://doi.org/10.1371/journal.pone.0176229.g008
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4, and 7 as calculated by AutoDock Vina are 2.8 kcal mol–1, 11.0 kcal mol–1, and 13.3 kcal

mol–1, respectively. These positive scores reflect the absence of a binding pocket that can

accommodate any of theophylline’s molecular volume (S2 Fig). In macrostate 8 the RNA has

only a small, shallow cleft and minimal surface area contact with theophylline, corresponding

to an average docking score of –1.3 kcal mol–1. However, despite these disruptions to the bind-

ing site conformation, macrostates 1, 2, 5, and 6 remain capable of accommodating theophyl-

line and forming stabilizing intermolecular hydrogen bonds.

Overall, the modeled unbound-state conformational landscape of the theophylline aptamer

is in qualitative and quantitative agreement with previous kinetic studies showing that only a

portion of the RNA population adopts a conformation amenable to theophylline binding.

Moreover, the models are consistent with NMR data indicating that the RNA tertiary structure

and the theophylline binding site structure, in particular, are not stably formed in the absence

of bound theophylline[4,38]. However, the use of MD simulations in conjunction with MSMs

offers the advantage of allowing the specific alternative, unstable structures to be visualized at

atomic spatial resolution and permitting the dynamical behavior of the RNA to be quantified

on the picosecond timescale, including the kinetics of transitions between active and inactive

conformations. Additionally, the RNA conformations revealed by our modeling allow us to

explain the structural basis for why the binding site in certain macrostates is incapable of

accommodating theophylline.

Comparison of conformational landscapes of theophylline-bound versus

unbound RNA

To elucidate the effects of bound theophylline on the RNA conformational landscape relative

to the unbound-state landscape, we performed 80 individual 10-ns MD simulations of the the-

ophylline-bound RNA, starting from the NMR structure, yielding a total simulation time of

800 ns. The presence of bound theophylline greatly decreases the range of conformations

adapted by the RNA. Throughout the 800 ns of simulation time, the main chain RMSD relative

to the starting NMR structure ranges from 0.12 nm to 0.47 nm and has an average value of

0.26 nm. These RMSD values are considerably lower than those for the unbound RNA, which

rises as high as 1.4 nm and has an average value of 0.50 nm.

Moreover, the flexibility of most individual residues is lower in the bound RNA, as mea-

sured by their main chain root-mean-squared fluctuation (RMSF) values (S3 Fig). Most nota-

bly, U32 and C33 are significantly more flexible in the absence of theophylline than they are

in the presence of theophylline, having RMSFs that are 0.15 nm greater in the unbound versus

in the bound state. Similarly, the majority of binding site residues are more flexible in the

unbound state, allowing them to take on the diverse set of conformations shown in Fig 8 and

S2 Fig. A notable exception to this overall trend of lower residue flexibility in the bound RNA

involves C27, whose RMSF is 0.15 nm greater in the presence of theophylline. In the RNA–

theophylline complex, C27 extends outward into the bulk solvent in all analyzed conforma-

tions, having a mean base SASA of 1.35 nm2, and its base forms no stabilizing interactions

with other residues. This lack of stabilizing interactions allows greater flexibility than in the

unbound state, when C27 is frequently buried in the binding site (having a mean base SASA of

only 0.65 nm2) and forms hydrogen bonds with other residues.

The bound RNA also adopts a much smaller diversity of secondary structures compared to

the unbound RNA. In contrast to the 39 unique secondary structures observed during the

unbound RNA simulations, only 17 unique secondary structures are visited by the bound

RNA. The two most frequently occurring secondary structures account for 90% of the ana-

lyzed simulation conformation (S4 Fig). These two secondary structures are identical to the
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NMR structure and identical to one another, with the exception of a missing base pair between

G1 and C33 in the most frequent structure. Each of the remaining 15 secondary structures

accounts on average for only ~0.7% of conformations.

Not only does the presence of theophylline stabilize the global structure and binding site

structure, but it also stabilizes the S-turn that is formed between C22 and G26. In the bound-

state simulations, this sharp S-turn retains a conformation similar to that in the NMR structure

and has an average distance of 0.4 nm between the main chain phosphate atoms of C22 and

G25. However, when the RNA is unbound the S-turn is greatly distorted, and the average dis-

tance between the main chain phosphate atoms of C22 and G25 increases to 1.3 nm (Fig 9). As

a result of this decrease in S-turn sharpness, the Mg2+ binding site provided by the S-turn is

lost in the absence of theophylline. For the simulations in the theophylline-bound state, a

Mg2+ ion remains positioned at 0.6 nm from the center of mass of the S-turn over the course

of all simulations. In contrast, in the theophylline-free simulations the closest Mg2+ ion is posi-

tioned at an average distance of 1.5 nm. The loss of a Mg2+ binding site is presumably the con-

sequence of the greater distance between the backbone phosphates in the S-turn and hence of

a reduced driving force for divalent cations to stabilize charge-charge repulsion between these

phosphate groups.

Fig 9. Loss of S-turn between C22 and G26 in unbound RNA. The main chain of residues 22–26 is

colored red; phosphorous atoms of residues 22–26 are depicted as orange spheres. Distances between main

chain phosphate atoms of C22 and G25 are indicated. The sharp S-turn in the theophylline-bound state is

shown for comparison.

https://doi.org/10.1371/journal.pone.0176229.g009
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Theophylline binding pathway and binding mechanism

We have combined MD simulations and Markov state modeling to map the complete theoph-

ylline binding pathway at a theophylline concentration of 10 mM, starting from theophylline

in bulk solution and ending in the fully bound conformation of the NMR structure. Our

mapped pathway shows that the theophylline binding mechanism involves conformational

selection followed by induced fit. NMR data[4] have demonstrated that only ~33–62% of the

population of unbound RNA is in an active, binding-competent conformation (RNAactive),

which is further supported by our modeling in the present study. Consequently, in previous

models of theophylline binding the first step in the binding mechanism involves a conforma-

tional selection process in which an ensemble of inactive, binding-incompetent RNA confor-

mations (RNAinactive) spontaneously undergoes a conformational change to RNAactive (Fig 10).

Once the conformational change to RNAactive has taken place, theophylline associates with the

binding site and forms the RNA–theophylline complex.

Kinetic experiments have shown, however, that RNAactive is not in an optimal conforma-

tion for theophylline binding[4]. The apparent association rate constant k2 for theophylline

binding (~2 x 105 M–1 s–1) is more than 1000 times slower than that for diffusion-controlled

binding[89], whereas for an ideally preformed binding site a value of k2 near the diffusion

limit would be expected. Thus, it has been hypothesized that the slower kinetics of theophyl-

line binding are the result of a process in addition to conformational selection, such as

additional conformational rearrangement of the theophylline binding site after ligand associ-

ation, ligand desolvation, or RNA desolvation[4]. To our knowledge, nevertheless, no studies

have resolved which, if any, of these conjectured secondary processes best explains the slow

association kinetics. Our modeling here strongly supports the hypothesis that conforma-

tional rearrangement of the binding site occurs after the initial association between RNAactive

and theophylline.

The complete predicted theophylline binding pathway is shown in schematic form in Fig

11A. The centroid structure of the most populated binding-competent unbound macrostate

(macrostate 6) was selected as the unbound RNA target conformation for which the pathway is

to be modeled. We refer to this unbound starting RNA conformation as RNAactive,C27-fully-buried

because the RNA is in an active, binding-competent conformation, but the C27 base is

completely buried in the binding pocket. It should be noted that since the modeled pathway

begins with an RNAactive conformation, the conversion from RNAinactive to RNAactive is not

explicitly considered here; this conversion takes place as part of the continual transitions

between macrostates described previously.

The initial phase of the binding pathway, in which theophylline diffuses into the RNA bind-

ing site from bulk solution, was modeled first. A MSM with a lag time of 2 ns was constructed

for the diffusion process, starting with theophylline in bulk solution 0.3 nm from the binding

site. Transition path theory (TPT) was used to compute the flux of the top five pathways

between the fully unbound starting state and the end state, in which theophylline has just

Fig 10. Previously proposed theophylline binding mechanism based on NMR data. (Figure adapted

from ref. [4]).

https://doi.org/10.1371/journal.pone.0176229.g010
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entered the binding site. The single diffusion pathway with the highest flux (80%) shows the-

ophylline approaching the binding site “backwards,” with its two methyl groups positioned

closest to the entrance (Fig 11B). When the center of mass of the ligand is ~0.7 nm from the

entrance, the ligand rotates by 180˚ such that its N7 and N9 atoms point toward the binding

Fig 11. Complete modeled theophylline binding pathway. (A) Schematic showing the main intermediate states

between initial diffusion of theophylline into the RNA binding site (RNAactive,C27-fully-buried + Theo) and the final, fully

associated RNA–theophylline complex observed in the NMR structure (RNAactive,C27-fully-out•Theo). (B) Molecular view

of the binding pathway. Mean first-passage times (MFPT) required to transition between consecutive intermediate

states are shown. The conformational transition from the RNAactive,C27-partially-buried•Theo state, in which theophylline is

bound within a non-optimal binding pocket, to the state RNAactive,C27-fully-out•Theo, in which the binding pocket has

reached its final, optimal conformation, is characteristic of an induced fit process. This induced fit follows the

previously known conformational selection binding mechanism. Theophylline and the C27 base are colored magenta

and green, respectively.

https://doi.org/10.1371/journal.pone.0176229.g011
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site. Theophylline then diffuses partially into the site, with its six-membered ring remaining

partly exposed to solvent, forming a weak complex with the RNA. The MFPT for this process

of diffusion and initial weak complex formation is 210 ns. We refer to the weak RNA–theoph-

ylline complex as RNAactive,C27-fully-buried•Theo, as the C27 base remains fully buried in the

RNA even after initial complex formation. Interestingly, in this weak complex, theophylline

has an orientation within the binding site that is inverted relative to its orientation in the

final, fully bound complex observed in the NMR structure. In the fully bound complex, atom

N7 of theophylline is located proximally to C22 and atom N9 is located proximally to U24

(S5A Fig). However, in the weak complex, N9 is positioned close to C22, while N7 is posi-

tioned close to the base of C27 rather than U24; C27 forms an integral part of the binding site

in RNAactive,C27-fully-buried•Theo (S5B Fig). A single non-native hydrogen bond is formed

between the N4 atom of C27 and atom O6 of theophylline in RNAactive,C27-fully-buried•Theo.

Despite the formation of this hydrogen bond, RNAactive,C27-fully-buried•Theo is a weak complex

since theophylline is only partially buried and still partly solvent-exposed (S5C Fig). The bur-

ied surface area between theophylline and the RNA in the initial weak complex is only 2.6

nm2, compared to 3.5 nm2 in the fully bound complex.

Approximately 75 ns after theophylline diffuses into the binding site, the C27 base has

begun to swing away from its starting position, and theophylline has rotated into its final, "cor-

rect" bound orientation, with its N7 and N9 atoms positioned near C22 and U24, respectively

(Fig 11B). Moreover, theophylline has entered completely into the binding site, becoming

fully buried within the RNA and losing the solvent exposure of its six-membered ring. At this

point in the binding process, however, the binding site has not yet reached its final configura-

tion, as the C27 base is still partially buried within the binding site. We refer to this state as

RNAactive,C27-partially-buried•Theo. Thus, the RNA has not yet reached its optimal conformation

for theophylline binding.

We constructed an additional MSM with a lag time of 5 ns to map the conformational change

from the RNAactive,C27-partially-buried•Theo state to the final state featuring the optimal binding site

conformation of the NMR structure. The latter is designated as RNAactive,C27-fully-out•Theo. The

MSM for this conformational change is based on a set of 300 MD simulations, starting from the

RNAactive,C27-partially-buried•Theo conformation, that were performed with an objective function

of minimizing the binding site RMSD between RNAactive,C27-partially-buried•Theo and the first

conformer of the NMR structure. A plot of implied timescales for this MSM is provided in S6

Fig. According to the MSM, after a MFPT of 48 μs, the C27 base has transitioned from its par-

tially buried conformation to its solvent-exposed conformation that characterizes the fully

bound state, and the binding site residues have reached their final, optimal conformation

(Fig 11B).

These data corroborate the prior hypothesis that a conformational rearrangement after

initial complex formation is at least partly responsible for reducing the association rate con-

stant from the diffusion-controlled rate[4]. The modeled requirement for a structural

rearrangement connecting RNAactive,C27-partially-buried•Theo to RNAactive,C27-fully-out•Theo

suggests that theophylline binds to the RNA aptamer through a complex mechanism involv-

ing both conformational selection, as previously known, and induced fit. The conforma-

tional change of the induced fit process is predicted to occur on a timescale (48 μs) that is

~230 times greater than that of the diffusion of the ligand into the binding site (210 ns). This

timescale difference is smaller than the ~1000-fold difference observed in kinetic experi-

ments[4], but the MSM nonetheless indicates the sequence of specific conformational rear-

rangements that must take place in the binding site in order for the experimentally observed

complex to be reached.
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Structural basis for role of Mg2+ in enhancing theophylline binding

kinetics

Previous studies have shown that Mg2+ plays a key role in stabilizing the RNA–theophylline

complex, increasing the affinity for theophylline by 10,000-fold relative to that in the absence

of Mg2+ [4,34,90]. It has also been demonstrated that Mg2+ has a major effect on the kinetics of

theophylline binding; the apparent kon in the presence of 10 mM Mg2+ is ~310-fold greater

than that in the absence of Mg2+ [39]. Furthermore, in the presence of 10 mM Mg2+ the life-

time (1/koff) of the complex is 14 s, while the complex lifetime in the absence of Mg2+ is� 50

ms[4]. It is well established that Mg2+ is critical for the correct folding and function of many

RNAs. As a recent example, Mg2+ has been shown to stabilize the folded, ligand binding-com-

petent state of a 49mer RNA ribozyme Diels-Alderase [91]. This general requirement of Mg2+

for correct RNA folding and function has led other authors to suggest that for the theophylline

aptamer, the presence of Mg2+ leads to an increase in the population of binding-competent

molecules[39]. Therefore, we sought to assess the structural and dynamical effects of the

absence of Mg2+ on both the theophylline-bound and theophylline-free states of the RNA at

atomic resolution. Total simulation times of 800 ns and 5.4 μs were used to model these two

states, respectively, with no Mg2+ present.

The absence of Mg2+ has little effect on the structure or dynamics of the RNA–theophylline

complex. In the absence of Mg2+, the global RNA main chain RMSD for the complex relative

to the starting NMR structure ranges from 0.21 nm to 0.49 nm and has an average value of

0.33 nm. These RMSD values are comparable to those observed in our simulations of the com-

plex in the presence of 10 mM Mg2+, for which the maximum and average main chain RMSD

values are respectively 0.47 nm and 0.26 nm. In addition, the RMSD of non-hydrogen atoms

of the binding site residues relative to the starting structure ranges from 0.14 nm to 0.27 nm in

the absence of Mg2+. Collectively, these sets of RMSD values indicate that both the global RNA

structure and the binding site structure exhibit roughly the same degree of structural variabil-

ity regardless of whether 10 mM Mg2+ is present. Moreover, the secondary structures of the

RNA are identical with and without Mg2+ (data not shown). These findings are consistent with

experimental studies demonstrating that NMR chemical shifts are very similar for the RNA–

theophylline complex in the presence and absence of Mg2+, indicating that the structure of the

complex does not significantly change with Mg2+[4].

In marked contrast to the RNA–theophylline complex, when the RNA is unbound, the

absence of Mg2+ has a profound effect on the conformational landscape. We generated a

MSM for the 5.4 μs of simulation time for the unbound RNA without Mg2+. The MSM was

coarse-grained by BACE to include 6 macrostates in accordance with the plot of the Bayes

factor as a function of number of macrostates. The implied timescales for the coarse-grained

MSM are shown in S7 Fig. Each macrostate was classified as either binding-competent or

binding-incompetent based on the average score generated by docking theophylline to 500

RNA conformations randomly sampled from the macrostate. Macrostates whose average

docking score is� –5.0 kcal mol–1 are deemed binding-competent, as described previously

for the conformational landscape in the presence of Mg2+. Strikingly, only macrostate 5,

which has a population of ~25% of sampled conformations, is binding-competent (Fig 12).

This macrostate has a preformed cavity that accommodates theophylline with good shape

complementarity, yielding an average binding score of –5.7 kcal mol–1. The other five macro-

states, accounting for 75% of the total RNA population, are binding-incompetent and lack

binding pockets for theophylline. These populations are in sharp contrast to the unbound

RNA in the presence of 10 mM Mg2+, where 58% of the population is binding-competent

and only 42% is binding-incompetent.
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Our modeling reveals a surprising effect of the absence of Mg2+ whereby the C27 base

becomes completely exposed to solvent, even without bound theophylline. The average SASA

of the C27 base across 5.4 μs of simulation time is 1.0 ± 0.35 nm2 (mean ± standard deviation),

which is much greater than the average SASA of 0.65 ± 0.20 nm2 for the unbound aptamer in

the presence of 10 mM Mg2+, where C27 is mostly buried. This solvent-exposure of C27 results

from perturbation of the S-turn formed by residues 22–26. Since no Mg2+ ions are present to

shield phosphate-phosphate repulsions, the S-turn is severely distorted in the five binding-

incompetent macrostates, becoming greatly lengthened and losing almost all of its S-like char-

acter (Fig 13). Consequently, U23 moves out of the binding site, becoming partially solvent-

exposed. U24 no longer stacks with A28, but instead becomes coplanar with A28 and C22,

forming a base triple. Having lost its stacking with U24, A28 instead stacks with G26 and C8,

which in turn form a base pair with one another. The new stacking interaction between A28

and the C8:G26 base pair prevents cavity formation.

Additionally, we find that Mg2+ influences the unbinding kinetics of theophylline not

through direct interactions between the Mg2+ ion and theophylline, but primarily through the

effect of Mg2+ on the RNA structure. In order to differentiate between these two possibilities,

we predicted the lifetime (1/koff) of the RNA–theophylline complex in three scenarios: (i)

natively folded RNA in the presence of 10 mM Mg2+; (ii) natively folded RNA in the absence

of Mg2+; and (iii) non-natively folded RNA in the presence of 10 mM Mg2+. Here, we use the

term ‘natively folded’ to refer to the first RNA conformation of the NMR structure. We use the

term ‘non-natively folded’ to refer to RNA conformations corresponding to the unbound

Fig 12. Conformational diversity of unbound RNA in the absence of Mg2+. Shown are molecular surfaces for

binding site regions (residues 5–9 and 22–29) of centroid structures of the six macrostates (M1-M6) taken from the

MSM that was constructed from 5.4 μs of MD simulation data. Binding-competent and binding-incompetent

macrostates are labeled as active and inactive, respectively, and relative populations of macrostates are indicated. The

average theophylline docking score for each macrostate as calculated by AutoDock Vina is listed below each structure.

The best-scoring theophylline pose for each structure is shown as an orange surface.

https://doi.org/10.1371/journal.pone.0176229.g012
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aptamer in the absence of Mg2+. If direct interactions between Mg2+ and theophylline are

mainly responsible for altering unbinding kinetics, then we would expect that the lifetime of

the complex in scenarios (i) and (ii) would be substantially different, as these scenarios differ

not in terms of RNA structure but only by the presence of Mg2+. However, if the effect of Mg2+

on RNA structure (via stabilization of the binding site) is mainly responsible for altering kinet-

ics, then we would expect to see a substantial difference in complex lifetimes between scenarios

(i) and (iii), which differ only in terms of RNA structure. Using well-tempered metadynamics,

we accelerated the unbinding of theophylline from the NMR structure for scenarios (i) and (ii)

and from the global centroid structure of the 5.4 μs of MD simulations of the unbound apta-

mer without Mg2+. The unbinding simulations for scenarios (i) and (iii) both used 10 mM

Mg2+, while those for scenario (ii) lacked Mg2+. The lifetimes of the RNA–theophylline com-

plex for scenarios (i)-(iii) were predicted respectively as 54 ± 43 s, 45 ± 39 s, and 750 ± 730 ms

(mean ± standard error). Standard errors were estimated by 10,000 rounds of bootstrapping.

The estimated lifetimes for scenarios (i) and (ii) are similar and agree reasonably well with the

experimentally measured lifetime of 14 s when [Mg2+] = 10 mM[4]. In contrast, the estimated

lifetimes for the complex in scenarios (i) and (iii) differ by almost two orders of magnitude,

which is slightly smaller than the experimentally measured difference between lifetimes in the

presence and absence of Mg2+ (14 s and� 50 ms). Given these predicted lifetimes, our results

support the hypothesis that the difference in unbinding kinetics caused by Mg2+ stems mainly

from Mg2+-mediated differences in RNA structure rather than from direct interaction between

the ion and theophylline. Although we studied only unbinding kinetics, it is probable that the

difference in binding kinetics (kon) associated with Mg2+ is also attributable to differences in

RNA structure induced by the presence of Mg2+.

Taken together, these findings support the hypothesis that Mg2+ does not change the true

kinetics of theophylline binding, but simply leads to an increase in the population of binding-

competent molecules[39]. According to our MSMs, the presence of Mg2+ increases the popula-

tion of binding-competent states more than twofold relative to Mg2+-free conditions (58% ver-

sus 25%). This effect appears to be mediated largely by the S-turn of residues 22–26. When

Mg2+ is lacking, there is little driving force for the S-turn to form, as there are no divalent ions

to shield repulsion between main chain phosphate groups that would be positioned close to

one another if the S-turn were present. As a result of the missing S-turn, in ~75% of the RNA

population there is a drastic rearrangement of the nucleotides that normally constitute the

Fig 13. Absence of Mg2+ distorts the S-turn formed by residues 22–26 and prevents binding site

formation. (A) Ribbon diagrams of the NMR structure (left) and global centroid structure of the five binding-

incompetent macrostates from the MD simulations of unbound RNA in the absence of Mg2+. The S-turn region

is shown as a wider ribbon colored red. (B) Binding site residues of the global centroid structure. A28 stacks

with the C8:G26 base pair, forming a cluster of three residues that prevents binding pocket formation. Ribbon

coloring and S-turn region depiction are the same as in panel A.

https://doi.org/10.1371/journal.pone.0176229.g013
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theophylline binding site. A double layer of nucleotides comprising A28 and a C8:G26 base

pair impedes cavity formation, preventing theophylline binding.

Conclusion

In this work, we have combined ~21 μs of MD simulations and MSMs to probe the conforma-

tional landscape and structural diversity of a model theophylline RNA aptamer in its ligand-

free state. This combined modeling approach has allowed us to probe at atomic resolution an

unbound aptamer’s structure, which has remained difficult to accomplish by experiment. Our

modeling suggests that the theophylline aptamer’s unbound-state landscape features eight

principal metastable states, and that transitions between the metastable states occur on the

nanosecond to microsecond timescale. The tertiary structures of the aptamer vary greatly

among the metastable states, with the greatest conformational variation occurring in the

GAAA tetraloop and in the theophylline binding site region. We find that the binding site

nucleotides, in particular, explore a great diversity of conformations, about 40% of which

either completely abolish the binding pocket or shrink it to such an extent that only partial

burial of theophylline and weak binding take place. These binding-incompetent states must

undergo conformational changes to binding-competent states with preformed binding pockets

in order for theophylline to form an RNA–theophylline complex. This finding agrees with

experiment but provides greater structural detail than what NMR studies have so far been

able to provide. Moreover, our modeled theophylline binding pathway indicates that a notable

conformational rearrangement of the RNA binding site occurring on the ~50-μs timescale is

required after theophylline diffuses into the binding site, accompanied by C27 transitioning

from a buried to completely solvent-exposed orientation. This conformational change appears

to be a major contributor to the discrepancy seen experimentally between the actual theophyl-

line association rate constant and the diffusion-controlled rate constant and suggests that the-

ophylline binding occurs via a combination of conformational selection and induced fit

mechanisms. Finally, simulating the RNA in the absence of Mg2+ indicates that loss of Mg2+

causes the population of binding-competent RNA molecules to decrease more than twofold

relative to a 10 mM Mg2+ concentration. The modeled theophylline unbinding kinetics in the

presence and absence of Mg2+ support prior conjecture that the drastic effects of Mg2+ on koff

and, by extension, on kon are mediated not by direct interactions between the ion and theoph-

ylline, but by structural destabilization of the S-turn and binding site that occur when Mg2+ is

not present.

From a technical perspective, the computational method presented here opens up the pos-

sibility to analyze the unbound structures and dynamics of other engineered and naturally

occurring RNA aptamers at atomic and picosecond resolution, as well as to map their

ligand binding pathways. To this end, there are several remaining questions that could be

addressed. For example, to what extent do other engineered aptamers also exist as ensembles

of binding-incompetent and binding-competent states that must interconvert from the for-

mer to the latter prior to ligand binding, and what are the specific structural changes that

occur? Additionally, do other engineered aptamers employ a combination of conformational

selection and induced fit in their ligand binding mechanisms, or is an exclusive conforma-

tional selection or induced fit mechanism most prevalent? Answering these and related ques-

tions by modeling coupled with experiment could allow a better overall understanding of

aptamer function and binding mechanisms. This, in turn, could lead to enhanced aptamer

engineering and manipulation of aptamer binding properties for therapeutic and sensor

applications.
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Supporting information

S1 Fig. Chapman-Kolmogorov test for macrostate and microstate Markov state models

of unbound RNA. The Chapman-Kolmogorov test is depicted for (A) each of the states

M1-M8 of the 8-macrostate MSM and for (B) microstates 100, 1000, 2000 and 5000 of the

5000-microstate MSM. Values of pMSM(A, A; kτ) (hollow dots) and pMD(A, A; kτ) (solid

dots) are shown. Error bars represent uncertainties in values of pMD(A, A; kτ).

(TIF)

S2 Fig. A binding pocket large enough to accommodate theophylline is absent in several

macrostates of the unbound RNA. The lowest-energy (top-scoring) docked theophylline pose

for each RNA macrostate centroid structure is depicted. Listed below the RNA images are aver-

age AutoDock Vina scores for theophylline docking to 500 randomly sampled conformations

from each macrostate. Molecular surfaces of theophylline are colored orange, and the bases of

the RNA residues that define the theophylline binding site in the bound state are colored blue.

The base of nucleotide C27 is shown in green. The NMR structure is shown at bottom right.

Macrostate populations and active/inactive designations are indicated in parentheses.

(TIF)

S3 Fig. RNA residue flexibility differences between theophylline-unbound and theophyl-

line-bound states. Per-residue root-mean-squared fluctuation (RMSF) differences are

depicted. Darker red corresponds to a greater RMSF in the unbound state relative to in the

bound state. Darker blue corresponds to greater RMSF in the bound state relative to the

unbound state.

(TIF)

S4 Fig. Two most frequently observed secondary structures of the RNA in the theophyl-

line-bound state. Numbers denote proportions of all analyzed simulation snapshots in which

the RNA adopts the depicted secondary structures. Bases that participate in canonical base

pairing interactions are depicted in light blue circles. Unpaired bases are depicted in light yel-

low circles. The secondary structure of the bound-state NMR structure is shown on the right.

Secondary structure diagrams were generated by the RNApdbee webserver[88].

(TIF)

S5 Fig. Comparison of theophylline orientation in initial weak complex

(RNAactive,C27-fully-buried•Theo) and in fully bound complex. (A) In the fully bound com-

plex/NMR structure, N7 and N9 of theophylline are located close to the bases of C22 and

U24, respectively. Both N7 and N9 participate in hydrogen bonding interactions with the

respective RNA bases. (B) In the initial weak complex, N7 and N9 of theophylline are posi-

tioned near the bases of C27 and C22, respectively. A non-native hydrogen bond occurs

between C27 and O6 of theophylline. (C) In the initial weak complex, the six-membered

ring of theophylline protrudes outward from the binding pocket, leaving the ring partly

exposed to solvent.

(TIF)

S6 Fig. Implied timescales of coarse-grained Markov state model of induced-fit binding

process.

(TIF)

S7 Fig. Implied timescales of coarse-grained Markov state model of unbound RNA in the

absence of Mg2+.

(TIF)
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