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1. Introduction

Throughout modern history, the emer-
gence of new viruses and subsequent
global outbreak of diseases, such as severe
acute respiratory syndrome (SARS), Swine
flu, and Middle East respiratory syndrome
(MERS), has posed a serious threat to pub-
lic healthcare.[1] Recently, coronavirus dis-
ease 2019 (COVID-19), a disease caused
by severe accurate respiratory syndrome-
coronavirus 2 (SARS-CoV-2), became a
global pandemic. SARS-CoV-2, virus con-
taining RNA as the genetic material (i.e.,
RNA virus), shows more virulent character-
istics than DNA virus,[2] in which RNA rap-
idly transcribes and replicates the viral
proteins in the infected cells.[3] Also, since
viral transmission occurs easily through
airborne droplets and human-to-human
contact; rapid diagnosis and quarantine
are essential to prevent the spread of the
virus.[4] However, COVID-19 patients show
asymptomatic or nonspecific symptoms,
and the virus is highly contagious even dur-

ing the incubation period and under asymptomatic conditions,
causing indiscriminate viral transmission.[5] Therefore, an
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The recent global spread of COVID-19 stresses the importance of developing
diagnostic testing that is rapid and does not require specialized laboratories. In
this regard, nanomaterial thin-film-based immunosensors fabricated via solution
processing are promising, potentially due to their mass manufacturability, on-site
detection, and high sensitivity that enable direct detection of virus without the
need for molecular amplification. However, thus far, thin-film-based biosensors
have been fabricated without properly analyzing how the thin-film properties are
correlated with the biosensor performance, limiting the understanding of
property�performance relationships and the optimization process. Herein, the
correlations between various thin-film properties and the sensitivity of carbon
nanotube thin-film-based immunosensors are systematically analyzed, through
which optimal sensitivity is attained. Sensitivities toward SARS-CoV-2 nucleo-
capsid protein in buffer solution and in the lysed virus are 0.024 [fg/mL]�1 and
0.048 [copies/mL]�1, respectively, which are sufficient for diagnosing patients in
the early stages of COVID-19. The technique, therefore, can potentially elucidate
complex relationships between properties and performance of biosensors,
thereby enabling systematic optimization to further advance the applicability of
biosensors for accurate and rapid point-of-care (POC) diagnosis.
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accurate and rapid diagnosis is of critical importance to control
the explosive incidence of COVID-19.[6]

Currently, the gold standard for COVID-19 diagnosis is
molecular diagnostics, which detects the viral nucleic acids by
amplifying certain genetic sequences of viral genomes with quan-
titative reverse transcription-polymerase chain reactions (qRT-
PCRs).[7] Medical institutions have steadily used this method
due to its high diagnostic accuracy. However, it is time-consuming
and requires laboratory-based hospitals,[2b] making countries with
poor infrastructures struggle to control the spread of virus, eventu-
ally leading to increasedmortality.[8] Thus, it is necessary to develop
a low-cost point-of-care (POC) biosensor that detects SARS-CoV-2
with rapid detection time and without specialized facilities.

For POC biosensors to be utilizable in clinical applications, the
top priority is improving the sensing performance (e.g., sensitivity,
limit of detection [LoD]) so that false diagnosis can be reduced.[9]

Nanomaterial-based thin films have proven their worth as superior
transducers owing to their unique physical and chemical proper-
ties.[10] For example, their high surface-to-volume ratio enhances
sensitivity (relative signal change per unit biomarker concentra-
tion) by providing a large number of binding sites for biorecep-
tors.[11] Currently, advanced fabrication techniques enable the
control of various thin-film properties (e.g., thickness, surface
roughness, alignment, and surface coverage),[12] through which
the biosensor’s performance can be optimized. In this regard,
we have recently reported carbon nanotubes (CNTs)-based biosen-
sors that can diagnose Alzheimer’s disease via multiplexed detec-
tion of biomarkers in human plasma.[13] Specifically, densely
aligned CNT films were produced by the Langmuir�Blodgett
(LB) method, which allowed detection of targeted biomarkers
down to femtomolar concentrations. Also, research on improving
biosensing performance by optimizing thin-film density and the

length and width of hydrothermally grown ZnO nanowires was
reported,[14] where tuning such properties improved sensitivity
for the detection of SARS-CoV-2 virus.

However, so far, the development of nanomaterial thin-film-
based biosensors has been conducted without fully understanding
how and to what degree the aforementioned thin-film properties
affect the sensing performance of the biosensor, which has thus far
likely limited the optimization of sensing performance. Therefore,
it is of critical importance to develop a systematic approach to
understand how the sensing performance is correlated with each
of the thin-film properties and what combination of thin-film prop-
erties presents the highest sensing performance.

2. Results and Discussion

In this work, we have utilized solution shearing to regulate the
thin-film properties of CNTs (a commonly utilized nanomaterial
for biosensing),[15] which potentially enables mass manufacturing
of the POC biosensor at a low cost (Figure 1).[16] In solution shear-
ing, solution with uniformly dispersed CNTs forms a meniscus
between a heated substrate and a coating blade.[17] As the blade
moves, continuous deposition of CNTs occurs near the edge of
the meniscus (owing to the accelerated solvent evaporation),[18]

forming a thin film. Using the CNT thin film as the sensing sur-
face, resistive biosensors were fabricated to detect immunoglobu-
lin G (IgG) and SARS-CoV-2 antigen protein, where thin-film
properties, such as alignment, thickness, surface roughness,
and surface coverage, were tuned. Herein, machine learningmod-
els were utilized to analyze the relative importance and the corre-
lation of these thin-film properties toward the sensitivity of the
biosensor, through which sensitivity was optimized. By this

Figure 1. Overall schematic illustration of fabricating CNT thin-film-based resistive immunosensors. Thin-film properties affecting biosensing perfor-
mance can be tuned using experimental parameters, through which sensitivity can be optimized. By optimizing the sensitivity, NP in SARS-CoV-2 virus
can be detected in a rapid and reliable manner.

www.advancedsciencenews.com www.small-science-journal.com

Small Sci. 2022, 2, 2100111 2100111 (2 of 9) © 2021 The Authors. Small Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.small-science-journal.com


methodology, CNT-based biosensors were able to detect IgG and
SARS-CoV-2 nucleocapsid proteins (NPs) in both buffer solution
and lysed virus with a sensitivity of 0.093 fM�1, 0.024 [fg/mL]�1,
and 0.048 [copies/mL]�1, respectively. Our machine learning-
assisted systematic analysis not only enables optimization of bio-
sensors but also allows evaluation of the relative importance and
correlation of various thin-film properties, potentially expanding
the applicability of biosensors toward POC testing for accurate
and rapid diagnosis of various diseases.

Fluid flow behavior during solution shearing plays a pivotal role
in determining the thin-film properties as it affects solute transport
and liquid-to-solid transition.[19] Previously, solution shearing
blade was microstructured to manipulate flow behavior, through
which organic thin-film crystallization was controlled for tuning
the performance of thin-film transistors[18b] and solar cells.[20]

In this work, we utilized microstructured blade as a means to gen-
erate highly uniform and low-resistance CNT films, which has not
been demonstrated before. Here, three different blades were used
to generate CNT thin films, all under the same shearing condition
(see Experimental Section for details). First, blade without micro-
structuring was used, which we will call flat blade here onward.
Next, two different microstructured blades were used. Both blades
had circle-shaped pillars with height and diameter of 20 μm,
arranged as body-centered cubic (BCC), but with different edge-
to-edge spacing of 20 μm (1:1 ratio of diameter to spacing) and
40 μm (1:2 ratio of diameter to spacing). For these three blades,

we compared the difference in fluid characteristics using numeri-
cal simulation and analyzed the CNT film properties (see
Figure S1 and Videos S1–3 in the Supporting Information for fur-
ther details). As shown in the scanning electronmicroscopy (SEM)
image in Figure 2a, the CNT thin film generated with 1:1 blade had
a much more densely and uniformly covered surface compared
with that of the flat blade. The surface roughness for the 1:1 blade
film was also relatively low (Ra: 1.54 nm) compared with that of the
flat blade (Ra: 3.01 nm). The resistances of the three types of films
were measured, each at 40 different locations using patterned elec-
trodes, as shown in Figure 2b. The film generated with 1:1 blade
had the highest uniformity (coefficient of variation [CV] of 15.2%)
and the lowest average resistance of 2.95 kΩ. On the contrary, the
flat blade resulted in the lowest uniformity and the highest average
resistance. We therefore hypothesized that microstructuring pre-
vents aggregation/bundling of CNTs and spatially spreads out the
CNTs uniformly in the solution. Figure 2c shows a numerical sim-
ulation showing the particle trajectories, in which particles are ini-
tially assembled perpendicular to the coating direction and pass
through the 1:1 blade. BCC-arranged microstructures disrupt
the laminar flow and accelerate the fluid flow in the perpendicular
direction, affecting the solute transport to the liquid�solid bound-
ary. Figure 2d shows the residence time of the simulated particles
(i.e., time taken for a given particle to pass through a designated
region) and calculated shear rate at the tip of the blade for the three
types of blades (see Experimental Section for further details on

Figure 2. Comparison of morphology and electrical properties of the CNT thin films fabricated by flat and microstructured (1:1, 1:2 spacing) blades.
a) SEM images of CNT films fabricated by flat (left) and 1:1 spacing (right) microstructured blades. The microstructures alter the fluid behavior, resulting
in the highly packed CNT films. b) Comparison of CNT thin-film resistance. CV values (italicized) were four times lower in the 1:1 spacing microstructured
blade than in flat blade. c) Numerical simulation visualizing trajectories of particles around the micropillars (1:1 spacing) using forward particle tracking
methods. d) Calculation of residence time and shear rate for aforementioned three coating blades, showing the broadest distribution of residence time
and the highest shear rate in 1:1 spacing microstructured blade.
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simulation). The 1:1 blade had the highest of such values, whereas,
the flat blade had the lowest of such values, which was the same
trend observed for uniformity and average resistance. We postulate
that higher shear rate breaks up, prevents CNT aggregation, and
enhances CNT alignment.[21] Furthermore, the wide distribution
of residence time likely enhances the spatial distribution of
CNTs in the solution, which increases film uniformity. Further
analysis is required to confirm these hypotheses and is gcurrently
the subject of our future work. For the rest of the experiments pre-
sented in this report, 1:1 blade was used.

To tune the properties of the thin film, three processing param-
eters were varied: CNT solution concentration, coating speed, and

substrate temperature. Thin film was generated at various values
of these processing parameters, resulting in a total of 27 process-
ing conditions. Here, “processing condition” refers to a set of spe-
cific values of processing parameters under which the thin film
was formed (see Table S1 from the Supporting Information).
Graphically, the three processing parameters represent three dif-
ferent axes and points in this cuboidal parameter space are the
processing conditions (Figure 3a). At each condition, thin-film
properties (thickness, surface roughness, surface coverage, and
degree of alignment) were measured. How these thin-film prop-
erties were measured are detailed in Experimental Section and
Figure S2,S3 from the Supporting Information. As shown in

Figure 3. Thin-film properties and sensitivities of the CNT-based resistive immunosensors depending on the processing conditions. a) Schematic depicting
the relationships between the processing conditions, thin-film properties, and biosensor performances. Processing parameters are represented as x, y, z.
b) Changes in four thin-film properties (alignment, thickness, surface roughness, surface coverage) depending on the processing conditions. c) Schematic
illustration of the resistive biosensing mechanism due to antigen�antibody binding. d) Comparison of CNT thin-film average initial resistance. Each data is
based on 40 devices. The whiskers represent mean � standard deviation. e) Comparison of CNT sensor sensitivity toward IgG. Each data point represents
the average sensitivity from two different CNT sensors, showing both positive and negative correlation with regard to processing conditions.
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Figure 3b, each of the thin-film properties exhibited different val-
ues and trends as a function of processing conditions.

Next, resistive immunosensors were fabricated using the thin
films generated under the aforementioned processing condi-
tions. Here, immunoglobulin G (IgG) was set as the target bio-
marker; hence, the corresponding antibody (anti-IgG) was
anchored on the surface of the CNTs (see Experimental
Section and Figure S4 in the Supporting Information for details
on the fabrication process). As a complex is formed by coupling
between IgG and anti-IgG, resistance of the film increases
(Figure 3c) due to the charge scattering effect.[15b] As shown
in Figures 3d,e, the thin films generated under different condi-
tions exhibited significant differences in the average initial resis-
tance Ro (i.e., resistance prior to the binding of biomarkers in
buffer solution) and sensitivity (i.e., slope of the relative change
in resistance [ΔR/Ro] versus biomarker concentration, expressed
in 1/fM). The reason for the differences in the initial resistances
and sensitivities at each condition is due to the differences in the
thin-film properties. For instance, looking closely at the data in
Figure 3d,e, conditions 19 and 23 had the two highest sensitivi-
ties, and at these conditions, relatively low initial resistance and
CV were attained. Such a correlation can be attributed to reduced
bundling and better alignment of CNTs; these affects will be dis-
cussed further. However, due to the presence of multiple thin-
film properties, it is not obvious from observing the data in
Figure 3b–e the relative importance of each thin-film property
and what combination of thin-film properties results in higher
performance. Therefore, for device optimization and for better
understanding of property�performance correlation, machine
learning-assisted computation needs to be utilized.

Using the aforementioned data, machine learning-based
computation was conducted to extract the correlation between
thin-film properties (input variables) and sensitivity (target vari-
able).[22] Details of the computation process are shown in Note
S1, Supporting Information. We tested five machine learning
models to predict the sensitivity using the scikit-learn library
in Python: linear regression (LR), K-nearest neighbors (KNN),
Gaussian process regression (GPR), random forest regression
(RF), and stochastic gradient descent regression (SGDR). The

k-fold cross-validation (k¼ 5) was used to verify the predictive
accuracy for each of the models. Figure 4a shows the cross-
validated root mean square error (RMSE) values of the models,
indicating that GPR and RF show lower RMSE compared with that
of other algorithms without the evidence of overfitting (see
Table S2 in Supporting Information).[23] GPR is a nonparametric
kernel-based model that provides a probabilistic estimate of the
approximation,[24] and RF is an ensemble model with several deci-
sion trees,[25] where estimators are predicted from a subset of data.
These models allow the management of complex correlations
between input and target variables. In this study, GPR model
was utilized for predicting the sensitivity while RFmodel was used
to investigate feature contribution, as shown in Figure 4b.

Figure 4b shows the result of feature contribution analysis to
test the degree of importance of each thin-film property to the
sensitivity (thin-film properties will also be referred to as “fea-
tures” from this point onward). The surface roughness, align-
ment, and thickness contribute to about 0.34, 0.30, and 0.24,
respectively, whereas, the surface coverage only accounts for a
contribution of 0.12. Therefore, surface coverage was omitted
as a feature for our study. The low contribution of surface cover-
age is attributed to the fact that solution-sheared CNT films gen-
erated under our processing conditions show low variability in
surface coverage than that of the other film properties
(Figure S5 in the Supporting Information). Figure S6 in the
Supporting Information shows a 3D map that predicts the sen-
sitivity in a cuboidal feature space, where the axes represent the
other three thin-film properties (e.g., surface roughness [x-axis],
thickness [y-axis], and alignment [z-axis]). Figure 4c shows a 2D
slice of the 3Dmap at a specific value of thickness (which was the
least influential feature out of the three features) that contains the
highest predicted sensitivity, where x- and y-axis represent align-
ment and surface roughness, respectively (i.e., this slice does not
contain the experimentally attained sensitivity data points). It is
evident that higher sensitivity (yellow region) is predicted at low
surface roughness and high CNT alignment; vice versa is true for
attaining lower sensitivity (purple region). Within these regions
of extrema, rectangular areas were defined, which consist of
ranges of alignment and surface roughness values.

Figure 4. Correlation between the thin-film property and sensitivity by machine learning-based computation. a) Comparison of performance of different
machine learning models (e.g., LR, KNN, GPR, RF, and SGDR) using the cross-validated RMSE. The inputs are normalized. b) Feature importance of
various CNT thin-film properties (surface roughness, alignment, thickness, and surface coverage) using the random forest model. c) Prediction map of
sensitivity generated using GPR model, where the range of roughness and alignment yielding high sensitivity (yellow region) and low sensitivity (purple
region) was attained. x-axis represents degree of alignment and y-axis represents surface roughness, at the thickness of 4.34 nm.

www.advancedsciencenews.com www.small-science-journal.com

Small Sci. 2022, 2, 2100111 2100111 (5 of 9) © 2021 The Authors. Small Science published by Wiley-VCH GmbH

http://www.advancedsciencenews.com
http://www.small-science-journal.com


The decrease in sensitivity with increasing surface roughness
can be explained by the decrease in surface area available for anti-
body binding. High surface roughness is attributed to increased
CNT bundling, as shown in Figure 5b. As the CNTs within the
inner layer of the bundles are not accessible for antibody binding,
the number of bound antibodies per total CNT surface area is
reduced, which consequently reduces the sensitivity. Also, bun-
dling has been shown to increase the resistance of the film as
current mainly flows along the outermost CNTs of bundles
rather than the inner CNTs.[26] Since complex formation is
detected by the relative change in the resistance of the film,[13,15a]

increased initial resistance of the film lowers the sensitivity. The
increase in sensitivity with increasing alignment can be
explained by the decrease in tube-to-tube junctions. Tube-to-tube
junctions have been determined to be much more resistive com-
pared with that of resistance along CNTs.[26a] Therefore, for mis-
aligned films, as the resistance of the film is dominated by the

resistance of the tube-to-tube junctions, we postulate that tube-to-
tube junctions effectively “hide” the change in resistance due to
complex formation. Verifying these hypotheses requires further
investigation and is the subject of our future work.

To demonstrate the validity of the predicted correlation
between thin-film properties and sensitivity, two types of thin
films were made, one with properties satisfying the high-
sensitivity yellow region (High Alignment Low Roughness [HALR])
and another satisfying the low-sensitivity purple region (Low
Alignment High Roughness [LAHR]). To find the processing
conditions that would result in these thin-film properties,
GPR model-based machine learning was utilized to find the cor-
relation between the processing conditions (input variables) and
each of the three thin-film properties (target variables: roughness,
alignment, and thickness). In other words, three cuboidal param-
eter space models were generated where the axes were the three
processing parameters. Thereafter, processing conditions that

Figure 5. Characterization and sensitivities of two types of CNT-based immunosensor. a,b) SEM images (a) and AFM images (b) of LAHR- and HALR-
based CNT thin-films. The two CNT films show different values of surface roughness (italicized). c) Polarized Raman spectra of CNT films. The data show
Raman intensity at 1595 cm�1 depending on the angle difference between 633 nm incident laser and the coating direction of CNT films. The alignment of
CNT films (italicized) was calculated by the ratio of the G-band intensity at rotating angles of 0� (laser incident parallel to coating direction) and 90� (laser
incident perpendicular to coating direction). d) Sensing performance of different types of CNT thin films. For each data point, a different set of four
sensors was used. The negative control was conducted without anti-IgG. All the values represent the mean � standard deviation.
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yielded a proper range of values for each of the thin-film properties
were determined. Next, processing conditions that simultaneously
satisfied the range of values for all three thin-film properties were
deduced (see Figure S7 in the Supporting Information for details).

Figure 5a shows SEM images of the two types of CNT thin
films, which we define as “LAHR” and “HALR.” Figure 5b shows
the atomic force microscopy (AFM) topographic images, demon-
strating that LAHR had a higher mean roughness Ra (2.69 nm)
compared with HALR (1.01 nm), and these values were indeed
within the range of roughness values shown in Figure 4c. Next,
the degree of alignment was measured by taking the ratio of G-
band intensities in Raman spectra at rotation angles 0� and 90�

(Figure 5c). For LAHR, the degree of alignment was 0.77, while
that of the HALR was 2.80. These values again were within the
range of alignment values shown in Figure 4c. Furthermore,
using these two films, resistive immunosensors were fabricated,
and their sensitivities toward IgG were calculated by measuring
the relative change in resistance at various IgG concentrations
in buffer solution (from 101 to 107 fM) and taking slope of the
regression line. Low sensitivity was attained for the LAHR-based
sensor (0.010 fM�1), whereas, HALR-based sensor had relatively
high sensitivity (0.093 fM�1), which was 9.3 times higher.
Moreover, for the HALR-based sensor, the coefficient of determi-
nation (R2) of the regression line was relatively high (0.99), and the

CV value of the initial resistance was relatively low compared with
that of the LAHR-based sensor (Figure S8 in the Supporting
Information). The LoD for the HALR-based sensor estimated at
a confidence level of 3.3 was 2.85 fM, which was 88.8 times lower
than that of the LAHR-based sensor (Figure S9a in the Supporting
Information for details). These results show that machine learning
can predict the resulting thin-film properties from a given set of
processing parameters, through which optimal biosensor perfor-
mance can be obtained in an efficient manner.

To verify whether the trend in the sensor performance
obtained earlier translates to other biomarkers and to confirm
the viability of our sensor toward diagnosis of COVID-19, the
two types of films were utilized to detect SARS-CoV-2 NPs in
PBS solution. To select an antibody for detecting the NP antigen,
first, we compared the sensitivity and selectivity of four single-
chain variable fragment-crystallizable (scFv-Fc) antibodies and
we developed in a previous report by indirect ELISA assay
(Figure S10 in Supporting Information).[27] 12H1 and 12H8 anti-
bodies showed high sensitivity, and 12H1 antibody showed the
best selectivity (Figure S11 in the Supporting Information).
Thus, 12H1 scFv-Fc antibody was used in CNT sensors.

Figure 6a shows the schematic depiction of the SARS-CoV-2
virus with labeling of its components. As shown in Figure 6b, for
both types of CNT sensors, we observed a strong linear

Figure 6. Sensitivities of the CNT-based immunosensors toward SARS-CoV-2 NPs. a) The structure of SARS-CoV-2 virus and schematic illustration of
CNT film-based resistive immunosensor detecting SARS-CoV-2 NPs. b,c) Relative change in the resistances of CNT sensors with LAHR-based thin film
and HALR-based thin film upon exposure to SARS-CoV-2 NPs in buffer solution (b) and in the lysed SARS-CoV-2 virus (c). Sensors without scFv fusion
protein in SARS-CoV-2 NP conjugation were used as a negative control. For each data point, a different set of four sensors was used. All the values
represent the mean � standard deviation.
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relationship between the relative resistance change and NP con-
centration in the range from 10 fg/ml to 10 ng/ml, where the
coefficients of determination (R2) of the regression line were over
0.98. Similar to the sensitivity trend shown in Figure 5d for IgG,
the HALR-based sensor exhibited relatively high sensitivity
toward SARS-CoV-2 NP; the sensitivity was 1.71 times higher
than that of the LAHR-based sensor. The estimated LoD values
of the HALR- and the LAHR-based sensor at a confidence level of
3.3 were 5.62 and 10.59 fg/ml, respectively.

We further confirmed the potential of our sensors for rapid
diagnosis by directly detecting NPs in the SARS-CoV-2 virus, as
shown in Figure 6c. SARS-CoV-2 viruses were cultured in
Dulbecco’s minimal essential medium (DMEM). Then, the cul-
tured viruses were lysed, and the NPs in viruses were detected.
Therefore, Figure 6b,c show sensitivities toward NPs, while in
the case of Figure 6b, pure NP solution without viral impurities
was used. Again, to obtain the sensitivity and LoD of the two types
of sensors, relative resistance change as a function of cultured
SARS-CoV-2 virus concentration from 1.62� 102 to 1.62� 106

copies/ml was measured. The results show that the HALR-based
sensor also exhibited relatively high sensitivity toward the NPs in
the SARS-CoV-2 virus; the sensitivity was 2.76 times higher than
that of the LAHR-based sensor. Moreover, the LoDs of the HALR
and LAHR-based sensor were estimated to be 120 and 216 copies/
ml, respectively, at a confidence level of 3.3 (Figure S9b in the
Supporting Information for details). Based on the detection of
NP, the attained LoD of theHALR-based sensor strongly correlates
with the LoD shown in Figure 6b (5.62 fg/ml). Details of the cal-
culation are shown in Note S2, Supporting Information. These
results show that the HALR-based sensor can reliably detect
SARS-CoV-2 virus at a level of about 100 copies without being dis-
turbed by interfering agents in virus culture medium (Figure S12
in the Supporting Information). It is known that SARS-CoV-2
virus is found within the first week after symptom onset,[28] to
a viral load of around >106 copies/ml,[29,28b] which was set as a
detection cutoff for antigen-detecting rapid diagnostic tests by
WHO.[30] Furthermore, recent literatures mentioned that the viral
loads of SARS-CoV-2 in clinical samples by RT-PCR ranged from
6.40� 102 copies/ml to 1.35� 1011 copies/ml, with a median of
1.69� 105 copies/ml for nasal swab samples, 7.99� 104 for throat
samples, and 7.52� 105 for sputum samples, taken 3 days after
symptom onset.[31] Therefore, the LoD of our sensor with about
100 copies/ml is lower than the viral load in clinical samples.
This sensor also showed selectivity by accurately discriminating
the NPs of SARS-CoV-2, comparedwith other types of biomarkers,
such as NPs of MERS-CoV and Influenza A (Figure S13 in the
Supporting information). This indicates that our HALR-based sen-
sor fulfills the sensitivity requirement and could potentially be
used to diagnose patients in the early stages of COVID-19.

3. Conclusions

In this work, CNT thin-film-based biosensor was optimized via
investigating the correlation between thin-film properties and sen-
sitivity using machine learning-based computation. Our approach
enables systematic optimization of sensor performance rather
than relying on human intuition, which has greater potential
for attaining higher sensor performance. At a given film thickness,

smaller surface roughness and better CNT alignment yielded
higher sensitivity, which can be attributed to increased surface
area for bioreceptor binding and lower density of tube-to-tube
junctions. Our optimized sensors showed sufficiently high sensi-
tivity for detecting NPs in the SARS-CoV-2 virus in patients in the
early stages of COVID-19. We project that our computational
approach can be generally applied to other sensing systems to elu-
cidate the complex relationships between properties and perfor-
mance, through which optimal device performance can be
found in an efficient manner, thus expanding the applicability
of various biosensors for accurate and rapid diagnosis.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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