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Parasitic helminths infect over one-fourth of the human population resulting in significant

morbidity, and in some cases, death in endemic countries. Despite mass drug

administration (MDA) to school-aged children and other control measures, helminth

infections are spreading into new areas. Thus, there is a strong rationale for developing

anthelminthic vaccines as cost-effective, long-term immunological control strategies,

which, unlike MDA, are not haunted by the threat of emerging drug-resistant helminths

nor limited by reinfection risk. Advances in vaccinology, immunology, and immunomics

include the development of new tools that improve the safety, immunogenicity, and

efficacy of vaccines; and some of these tools have been used in the development of

helminth vaccines. The development of anthelminthic vaccines is fraught with difficulty.

Multiple lifecycle stages exist each presenting stage-specific antigens. Further, helminth

parasites are notorious for their ability to dampen down and regulate host immunity.

One of the first significant challenges in developing any vaccine is identifying suitable

candidate protective antigens. This review explores our current knowledge in lead antigen

identification and reports on recent pre-clinical and clinical trials in the context of the

soil-transmitted helminths Trichuris, the hookworms and Ascaris. Ultimately, a multivalent

anthelminthic vaccine could become an essential tool for achieving the medium-to

long-term goal of controlling, or even eliminating helminth infections.
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INTRODUCTION

Neglected tropical diseases (NTDs) remain a global public health issue. Their impact is especially
felt in areas with poor hygiene and sanitation, and are related to extreme poverty and lack of health
education (1). Some of the most “neglected” diseases are caused by soil-transmitted helminths
(STHs), which together infect more than a quarter of the world’s population (2). The four most
prevalent STHs worldwide are the Hookworms Necator americanus and Ancylostoma duodenale,
the roundworm Ascaris lumbricoides, Strongyloides stercoralis, together with the whipworm
Trichuris trichiura (3). The highest intensity of infection for A. lumbricoides and T. trichiura is
typically seen in school-aged children and adolescents, whilst in hookworm infections infection
intensity tends to increase with age, plateauing in to adulthood. Those who travel to and from
regions where STH infections are endemic are also at risk of getting infected (4, 5). Although little
is known about S. stercoralis in comparison to Ascaris, Trichuris and hookworm despite prevalence
estimates of up to 40% in tropical countries (6–9) there is a growing understanding of the immune
response to infection (10, 11). However, a biochemical understanding of the parasite remains
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limited and thus, this review will focus on vaccines against the
human hookworms (12), whipworm and roundworm (13).

The ability to control STH infections currently depends
almost exclusively on mass anti-helminthic drug administrations
(MDA) such as albendazole or mebendazole to at-risk
populations (4, 5, 14, 15) in conjunction with education
and improved sanitation including WASH initiatives (16, 17).
However, post-treatment reinfection is common, especially for
helminth species such as Ascaris and Trichuris, where the robust
parasite eggs are nearly ubiquitous in the environment. Such
extensive contamination of soil with parasite eggs limits the
ability of MDA programs, global control and elimination efforts
to interrupt the transmission cycle within a community (18).
Moreover, the appearance of anthelmintic-resistant parasites
threatening human drug treatment programmes (19, 20) has
increased interest in developing vaccines, or a pan-anthelminthic
vaccine to provide a cost-effective, long-term immunological
method to control multiple helminth infections (21–23).

This review explores our current knowledge, prospects, and
challenges for anti-human STHs vaccine design. Although of
significant importance, the review does not cover veterinary
vaccines which have been reviewed recently (24). We include the
importance of understanding the underpinning immune
responses required to eliminate STHs from their host,
opportunities for antigen-presenting cell targeting of candidate
antigens, and include recent pre-clinical and clinical trials in the
context of Ascaris, Trichuris and the hookworms.

PROSPECTS AND CHALLENGES FOR
ANTI-STHs VACCINE DESIGN

The development of efficient anti-STH vaccines is thought to
represent a greater challenge compared to developing anti-
bacterial or anti-viral vaccines. This is partly a result of the
complex lifecycles of STHs, combined with an incomplete
immunological knowledge of the host-parasite interactions and
the immune mechanisms conferring protection (25). Moreover,
STHs have complex genomes and proteomes (26–30). This
complexity makes it difficult to identify antigenic targets for the
development of an effective vaccine (31). Despite these obstacles,
the development of vaccines against the STHs has progressed
over the decades.

Identifying Lead Antigens to Include in
Vaccines
Crude Antigen Preparations
The earliest anthelmintic vaccines included attenuated
or irradiation-killed parasites (32, 33). Since this time,
extensive studies across many helminth spp have explored
the immunogenicity of native molecules excreted and/or
secreted by parasites (the so-called ES molecules) (34–37)
and parasite-derived extracellular vesicles (EVs) in promoting
resistance to infection (38–41). Excreted and secreted parasite
molecules make excellent vaccine candidates as they sit at
the host-parasite interface, playing critical roles in both the

modulation of host immunity and in inducing Th2-skewed
immune responses (35, 42).

Recombinant Proteins
Instead of targeting the immune response against a mixture
of antigens, a particular antigen from the pathogen can be
produced and expressed in a heterologous expression system
to focus the immune response toward a specific antigen of
the pathogen to prevent the infection (43, 44). Such an
approach ensures that safer and more reliable vaccines are
developed, with an example being the licensed recombinant
hepatitis B vaccine (45). The key therefore to an effective
recombinant vaccine is to identify that particular conserved
antigen or combination of antigens secreted or extracted
from the pathogen that can overcome the low protective
immunity naturally generated by the infection (44, 46). However,
recombinant vaccines often require an adjuvant and multiple
immunizations to elicit a protective and long-lasting immune
response (47). Moreover, the production of recombinant proteins
using bacterial heterologous expressions can prove challenging.
Thus, antigens in which proteolytic stability, higher production
yield and post-translational modifications (e.g., phosphorylation
and glycosylation) are needed, other expression systems such as
yeast, insect, plant, or mammalian cells should be considered
(44). Of the most successful helminth recombinant vaccines
are the two against hookworm disease caused by Necator
americanus, which consist of aspartic protease-1 (Na-APR-1)
and glutathione-S-transferase-1 (Na-GST-1). These vaccines are
currently in phase 1 of clinical trials (48–50).

DNA Based Vaccines
The availability of genome sequences opened up the prospect of
the DNA vaccine approach to validate novel vaccine candidates
individually or combined to improve vaccine elicitation of cell-
mediated and mucosal immunity (51, 52). DNA vaccines are
simple rings of DNA containing a gene encoding a specific
vaccine antigen under the regulation of a promotor (53). DNA
vaccine technology has been intensively used to develop vaccines
against various pathogens (54, 55), cancer (56), and autoimmune
disorders (57). For example, the human immunodeficiency virus-
1 (both as a prophylactic and an immunotherapeutic vaccine)
(58, 59), Zika virus (60), and Ebola virus vaccines (61) are
currently in clinical trials. Comparatively, little progress has been
made toward developing DNA vaccines against parasitic diseases,
although several pre-clinical studies have shown promising
results against hookworm infections (62, 63), malaria (64, 65),
leishmaniasis (66, 67), and schistosomiasis (68, 69). Even though
DNA vaccines offer several advantages when compared with
recombinant vaccines, such as safety, improper protein folding
and production cost, they have not been shown to be sufficient
to induce a protective immune response (70). Therefore, DNA
encapsulation, plasmid alterations, co-expressing cytokines and
heterologous prime-boost approaches have been explored to
enhance the immune responses induced by the DNA vaccine
(71, 72).
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Epitope-Based Vaccines
The advent of the genome era and the tremendous advances
in immunological and bioinformatics tools have enabled the
reverse vaccinology approach (RV) as a new effective strategy
for lead antigen identification in vaccine development (73–75).
One of the advantages of the RV approach is that every antigen
encoded in the worm genome can be screened in silico to
determine its ability to induce an immune response (31, 74).
Thus, it can overcome some of the limitations of conventional
methods of screening vaccine candidates (76–78). Antigen
selection can also be carefully prescribed based on clear inclusion
and exclusion criteria. For example, Zawawi et al. employed
a systematic, multi-stage process to identify Trichuris epitope
vaccine antigens based on the RV approach (79). The epitopes
were identified from secreted, and surface-exposed proteins and
any protein with any degree of homology to humans ormice were
excluded to eliminate potential autoimmune reactions. Most
of the identified vaccine antigens were stage-specific and had
essential functions in the parasite biological process, associated
with host-parasite interaction, parasite metabolism, development
and fecundity (80).

The Search for a Pan-Anthelmintic Vaccine
Coinfections with two or multiple STHs are extremely common
in sub-Saharan Africa and elsewhere in the developing countries
(1, 81). The three STHs hookworm, Ascaris and Trichuris
also share highly conserved antigens that are likely to have
very similar biological functions (46). Thus, researchers have
proposed a single pan-anthelmintic vaccine against the three
major human STHs to generate strong, lasting immunity with
minimal side effects (23). RV methodologies have much to offer
in this context. Thus, with the availability of parasite genomes
and bioinformatics tools to select out IgE-inducing epitopes in
silico, the development of a pan-anthelmintic vaccine based on
protective epitopes from cross-protective antigens may represent
an exciting alternative to the use of whole antigens.

The choice of lead antigen also determines the biomechanical
requirements of production, and the design of the laboratory
and clinical trials (82–84). For example, vaccines based on
native antigens, are known to generate significant immunity
against many STHs in pre-clinical models (85–87). However,
they have many manufactory limitations, such as high cost, time
consumption, difficulty of purifying large quantities of worm
antigens, low stability, shelf-life, shortage of in vitro methods for
the culture of parasites and control over differences in batches
to develop a commercially stable vaccine (88–90). Approaches
such as recombinant (91), DNA (92), and epitope-based vaccines
(93) overcome some of the limitations associated with native
antigens. However, most vaccines against STHs remain in early-
stage development or are undergoing pre-clinical evaluation.

Adjuvants: Key Components in Modern
Vaccinology
The effectiveness of lead antigens is often restrained by an
inherent lack of immunostimulation. Therefore, efforts have
focused on co-administering antigens with vaccine adjuvants as
a key component in modern vaccinology, aiming to intensify the

immune response and generate effective immunological memory
(94). In addition, adjuvants are important in overcoming
immune senescence seen in the elderly (95), and expanding the
antibody repertoire generated (96). Adjuvants may also allow
dose-sparing (97) and careful choice of adjuvants used provides
the ability to guide the type of immune response generated
(98, 99). The specific type of T helper response generated plays
critical role in the efficacy of the protective immune response,
as a Th1-type response is critical in developing vaccines against
intracellular pathogens, whereas Th2-type responses are critical
in developing vaccines against extracellular parasites (100).

Among the earliest adjuvants used in experimental antibody
production were Freund’s adjuvants (101, 102). However, as these
adjuvants are associated with pain, inflammation, and tissue
destruction they are no longer used and have been replaced by
other adjuvants that can produce equal or superior antibody
responses with less inflammation and tissue destructions (103).

The two adjuvants that are licensed for use in humans,
aluminum salt and squalene oil-based emulsion (MF59), mainly
promote Th2-biased immune responses (99, 104). Each adjuvant
has its own immunological signature. For example, alum
increased antibody titers, whereas MF59 induces strong antibody
and IL-5 responses in mice (105). However, their mechanisms of
action remain only partially understood.

Nanoparticulate vaccine adjuvants and delivery vehicles have
also been incorporated into vaccine design to enhance the
humoral and cellular immune responses (106, 107). Vaccine
delivery systems include synthetic nano- and micro-particles,
immunostimulatory complexes, liposomes, virosome, and virus-
like particles (VLP) (108). These approaches promote the uptake
of antigens by different antigen-presenting cells, promote their
migration and maturation from the site of vaccine uptake and
protect antigens from degradation (106, 109, 110). VLPs, for
example, possess the immunostimulatory and self-adjuvanting
properties of natural viruses but do not contain genetic material
(111, 112). In addition, they are very stable and can withstand
adverse environments, such as those with acidic pH, making
VLPs an attractive carrier for mucosally administered vaccines
(113). RTS, S (Mosquirix) was the first licensed VLP-based
vaccine generated against parasitic disease (114). It is composed
of three tandem repeat (R) and cell (T) epitopes from the
circumsporozoite protein of the P. falciparum malaria parasite,
which are displayed on hepatitis B surface particles (HBs-Ag) (S),
co-expressed in Saccharomyces cerevisiae (S) and reconstituted
with an AS01 adjuvant (115). The development of vaccines
against Toxoplasma gondii (116), T. spiralis (117), Clonorchis
sinensis vaccine (118), and T. trichiura (79) have all embraced
VLP technology.

Antigens adjuvanted with toll-like receptor (TLR) agonist
such as monophosphoryl lipid A (MPLA) and Glucopyransoyl
lipid A (GLA) also enhance immune responses by inducing
high antibody titres, driving the production of Th1 cytokines
and rapid immune responses (119, 120). The TLR4 agonists
are approved for use in human vaccines and are being studied
in leishmaniasis (121), schistosomiasis (122), tuberculosis (123),
and influenza vaccines (124). The combination of vaccine antigen
with different TLR agonists has also been studied in various
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formulations such as microparticles, nanoparticles, and lipid
emulsions to enhance the immune responses induced by the
vaccine (125, 126). For example, mice immunized with a yellow
fever vaccine containing antigens combinedwith TLR4 and TLR7
agonists and conjugated to synthetic nanoparticles, induced
synergistic antigen-specific neutralizing antibodies compared
to immunization with antigens coupled with a single TLR
ligand (127). Further, an HIV vaccine conjugated with a
TLR5 agonist combined to a nanoparticle synthesized from a
synthetic poly lactic-co-glycolic acid (PLGA) showed increased
immunogenicity in a preclinical mouse model and reduced the
immunogenic dose of the vaccine candidate (128). Moreover, the
formulation of a TLR4 ligand contained within a PLGA-based
nanoparticle plus a malaria proteins (Pfs25) noted for its poor
immunogenicity, improved vaccine induced-immunity (129).

Given the range of adjuvants available it is recommended to
test several adjuvants or immunostimulants with each potential
vaccine antigen at the pre-clinical stage of development in order
to optimize the quality of the immune response and to generate
effective protective immunity.

Challenges to Vaccine Development
Having identified a lead antigen and selected an appropriate
adjuvant, other hurdles remain to be overcome in the
development of an anti-helminth vaccine. These include avoiding
unwanted side effects, choosing a suitable animal model
for testing immunogenicity and protective immunity, the
immunization schedule, and the administration route to shape
the immune response induced by the vaccine (82, 83).

Beyond the laboratory, other obstacles exist, including
geopolitical barriers, unreliable pharmaceutical manufacturer
markets, and low industry interest. Further, the rising anti-
vaccine movement in the US and elsewhere have had a
significant effect on STHs vaccine development (130).
Thus, the development of new vaccines is a complex and
multidisciplinary task that requires an understanding of
host-pathogen interactions, epidemiology, and manufacturing
parameters (131). Most importantly, vaccine researchers must
have an understanding of the immune mechanisms involved in
diseases and protection in order to select appropriate antigenic
targets and delivery systems to shape the immune response
induced by the vaccine (82, 83).

IMMUNE RESPONSES TO HOOKWORM,
ASCARIS, AND TRICHURIS INFECTIONS

Th2 Immune Responses Are Center Stage
in Acquired Immunity to Infection
There is an abundance of literature documenting the need for
strong Th2 biased immune responses to generate protective
immune responses to STHs in animal models (132, 133). This is
also clear in humans, where immunity to the human hookworms,
Ancylostoma duodenale andNecator americanus, the roundworm
A. lumbricoides, and the whipworm T. trichiura require the
generation of strong Th2 immune responses and the production

of Th2-associated cytokines including interleukin (IL)-4, IL-5,
IL-6, IL-9, and IL-13 (134–136).

Infection of man with N. americanus and T. trichiura induces
a mixed Th1/Th2 response characterized by the up-regulation
of IFN-γ (Th1) and a strong Th2 response. As worm burdens
decrease with age, or in the context of resistance to reinfection
post drug treatment, so parasite-specific IgE levels increase
accompanied by Th2 cytokines such as IL-5, IL-9, and IL-13
(134–138). The immune response to A. lumbricoides infection
in 12–17 year old hosts living in endemic communities is more
Th2 biased (IL-4 and IL-5) with no detectable production of IFN-
γ in response to Ascaris antigens (139–141). Turner et al. (142)
divided his study population of Ascaris infected individuals in
to two age cohorts, 4–11 year olds and 12–36 year olds. This
study concurred with Cooper et al. (139), reporting significant
negative correlations between the Th2 cytokines IL-9 and IL-
13 and infection intensity, but only in the older (over 12) age
cohort. Thus, children below the age of 12 showed no inverse
correlation between Th2 cytokines and intensity of infection
(134, 142), suggesting that protection is conferred only after
decades of exposure.

Collectively, therefore, there is strong evidence from both
animalmodels and human field studies that any anti-STH vaccine
should aspire to promote Th2 immunity.

Identifying the Th2-Controlled Effector
Mechanisms
Exactly how Th2 cytokines culminate in worm expulsion has
been debated at length for many years, with our evidence base
largely accruing from mouse models where the mechanism
of action is best unpicked. Peripheral blood eosinophilia is a
hallmark feature of the immune response to helminth infections
(143–145). However, is it not clear whether eosinophils kill
parasitic worms. IL-5 and eosinophils appear not to be essential
for Trichuris and hookworm expulsion, as no difference in worm
expulsion was observed following infection of IL-5 knockout
mice (146, 147). In contrast, early studies demonstrated that
eosinophils can kill infected larval stages of most helminth
species investigated in vitro in the presence of specific antibodies
or complement (148–150). A recent study also showed that
eosinophils were recruited to the site of infection by immune
serum activated macrophages, leading to the immobilization of
migrating A. suum larvae (151).

Several studies have also highlighted a variety of Th2 regulated
immune-mediated mechanisms associated with Trichuris
expulsion including epithelial cell turn over (152, 153), increased
muscle hyper-contractility (154), goblet cell hyperplasia and
production of mucins (155), with specific Th2 cytokines
identified as key. For example, several studies have provided
evidence that IL-13, not IL-4 plays a critical role in increasing
epithelial cell turnover and in the production of mucins to
promote Trichuris worm expulsion (153, 156–159). IL-9 has
been shown to be important in the stimulation of intestinal
smooth muscle contractility, which drives T. muris expulsion
(154, 160). In keeping with this, impaired IL-9 expression often
results in chronic helminth infection (161).
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Our understanding of mechanisms of immunity to hookworm
and roundworm is less well-defined, largely due to the lack of
robust mouse models. However, similar Th2-controlled effector
mechanisms have been put forward for hookworm (12). For
Ascaris, liver-stage immunity during the migratory stages of
infection has been associated with oxidative phosphorylation and
the production of reactive oxygen species (162), the lung-stage
with an eosinophilia (163, 164), and expulsion from the gut with
increased muscle contractility (165).

The role of the B cells and antibody in helminth infection
remains unclear, with roles embracing both antibody production
and antibody-independent cellular regulation. Thus, B-
cells may play roles in stimulating the generation and/or
polarization of T-cell responses by either cytokine secretion
or antigen presentation in addition to their more widely
appreciated role in antibody production (166, 167). In mouse
models, both antibody-dependent and independent roles
for the B cell have been proposed. Using a B-cell depletion
strategy in a mouse model, a recent study suggested that the
development of a Th2 type immune response to Trichuris
infection is dependent on the host’s genetic background and
is independent of antibodies (168). Indeed in the context
of Trichuris infections, evidence points toward antibody-
independent worm expulsion mechanisms (169, 170). However,
for other rodent helminths, roles for antibody have been well-
documented (171, 172). For example, parasite-specific IgG1 is
thought to play a role in immunity to the rodent hookworm
Heligmosomoides polygyrus (173).

In humans, CD11c+ B cells have been shown to be the
main IL-10 producers in Indonesian-STH-infected individuals
compared to Europeans and Indonesians not exposed to
helminths, inferring a regulatory function (174). The robust
production of total and parasite-specific IgG1 and IgG4 have
been associated with age, but may simply reflect the intensity
of helminth infection (85, 134, 175). For example, children
with repeatedly heavy infections with A. lumbricoides produced
significantly higher levels of A. lumbricoides-specific (IgGl, IgG4,
and IgE) compared to the repeatedly lightly infected children
(140, 176). King et al. also suggested that antibody responses
may not predict future levels of infection or confer protection
from current infection or re-infection with A. lumbricoides
but may only reflect infection intensity (177). In contrast,
Trichuris-specific IgE has been shown to be negatively correlated
with infection intensity and positively correlated with age,
suggesting that IgE is associated with protection (134, 136).
Total levels of IgE have also been correlated with the activation
and degranulation of mast cells, basophils, and eosinophils
(178). Further, negative associations between hookworm-specific
intestinal and serum IgA and hookworm infection were observed
in humans and the hamster model of A. ceylanicum hookworm
infection, suggesting that antibodies may act in concert with
other components of themucosal and systemic immune response
to promote protective immunity against hookworm infection
(179–181). Overall, data supports the view that B cells are
important in immunity to STHs, but the precise mechanisms by
which B-cells and antibody support protective immunity remains
only partially understood.

Regulation of Host Immunity by STHs—A
Challenge for Vaccine Development
Experimental model systems, both rodent and human, have
demonstrated that helminth infections regulate host immunity,
dampening pathology at the expense of efficient worm expulsion.
Thus, helminth-derived products have been shown to suppress
of Th1/Th17 responses, with suppression associated with
the production of IL-10, IL-22 and transforming growth
factor-β (182, 183). Peripheral blood from hookworm-infected
individuals also show higher levels of circulating regulatory T
cells expressing CTLA-4, GITR, IL-10, TGF-β, and IL-17 than
healthy non-infected donors (184). In the context of animal
models, mice deficient in IL-10 are susceptible to T. muris
infection characterized by elevated levels of IFN-γ and TNF-
α, and fatal intestinal pathology (185). Furthermore, depletion
of regulatory T-cells during T. muris infection enables worm
expulsion at the expense of increased intestinal inflammation
(186). In the context of hookworm, and using a mouse model of
colitis, A. caninum ES products were shown to suppress colitis.
The suppression was associated with potent induction of IL-
4 and IL-10 by CD4+ T cells in the draining lymph nodes
and the colon together with the recruitment of alternatively
activated (M2) macrophages and eosinophils to the site of ES
administration (187).

Helminth induced immune regulation has been embraced
by “worm therapy” advocates (182, 188, 189), and immune
regulation by helminths is important in protecting the infected
host from potentially life-threatening immunopathology (190,
191). However, the inherent dampening of the immune
response associated with chronic worm infections represents
a significant challenge in STH vaccine research as well
as potentially compromising immunity to other vaccines
and influencing the outcome of infection with co-infecting
pathogens (192).

UNDERSTANDING HOW VACCINES ELICIT
IMMUNITY: CAN WE OVERCOME THE
CHALLENGES?

Vaccination is one of the greatest advances in global health;
however, most successful vaccines have been made empirically.
Despite a reasonable body of literature from animal models,
describing how Th2 immune responses confer protection against
STHs in a primary infection, there is very little data regarding the
mechanism(s) of vaccine-driven immunity, and this represents a
significant gap in our knowledge. Thus, although strong evidence
exists to support the need for a vaccine to promote Th2 immune
response against STHs in the context of potently regulated
environments, how the Th2 immune response culminates in
worm expulsion is unknown and may well differ to the Th2
controlled effector mechanisms at play in immunity to a primary
infection. Further, we still have little insight into the mechanisms
by which vaccines trigger Th1 or Th2 biased immune responses,
strong B cell responses or long-lived memory T-cell responses,
despite formation of T-cell memory being critical to protection
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against infectious diseases. Antigen delivery to the right antigen-
presenting cells is critically important for the quality of the T-
cell response, yet targeting of specific populations of antigen-
presenting cells is often a neglected aspect in the design
of vaccines.

There is a substantial evidence base to support the principle of
dendritic targeting in vaccine development (193), although it has
not been applied to many vaccines against STHs. Incorporating
monoclonal antibodies that recognize, for example, dendritic cell
surface molecules into delivery platforms, offers the prospect
of direct delivery of antigen to specific antigen-presenting cell
subsets in vivo (194–196), thus taking control of the quality
of the subsequent vaccine-driven immune response (197). For
example, delivery of antigen to CD8+ dendritic cells via Clec9A
has been shown to promote CD4 T-cell responses and efficient
development of T-follicular helper cells, important in antibody
production (198). Interestingly, B-cells have been shown to be
the dominant antigen-presenting cell-activating naïve CD4+ T-
cells in response to virus-like particles (199), highlighting the
importance of understanding how vaccines are presented in
vivo as a prerequisite to developing antigen-presenting cell-
targeting strategies.

SOIL-TRANSMITTED HELMINTH
VACCINES: ARE WE GETTING CLOSER?

Experimental Hookworms Vaccine
Candidates
Hookworms (Necator americanus, Ancylostoma duodenale, and
Ancylostoma ceylanicum) infect around 500 million people
worldwide and are of significant concern due to their voracious
blood-feeding (1). N. americanus and A. duodenale infect
humans whereas A. ceylanicum and A. caninum are zoonotic
and rarely infect humans. Hookworms can live for years in the
host’s small intestine, causing severe iron-deficiency anemia in
humans (1).

Pre-clinical hookworm vaccine studies have focused on
identifying vaccine antigens from either the dog hookworm
A. caninum, A. ceylanicum-golden hamster, or a laboratory
strain of N. americanus adapted to golden hamsters (46). For
example, Miller et al. developed the first hookworm vaccine
using whole irradiated A. caninum L3 larvae antigens (200).
Dogs immunized with the vaccine candidate showed between 37
and 90% protection depending on the route of administration
(200, 201). As a result, this vaccine was commercialized in the
United States in 1973 for canines. However, it was withdrawn
after 2 years because of the high cost, storage, stability, and the
lack of sterilizing immunity (202).

The human hookworm vaccine initiative of the Sabin
Product Development Partnership has been directed toward
identifying a hookworm vaccine (49, 203). Significant efforts have
been made in identifying vaccine antigens from the infective
larval L3 stages as they play critical roles in host invasion,
modulation of host immunity and parasite establishment (203,
204). Several L3 proteins, especially enzymes, showed promising
results as recombinant vaccines in different animals, and

expression systems, including the tissue invasion-related Astacin-
like metalloprotease (Ac-MTP-1) (205–208), Ac-16 (209), and
the two Ancylostoma secreted proteins (ASP-1 and ASP-2) (206,
210–212). Of these, ASP-2 was considered a lead hookworm
vaccine candidate as it showed the most promising results in
animal models and pre-clinical vaccine trials (206, 213, 214). For
example, Bethony et al. showed that laboratory dogs immunized
with recombinant ASP-2 formulated with the GlaxoSmithKline
Adjuvant (AS03) significantly reduced worm burdens and
clinical pathology and induced strong antibody titers compared
to control animals (204). Furthermore, the sera obtained from
the immunized dogs significantly inhibited the migration of L3
through tissue in vitro compared to sera from control dogs,
suggesting that antibodies might play a critical role in protection
by decreasing the number of L3 that reach the gastrointestinal
tract (204). Rats immunized with Na-ASP-2 formulated with
Alhydrogel also induced strong antibody response (IgG1, IgG2a,
and IgM) and induced a Th2 skewed immune response (215,
216). However, after offering so much promise, the rNa-ASP-
2/Alhydrogel vaccine was halted in 2008, having reached Phase I
clinical trials, due to generalized urticarial reactions characterized
by a high prevalence of IgE antibodies to larval antigens in
individuals previously infected with or exposed to N. americanus
in endemic populations (202, 203, 210). Thus, the mechanisms
of protection from IgE-mediated disorders, typically associated
with helminth infection, seemed unable to protect adults living
in hookworm endemic areas from developing allergic reactions
after immunization with Na-ASP-2. It was hypothesized that the
induced immediate-type hypersensitivity was due to the intrinsic
structural or biological properties of the Na-ASP-2 molecule
(217, 218).

The Identification of Aspartic

Protease-Hemoglobinase (Na-APR-1) and

Glutathione S-Transferase-1 (Na-GST-1) as Lead

Antigens
The failure of Phase I clinical trial focused attention back
on to antigen selection and led scientists toward identifying
vaccine antigens that were less likely to be recognized by IgE
antibodies induced by the natural infection (49). Strategies
included examining IgE responses in the sera from populations
in countries with endemic STH infections, mutating the antigenic
epitopes recognized by host IgE and using bioinformatics tools
that can screen for allergenicity (212, 219). Adult hookworms
suck blood from damaged vessels in the gut mucosa and
digest hemoglobin using haemoglobinases (220, 221). Since
neutralization of these critical enzymes would result in starvation
of the parasites, leading to parasite death, these antigens were
selected for the development of hookworm vaccines (49, 222).
Two promising vaccines derived from the adult stage parasite
were identified, aspartic protease-hemoglobinase (Na-APR-1)
and glutathione S-transferase-1 (Na-GST-1) (203, 222, 223). APR
is an enzyme that helps digest hemoglobin (221, 224), whereas
GST is essential for parasite survival and heme detoxification
(Blood-feeding pathway) (48, 225).

In pre-clinical testing, recombinant Na-APR-1 induced
neutralizing antibodies (IgG1 and IgG2) against the hookworm
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haemoglobinase and resulted in significantly reduced blood loss,
adult parasite burdens, and fecal egg counts in immunized
dogs when challenged with hookworm larval (222, 224).
Likewise, hamsters immunized with Ac-APR-1 showed a high
level of protection (226). Importantly, IgE from individuals
with hookworm infections did not recognize Na-APR-1 (224).
Developing APR further as a lead antigen, Skwarczynski et al.
developed an epitope-based subunit vaccine based on the A291Y
B-cell epitope identified from the Na-APR-1, incorporated
into a self-adjuvant system (Lipid Core Peptide). Interestingly,
the vaccine candidate induced potent enzyme-neutralizing
antibodies in mice (227). However, this study did not assess the
protective immune response in vivo. Pearson et al. also explored
a multi-antigen peptide-based vaccine against schistosomiasis
and hookworm containing A291Y peptide from Na-APR-1, a
S. mansoni Sm-tetraspanin-2 and Na-GST-1 antigens (228). A
more recent study also showed that mice immunized with a
lipopeptide-based vaccine consisting of a B-cell epitope (p3)
derived from the Na-APR-1 and attached to a T-helper epitope
(p25) induced a strong humoral immune response and resulted
in >98% reduction in worm and egg burden following challenge
infection with the rodent model hookworm, Nippostrongylus
brasiliensis (229). Further, the same vaccine nanoparticle, when
incorporated into natural and unnatural hydrophobic amino
acids, also significantly reduced both worm and egg burden in
orally vaccinated mice following N. brasiliensis challenge without
the need for adjuvant (93). Pre-clinical studies also suggested
that GSTs from N. americanus, A. caninum, or A. ceylanicum
to be promising vaccine candidates (230). For example, Na-
GSTs from the dog hookworm A. caninum (Ac-GST-1) elicited
a significant reduction in adult hookworm burdens following
challenge infection compared to control animals (225, 231).

On the basis of these and other pre-clinical data, the two
lead vaccine candidates (Ac-GST-1 and Ac-APR-1) formulated
individually with Th2 adjuvant Alhydrogel and TLR4 agonist
(GLA) are in Phase 1 trials in the United States, Brazil, and
Africa (48, 232, 233). Co-administration of both vaccines is also
undergoing a clinical trial in Gabon (234).

Other Hookworm Vaccine Candidates
Promising results have also been achieved in hamsters
immunized with DNA-based vaccines encoding the A.
ceylanicum metalloprotease 6 (Ace-MEP-6) (63) or Ace-MEP-7
as an alternative strategy to recombinant protein production
(62). Both vaccines induced significant reductions in worm
burden. Additionally, a 78% egg count reduction was observed
in hamsters immunized with Ace-MEP-7 (62).

Recent genomic and transcriptomic analysis of all three
species of hookworms (26, 29, 30) have also helped to
identify additional vaccine candidates including the two
intestinally-enriched, putatively secreted, cathepsin B cysteine
proteases (AceyCP1, AceyCPL) and the Kunitz-type protease
inhibitor (AceySKPI3) (29). Vaccination of hamsters with
AceyCP1/Alhydrogel induced a high level of protection
associated with the production of high levels of antigen-specific
antibodies (IgG). These antibodies also reduced the motility of
the adult worms in vitro and induced Th2 responses (IL-4, IL-5,

and IL-13) in re-stimulated splenocytes (235). Mechanistically,
vaccinated animals were thought to be protected as a result
of antibodies that neutralized the catalytic activity of the
hookworm antigens in the gut (224, 236), although the full
mechanism through which protection is conferred remains
unclear. This study and others proved that parasite-secreted
cysteine proteases involved in parasite nutrition are valid targets
for the development of anti-parasitic vaccines (236). Table 1
summarizes candidate hookworm vaccine antigens.

In the context of human hookworm vaccine development, the
existence of a human model system for the testing of hookworm
vaccines is a significant advantage. Thus, controlled human
hookworm infections will likely improve the early stages of
vaccine efficacy testing (50).

Experimental Ascaris Vaccine Candidates
Ascariasis caused by Ascaris lumbricoides, or Ascaris suum
remains the most prevalent NTD worldwide. Indeed, the use of
Ascaris egg-contaminated sewage sludge in agriculture has meant
that, even in Europe, exposure to Ascaris is surprisingly common
(237–239). A. lumbricoides infects around 819 million people
worldwide, with children especially susceptible (240). A. suum,
the pig roundworm, causes serious economic losses in meat-
producing livestock species worldwide (241). Both parasites
have a cosmopolitan distribution, an identical life cycle and are
morphologically, genetically, and antigenically very similar (242–
245). Consequently, efforts have been made in the past to identify
vaccine antigens derived from the larval stages and ultraviolet
irradiated attenuated embryonated eggs of the pig roundwormA.
suum (246). However, the large size of the pigs, the cost and the
complexities of animal husbandry, has driven many researchers
to use mice and other rodent hosts as a convenient alternative for
purposes of vaccine development (247). However, it is important
to note that there is no rodent model that enables the Ascaris
parasite to complete its life cycle.

Over the last decade, efforts have been made to identify crude
extracts (248), recombinant proteins (249, 250), defined native
molecules (251) and extracellular vesicles (252) as potential
Ascaris vaccine candidates. These include the 66 kDa gut
antigenic protein, the most immunodominant protein identified
from homogenized A. suum adult worm fractions (251),
but which was never tested in vivo for immunoprophylactic
purposes (251). Other studies have explored targeting nematode
haemoglobins as they can break down nitric oxide and hydrogen
peroxide, thus potentially providing protection against innate
host defenses (253, 254). However, immunizing pigs with A.
suum hemoglobin (AsHb) in combination with QuilA adjuvant,
failed to induce protective immunity following A. suum egg
challenge (255).

Further, targeting nematode haemoglobins may offer cross
species protection. For example, passive immunization of
mice with a monoclonal antibody (48Eg) against hemoglobin
of the nematode Anisakis pegreffii prior to infection with
Nippostrongylus brasiliensis (rodent hookworm) enhanced
protective Th2 immunity and significantly reduced worm
burdens (256). This study also showed that 48Eg cross-reacts
with the hemoglobin of several nematodes including A.
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TABLE 1 | Major hookworm vaccine candidates.

Antigen Parasite spp. Adjuvant Animal model Vaccine type Protection % References

Glutathione-S

transferase 1

(GST-1)

A. caninum

(Ac-GST-1)

Alhydrogel Mesocricetus auratus

golden hamsters

r-protein 50.6% reduction in worm burden (226)

Aspartic protease 1

(APR-1)

N. americanus

(Na-APR-1)

Alhydrogel and a

CpG

Dogs r-protein ND

66.6% reduction in egg count

(224)

A. caninum

(Ac-APR-1)

AS03 Dogs r-protein 33% reduction in worm burden (222)

A. caninum

(Ac-APR-1)

Alhydrogel Mesocricetus auratus

golden hamsters

r-protein 44.4% reduction in worm burden (226)

Metalloprotease 6 and 7

(MEP-6 and MEP-7)

A. ceylanicum

(AceyMEP-6)

ND Syrian golden hamsters DNA-based 80% reduction in worm burden (63)

A. ceylanicum

(AceyMEP-7)

ND Syrian golden hamsters DNA-based 50% reduction in worm burden

78% reduction in egg count

(62)

Cysteine proteases 1

and 2

(CP-1 and CP-2)

A. ceylanicum

(AceyCP1)

Alhydrogel Syrian golden hamsters r-protein 40–54% reduction in worm

burden

54–60% reduction in egg count

(235)

N. americanus

(Na-CP-2)

Freund Mesocricetus auratus

golden hamsters

r-protein 29.3% reduction in worm burden (226)

ND, Not done; r-protein, Recombinant protein.

lumbricoides, N. brasiliensis, Anisakis pegreffii, Pseudoterranova
decipiens, and Contracaecum spp.

The public availability of the genome, and gene expression
data for both A. lumbricoides and A. suum (28, 243, 245), also
helped in identifying Ascaris vaccine peptides based on the RV
approach. Indeed a recent study identified CD4 Th cell epitopes
in A. suum ES products based on in vitro antigen processing
and quantitative proteomic tools (257). However, the selected
epitopes have yet to be tested in vitro or in vivo for their ability
to induce immune responses.

To date the five major A. suum immunodominant antigens
tested as possible vaccine candidates are; A. suum 16-kilodalton
As16 (249), As14 (258), As24 (259), As37 (260), and As-Enol
(enolase) (247). As14 and As16, identified from the sera of
infected mice with A. suum, are localized in both larval and adult
stages, as well as in the ES products of both the human and pig
roundworms (23) and are homologous to the A. ceylanicum (Ac-
16) vaccine candidate (209). Intranasal immunization of mice
with recombinant rAs14 (258) and rAs16 (249) expressed in E.
coli and coupled with cholera toxin B subunit (CTB), produced
significant protection (64 and 58% respectively), compared to
non-vaccinated mice following A. suum infection. Furthermore,
recombinant rAs16 induced a 58% reduction in the recovery
of the lung-stage in a pig animal model, associated with high
levels of IL-4 and IL-10 and high titers of rAs16-specific mucosal
IgA and serum IgG antibody (261). Through the use of sera
from rAs16-CTB immunized mice, As16 was localized to the
worm hypodermis and intestine (249, 261). Sera from rAs16-CTB
immunized mice was also shown to inhibit molting of A. suum
L3 in vitro (261). Interestingly, subcutaneous vaccination of mice
with yeast-expressed As16 formulated with Montanide ISA720
adjuvant significantly reduced larval recovery and induced a
Th2 immune response against challenge infection. In contrast
mice immunized with rAs14 formulated with ISA720 failed

to induce protection (262). Other studies have used plants as
alternative, attractive, vaccine producing factories. For example,
mice fed with As16-transgenic rice fused with CTB showed a
significant reduction in the number of larvae following challenge
infection (263).

Promising results were seen in mice immunized with the
nematode-specific protein (As24) expressed in E. coli and
emulsified with Freund’s Complete Adjuvant (FCA), although
the potential for translating these studies to man is limited by
the choice of adjuvant. The vaccine resulted in a 58% reduction
in lung larval burden post-challenge and induced a Th1/Th2-
mixed type immune response characterized by elevated levels of
IgG, IFN-γ and IL-10 (264). As24 homologous proteins were also
identified in Ascaris lumbricoides and the dog parasitic nematode
Toxocara canis (259). Anti-As24 IgG also inhibited molting of
A. suum lung stage, suggesting As24 plays a critical role in
the development of Ascaris larvae (259). Further, the protective
immune response toA. suum larvae correlated with the induction
of IgG1 and IgM, and not with IgG2 in pigs immunized with
As14, and As24 fractions from adult worms (265, 266).

It has also been proposed that As37, a member of the
immunoglobulin superfamily, identified from the adult and
larval stages as well as in the hypodermis and muscle of
A. suum is a potential Ascaris vaccine candidate (260, 267).
Mice immunized with rAs37 formulated with AddaVax adjuvant
induced a significant 49.7% larval worm reduction after challenge
infection compared to control animals. Protection was associated
with the production of high levels of serological IgG1 and
IgG2a and stimulated the production of IL-4, IL5, IL-10, and
IL-13 cytokines, suggesting that both Th1 and Th2 immune
responses are essential for worm expulsion (250). Interestingly,
the AddaVax adjuvant performed better than the Th1 adjuvant
MPLA and the Th2 adjuvant Alhydrogel. Remarkably, sequence
analysis revealed that As37 is highly conserved in other STHs
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including N. americanus, A. ceylanicum, A. caninum, and T.
muris, but not in humans, suggesting that the nematode-
conserved antigen could serve as a pan-helminth vaccine
antigen (250).

The inorganic A. suum pyrophosphatase is another promising
vaccine candidate expressed throughout the life cycle and
localized in the surface and adult reproductive tissues (268).
Knockdown of A. suum pyrophosphatase by RNAi has indicated
the importance of this phosphatase in larval development and
molting (269). Furthermore, immunization of mice with rAs-
PPase expressed in E. coli, and formulated with TiterMax Gold
adjuvant resulted in >70% protection against the L3 stage, drove
a high serum IgG1 response, and significant production of splenic
IL-10 (270, 271).

Moreover, enolase (As-Enol-1), found in the A. suum larva,
adult ES and EVs has been shown to play a critical role in larval
development (272, 273), and triggering in vitro macrophage
nitric oxide production (274). Vaccination of Kunmingmice with
recombinant As-Enol-1 leads to a 61.13% reduction (P < 0.05)
in larval recovery and elicits a Th1/Th2 (IFN-γ, IL-2, IL-4, and
IL-10) immune response (247).

Gazzinelli-Guimaraes et al. (248) also evaluated the
immunological, potential clinical impact and protective immune
responses of three different Ascaris extract vaccines formulated
with the MPLA adjuvant. Mice immunized with crude extract
of adult worm (ExAD) exhibited a significant reduction (51%)
in the total number of migrating larvae recovered in the lung
tissue and bronchoalveolar lavage; crude extract of adult worm
cuticle (CUT) 59%, and crude extract of infective larvae (L3)
(ExL3) 61% compared to the non-immunized mice. Protection
was associated with a marked systemic production of Ascaris-
specific IgG1 and IgG3 subclasses and a significant increase in
systemic IL-5 and IL-10 (pre-challenge) and lung IL-10 (post-
challenge). ExL3 and CUT protection was also associated with
less tissue damage and pulmonary tissue inflammation as well
as reduced pulmonary dysfunction following Ascaris challenge.
Furthermore, the passive transfer of purified antigen-specific
IgG antibodies from mice immunized with ExL3, CUT, and
ExAD into naïve mice induced a significant reduction in parasite
burdens in lungs of 65, 64, and 64%, respectively (248). These
results suggest that vaccine induced antibodies play a crucial role
in reducing larval migration and subsequent larval burden in
the lungs.

Overall, the protective anti-Ascaris immunity (Table 2)
observed in all the experimental animal model points
toward a Th2-biased immune response, associated with the
production of high levels of parasite-specific IgG1. Analyses of
vaccine-driven immunity has suggested more mixed Th1/Th2
immune responses may be at play (250); however, over robust
Th1-type responses are counter protective. Again, as with
hookworm, the immunological mechanisms underpinning
vaccine induced immunity to Ascaris infections are only
partially understood.

Experimental Trichuris Vaccine Candidates
Historically, the global health community have focused their
vaccine research on hookworm and ascariasis and somewhat

TABLE 2 | Major Ascaris vaccine candidates.

Antigen Vaccine

type

Protection % (Reduction

in lung larval burden)

References

As14 r-protein 64% (258, 266)

As16 r-protein 58% (249, 261,

262)

As24 r-protein 58% (259, 264)

As37 r-protein 69% (275)

As42 r-protein 67% (266)

Enol-1 DNA 61% (247)

As66k ND ND (251)

• Crude extract of

adult worm (ExAD)

• Crude extract of

adult worm cuticle

(CUT)

• Crude extract of

infective larvae

(L3) (ExL3)

Crude

extract

• ExAD 51% (p < 0.01)

• CUT 59% (p < 0.001)

• ExL3 61% (p < 0.001)

(248)

ND, Not done; r-protein, Recombinant protein.

TABLE 3 | Major Trichuris vaccine candidates.

Antigen/adjuvant Vaccine

type

Protection %

(Reduction in

worm burden)

References

ES/FIA Crude 97% (85)

EVs and EVs fractions Crude Significant

reduction (% was

not indicated)

(276)

rPP2A/OVS r-protein 97.90% (277)

• rTm-WAP49/Montanide ISA

720

• rTm-WAP-F8+Na-GST-

1/Montanide

ISA 720

r-protein • 48%

• 38%

(91)

VLPs expressing Trichuris T-cell

epitopes

Epitope-

based

50% (79)

OVS, Oleic-vinyl sulfone; FIA, Freund’s incomplete adjuvant.

neglected trichuriasis, despite the fact that trichuriasis is the
secondmost common STH infection after ascariasis (13). Around
477 million people are estimated to be infected with Trichuris
infection, with the highest intensity of infection seen in school-
aged children (1, 2).

One of the first attempts at identifying a non-living vaccine
for T. trichiura was conducted in the mouse model T. muris,
using adult and larval worm somatic antigens to stimulate
protective immunity in infected animals (278). Vaccination of
mice with T. muris somatic antigens that were isolated from NIH
mice and emulsified in Freund’s incomplete adjuvant stimulated
protective immunity and a 92% reduction in worm burden after
infection (278). Wakelin and Selby (278) also demonstrated that
soluble antigens from the anterior region of adult worms were
more effective in stimulating immunity than antigens prepared
from the posterior region. T. muris adult worm homogenate
and ES products from both adult and larval stages have been
used in early-stage vaccine development (279, 280). Route of
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antigen delivery has also been explored. For example, a level of
protection can be achieved against T. muris using homogenized
adult antigens combined with cholera toxin as an oral vaccine
(281). However, a 100% reduction in worm burden can be
achieved through subcutaneous (s.c.) vaccination with adult
antigens emulsified in Freund’s complete adjuvant (281). Moving
to slightly less crude antigen preparations, but also exploring the
route of administration, Jenkins and Wakelin (279) showed that
vaccinating mice subcutaneously with 100 µg of the excreted and
secreted ES products of adult T. muris parasites without adjuvant,
was more effective than intraperitoneal vaccination, also in the
absence of adjuvant. More recently, Dixon et al. (85) showed
that subcutaneous vaccination of naturally susceptible AKRmice
with T. muris ES emulsified with Freund’s incomplete adjuvant
(IFA) induced expulsion of a high-dose infection. This study
also described priming of the immune response to subcutaneous
vaccination as occurring in peripheral lymph nodes draining
the site of vaccination, that the ensuing protective immune
response was of a mixed Th1/Th2 type and eluded to the
effector mechanisms involving some form of intestinal antibody-
mediated cellular immune response (85).

Interest in identifying host protective material in the
extracellular vesicle (EV) components within helminth secretions
has increased recently (282–284). For example, Shears et al.
(276, 285) showed that vaccinating C57BL/6 mice with either ES
fractions or EVs isolated from T. muris without an adjuvant and
prior to infection with a low-dose of T. muris eggs significantly
reduced the worm burden compared to the PBS-injected group,
inducing a mixed Th1/Th2 response. Vaccination of mice with
ES fractions stimulated long-lasting protection against chronic
infection characterized by the production of high levels of IL-9
and IL-13. However, the sera from ES vaccinated mice did not
protect naïve mice from T. muris chronic infection, suggesting
that anti-parasite antibodies did not play a critical role in
protection (285). Shears et al. also demonstrated that vaccination
with EVs boosted IgG1 antibody production against T. muris
ES proteins, suggesting that there is extensive overlap in protein
content between the EVs and ES (276).

Gomez-Samblas et al. (277) have also identified a vaccine
candidate that potentially could work against a variety of
helminth parasites, including T. muris. This candidate is based
on the recombinant serine/threonine phosphatase 2A from the
nematode Angiostrongylus costaricensis (rPP2A), formulated as
a lipopeptide and conjugated with a self-adjuvant oleic-vinyl
sulfone (OVS). Interestingly, intranasal immunization of AKR
mice with the vaccine candidate prior to T. muris challenge
led to a marked reduction in the number of adult parasites.
The immunized mice also developed a combined Th17/Th9
response orchestrated by the cytokines IL-25, IL-17, and IL-9
(277). The same vaccine candidate has also been tested in lambs
and was found to provide significant protection against the ovine
helminth Haemonchus contortus and Teladorsagia circumcincta
infection (286).

Briggs et al. (91) had developed two vaccines against
trichuriasis based on T. muriswhey acidic protein (rTm-WAP49)
and T. muris WAP fragment fusion protein (rTm-WAP-
F8+Na-GST-1) formulated with Montanide ISA 720 adjuvant.

Vaccinating AKR mice with the vaccine candidates three times
at 2-week intervals prior to T. muris challenge induced a partial
reduction in worm burden (48 and 38%, respectively) (91). The
authors also showed that both humoral and cellular immune
responses were induced and characterized by elevated antigen-
specific IgG1 and IgG2c antibodies and Th2 (IL-4, IL-9, and IL-
13) cytokines in the draining inguinal LNs, draining mesenteric
LNs and spleens of vaccinated mice (91).

Despite these promising results (Table 3), subunit vaccines
often require substantial adjuvant and often do not provide
sufficient protective cellular immunity compared with other
vaccine approaches (76). Thus, a recent study identified a
promising vaccine candidate based on major histocompatibility
complex class II (MHC-II) T-cell epitopes identified from the
whole genome of the Trichuris, incorporated into Hepatitis B
core antigen VLP (79). The four epitopes were identified from
chitin-binding domain-containing proteins and chymotrypsin-
like serine proteases. In vitro studies showed that the VLPs
were internalized and co-localized in the antigen-presenting cells
(dendritic cells and macrophages) lysosomes and stimulated
the production of pro-inflammatory and anti-inflammatory
cytokines. Remarkably, immunization of mice with four VLPs
expressing Trichuris T-cell epitopes induced a significant
reduction in worm burden following challenge infection
compared to control animals without the need for an adjuvant.
Protection was associated with the induction of a mixed Th1/Th2
immune response characterized by the production of Trichuris-
specific IgM and IgG2c and the production of mesenteric lymph
node-derived Th2 cytokines and goblet cell hyperplasia.

CONCLUSION AND LESSONS LEARNED

STH infections are common in the world’s poorest people
living in low- and middle-income countries and are linked to
detrimental effects on maternal and child health. Several studies
have been conducted over the years to develop vaccines as
cost-effective methods to control STHs infection (49). However,
the process of vaccines development against STH parasites is
complicated and faces several challenges. Thus, multiple broad-
ranging factors have to be taken in to account when developing
a protective vaccine to meet the immunogenicity, safety, and
efficacy criteria of regulatory institutes such as the US Food
and Drug Administration. These include identifying protective
antigens that do not trigger unwanted allergic-type immune
responses, the best route of administration, the vaccine type and
adjuvant to be used and how to elicit protective immunity in
the face of regulated immune environments typical of chronic
STH infections (287). Underpinning all these factors is a need
to understand the immune response induced by STHs and the
nature of vaccine-driven protective immune responses, such that
one can strategically design vaccines to drive the right sort
of quality of immune response in susceptible hosts. There is
a significant problem in vaccinology in that subunit vaccines,
which are composed of antigenic proteins, are often poorly
immunogenic and fail to stimulate memory immune responses.
Furthermore, there is a knowledge gap in understanding the
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mechanisms of action of vaccines and how they stimulate the
required T- and B-cell responses. Targeting of antigen to specific
antigen-presenting cell subsets is a promising strategy going
forward. Coupling of a monoclonal antibody to antigen poses
technical challenges, requiring fusion protein engineering or
cross-linking, both of which can fail or produce low yields.
However, overcoming these technical barriers is likely to be
far-reaching in the context of STHs, where vaccine delivery is
likely to occur in the context of pre-existing chronic infections.
Despite an increase in STH vaccine research, it remains a
disappointing truth that no human anti-STH vaccine currently
exists. Among the lessons learned over the last decade is the
importance of gaining international pharma company attention
and support in order to bring antihelminth vaccines to trials.
Further, raising public health awareness of the enormous threat
presented by STH infections to the economy and health of at-
risk populations, including their impact on susceptibility to other

pathogens (49, 192) is critical. This has never been more relevant
than now, given today’s climate of emerging infectious diseases
including SARS-CoV-2.
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