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The principal goal of the brain-computer interface (BCI) is to translate brain signals into

meaningful commands to control external devices or neuroprostheses to restore lost

functions of patients with severe motor disabilities. The invasive recording of brain signals

involves numerous health issues. Therefore, BCIs based on non-invasive recording

modalities such as electroencephalography (EEG) are safer and more comfortable

for the patients. The BCI requires reconstructing continuous movement parameters

such as position or velocity for practical application of neuroprostheses. The BCI

studies in continuous decoding have extensively relied on extracting features from the

amplitude of brain signals, whereas the brain connectivity features have rarely been

explored. This study aims to investigate the feasibility of using phase-based connectivity

features in decoding continuous hand movements from EEG signals. To this end, the

EEG data were collected from seven healthy subjects performing a 2D center-out

hand movement task in four orthogonal directions. The phase-locking value (PLV) and

magnitude-squared coherence (MSC) are exploited as connectivity features along with

multiple linear regression (MLR) for decoding hand positions. A brute-force search

approach is employed to find the best channel pairs for extracting features related to

hand movements. The results reveal that the regression models based on PLV and MSC

features achieve the average Pearson correlations of 0.43 ± 0.03 and 0.42 ± 0.06,

respectively, between predicted and actual trajectories over all subjects. The delta and

alpha band features have the most contribution in regression analysis. The results also

demonstrate that both PLV and MSC decoding models lead to superior results on our

data compared to two recently proposed feature extraction methods solely based on the

amplitude or phase of recording signals (p < 0.05). This study verifies the ability of PLV

and MSC features in the continuous decoding of hand movements with linear regression.

Thus, our findings suggest that extracting features based on brain connectivity can

improve the accuracy of trajectory decoder BCIs.

Keywords: brain computer interface (BCI), phase-locking value (PLV), magnitude-squared coherence (MSC),

electroencephalography (EEG), multiple linear regression (MLR), trajectory decoding

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://www.frontiersin.org/journals/human-neuroscience#editorial-board
https://doi.org/10.3389/fnhum.2022.901285
http://crossmark.crossref.org/dialog/?doi=10.3389/fnhum.2022.901285&domain=pdf&date_stamp=2022-06-30
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:shalchyan@iust.ac.ir
https://doi.org/10.3389/fnhum.2022.901285
https://www.frontiersin.org/articles/10.3389/fnhum.2022.901285/full


Hosseini and Shalchyan Hand Trajectory Decoding From EEG

INTRODUCTION

Brain computer interfaces (BCIs) are systems based on signal
processing techniques that translate the brain’s electrical activity
into control commands (Wolpaw andWolpaw, 2012; Rao, 2013).
The earlier generation of BCIs aimed to classify different brain
states to generate discrete commands (Wolpaw et al., 1991;
McMullen et al., 2013). Although the classification-based BCIs
work appropriately for discrete tasks such as spellers or virtual
keyboards (Rezeika et al., 2018), they are not suitable for tasks
involving continuous parameters estimation such as human hand
movement. Many studies have focused on decoding continuous
movement from brain activities for this sake. Researchers in
the realm of invasive BCIs were the first to decode hand
movement parameters continuously from primates and humans
using spiking activity (Taylor et al., 2002; Kim et al., 2008;
Hochberg et al., 2012), local field potential (LFP) (Mehring et al.,
2003; Flint et al., 2012), and electrocorticography (ECoG) signals
(Shimoda et al., 2012; Nakanishi et al., 2013). This new approach
is consistent with the continuous nature of human motion.
However, the invasive recording of brain activity involves great
concerns such as scarring brain tissues, post-operation infections
and signal reliability over time. Hence, the usage of invasive
BCIs is still limited. Therefore, there is a need for BCIs based
on non-invasive recording modalities such as EEG to decode
continuous movements.

Employing non-invasive recording modalities was ignored
until recently when Bradberry et al. (2010) reported the feasibility
of decoding hand velocity in a 3D center-out reaching task
using low-delta EEG signals. Kim et al. (2014) also exploited
low-frequency EEG signal amplitudes to decode two types
of hand trajectories in execution and observation/imagination
tasks. Korik et al. (2016, 2018) challenged the common belief
that only the low-delta band of EEG carries information about
continuous decoding of hand kinematics and claimed that mu
(8–12Hz) and beta (12–28Hz) bandpowers encode information
for hand motion trajectory prediction. Additionally, the role of
delta and beta oscillatory rhythms in decoding hand velocity in a
drawing task was demonstrated by Lv et al. (2010).

The most common features that have been used for decoding
hand trajectory are amplitude-related features such as power in
various frequency bands. In contrast, the possibility of using
brain connectivity features is still almost unexplored. There
are some limited studies in this area as far as we know.
Benz et al. (2012) exploited time-varying dynamic Bayesian
networks (TV-DBN) to extract features from ECOG signals for
predicting joint angle in a palmar grasp task. Li et al. (2018)
have proposed using connectivity analysis from brain functional
network (BFN) alongside a hierarchical linear model (HLM)
to decode continuous positions of spiral hand movement from
EEG recordings. The effectiveness of phase-locking value (PLV)
features of EEG signals in the binary classification of executed
or imagined hand movement was investigated in Chouhan et al.
(2018) and Benzy and Vinod (2019), respectively. However, as
far as we know, the literature has not examined the viability of
using EEG phase-based connectivity features in the continuous
decoding of hand kinematics during executed movement tasks.

To address this issue, we designed a cue-based 2D center-
out task in which a healthy subject performed hand-reaching
movement in a horizontal plane toward four targets. In one trial
of this task, the hand movement cycle comprised three phases:
moving from the origin to one of four targets, pausing for 400ms
at the target, and returning to the first place. The EEG signals
and positions of the right hand were recorded simultaneously
during the task. Phase locking value (PLV) and magnitude-
squared coherence (MSC) were extracted from EEG signals as
predictors for multiple linear regression (MLR) to decode hand
positions. To the best of our knowledge, this work is the first
to investigate the feasibility of using phase-based connectivity in
decoding continuous hand trajectory from EEG signals.

The rest of the paper is organized as follows: Section Materials
and Methods is dedicated to the methods and materials. The
results are presented in Section Results. Finally, the discussion
is left for Section Discussion.

MATERIALS AND METHODS

This study investigates the feasibility of decoding continuous
hand trajectory using PLV and MSC features in a 2D center-
out task from EEG signals. Recording signals and designing the
experiment will be discussed in the following subsections.

Subjects and Equipment
Seven healthy male subjects aged between 25 and 35 participated
in the study. All subjects were right-handed. The experiment
was done in one session for each subject. The study meets
the recommendations of the Ethics Committee of the Iran
University of Science and technology. All subjects, before the
participation, gave written informed consent following the
Declaration of Helsinki. The protocol was approved by the Ethics
Committee of Iran University of Medical Sciences with approval
ID IR.IUMS.REC.1400.382.

The EEG signals were recorded via a g.HIamp system
(g.tec, GmbH, Austria) with 63 active electrodes at a 512Hz
sampling rate. The electrodes were placed over the scalp with
the distribution depicted in Figure 1. Reference and ground
electrodes were placed at the right mastoid and Fpz locations,
respectively. Three additional passive electrodes were placed at
the superior, inferior, and outer canthi of the right eye to record
EOG activities. The right-hand position was simultaneously
recorded via the Leap Motion device (Leap Motion, Inc.). The
sampling rate of Leap Motion was 115Hz. To eliminate the
motion sensor noise, the output signal of leap motion was filtered
with a fourth-order zero-phase Butterworth low-pass filter at
1.5 Hz.

Experimental Task
In order to analyze the main objective of this work, a cue-
based 2D center-out right-hand movement task with four targets
was designed. Reaching each target required rightward, leftward,
upward, and downward hand movement from a center position
called home to one of the four orthogonal directions in the
horizontal plane. The experimental setup and the timeline for
each trial are depicted in Figure 2. The experiment could be
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described as follows: the subject sat in front of a computer screen
at a 50 cm distance. The leap motion device was mounted on a
leg ∼25 centimeters above the table surface. The subject’s palm
position of the right hand was mapped into a red circle at the
home position on the screen. Each trial began with a 4 s rest.

FIGURE 1 | Positions of 63 active EEG electrodes on the scalp.

After that, a target (white rectangle) appeared at one of four
target positions 10 cm away from the home position. After 3 s,
the white rectangle turned black (go-cue), and the subject started
moving his hand toward the target. When the red circle touched
the target, the target rectangle turned white, and after 400ms, it
disappeared (go back cue). Then, the subject returned the red
circle to the home position to end the trial. Each trial includes
three parts: reaching toward the target, pausing at the target
location, and returning. The rationale behind the 400ms pause
at the target place was to prevent the subject from rushing into
the task and making the movement smooth. If the subject could
not complete a trial in 10 s, the trial was discarded.

The experiment was conducted in one session for seven male
subjects. Each session was composed of four blocks consisting
of 40 trials. The subject had to move toward each target ten
times in each block. The order of presenting targets to subjects
was random in each block. A break interval of 2–3min was
applied between the recording blocks. Overall, each subject
performed 160 trials. The average trial duration was 4.16 ± 0.64
(mean± SD) s.

Data Preprocessing and Feature Extraction
All EEG signals were highpass filtered at 0.2Hz with a fourth-
order zero-phase Butterworth filter. The power line frequency
at 50Hz was notch-filtered. All EOG channels were passed
through a bandpass filter (0.5–5Hz, fourth-order zero-phase
Butterworth) (Klados et al., 2011). The independent component
analysis (ICA) was employed to remove the eye, heart, and
muscle-related artifacts (Delorme and Makeig, 2004). The ICA

FIGURE 2 | (A) Experimental setup showing a subject performing the task. (B) Task protocol timeline.
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components with a correlation of more than 0.4 with recorded
EOG signals were considered as eye artifacts. The artifact-related
components were removed, and then the EEG signals were
reconstructed from the remaining components. In addition, we
eliminated the seven most frontal electrodes in the Fp and AF
rows. Hence, 56 electrodes remained for feature extraction and
movement decoding analysis. In each trial, the hand position
signals were upsampled to 512Hz to have the same length as
corresponding EEG signals. All data processing was carried out
with MATLAB 2019b (The MathWorks, Inc.).

One of the great challenges of calculating brain connectivity
from EEG signals is the effect of volume conduction which
can produce spurious connectivity between electrodes (Cohen,
2014). To address this issue, the surface Laplacian filter (Perrin
et al., 1989) was applied to the EEG signals to attenuate the
effect of volume conduction and therefore prepare the data
appropriately for connectivity analyses. It also improved the
spatial resolution of EEG signals over the scalp (Carvalhaes and
De Barros, 2015).

In this study, an inner-outer (nested) cross-validation (CV)
scheme has been exploited for channel-pair selection, feature
selection, and model evaluation (Chouhan et al., 2018; Korik
et al., 2018). The inner-outer CV allows selecting and optimizing
a set of parameters using the inner fold CV and calculating
the final prediction in outer folds based on optimal parameters
that are selected by the inner CV. In this work, ten outer folds
and five inner folds were used. In other words, the result of
regression analysis is calculated based on ten folds CV. The
training dataset of this CV is split into five folds for selecting
the best channel pairs and feature selection. After finding the
best channel pairs, a feature selection algorithm is applied to
the features extracted from selected channel pairs. The indices
of best channel pairs and movement-related features in the
training dataset will be used on the test dataset. The proposed
methodology for hand movement reconstruction is illustrated in
Figure 3. The results of the study are reported for ten repetitions
of the nested CV.

The objective of this study was to investigate the feasibility
of using two types of phase-based connectivity, PLV, and
MSC, to decode hand positions in a center-out task. First, the
definition of PLV and MSC is presented. The PLV between
two signals is a measure of phase synchrony between them
(Bastos and Schoffelen, 2016). In fact, PLV calculates the mean
of the phase difference between two signals over time or trials.
The two signals must be represented in the analytic form
(phase and amplitude), which is usually calculated via the
Hilbert transform. The mathematical formulation of PLV is
defined as:

PLV(f )xy =

∣

∣

∣

∣

∣

n−1
n

∑

t=1

ejφxy(t,f )

∣

∣

∣

∣

∣

(1)

where x(t), y(t) represent two analytic signals and
φxy(t, f ) indicates the phase difference between them at
frequency f . The average phase difference is calculated over
n samples.

The MSC can be viewed as a type of PLV that considers the
amplitude of analytic signals. The mathematical representation
of MSC is described as follows:

MSC(f )xy = |
S(f )xy

S(f )xxS(f )yy
| (2)

where S(f )xy represents cross-spectral density between signals
x(t) and y(t). Autospectral densities of signal x(t) and y(t) at
frequency f are denoted by S(f )xx and S(f )yy. The cross-spectral
and autospectral densities are formulated as follows:
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where mx(t, f ) and my(t, f ) are the amplitude of analytic
signals x(t) and y(t) at frequency f . Analytic representation
of a narrowband signal such as u(t) can be obtained via
Hilbert transform:

z (t) = u (t) + jHT(u(t)) (6)

where HT(u(t)) denotes the Hilbert transform of signal u (t)
defined as:

HT (u (t)) = u (t) ∗
1

πt
(7)

where ∗ represents the convolution operation between two time
series. The instantaneous phase

sequence φu(t) is defined as the angle of the analytic signal:

φu (t) = arctan(
HT(u(t))

u(t)
) (8)

The Hilbert transform requires the signal to be narrowband
to make correct phase predictions. In other words, the phase
of the signal with broadband frequency content cannot be
estimated accurately (Boashash, 1992). Hence, in order to
calculate PLV andMSC, 30 second-order Butterworth filters with
1.5Hz bandwidths were designed. The center frequency of each
narrowband filter was uniformly chosen from the interval 1-
45Hz. the spectral content of each EEG channel was split into
30 sub-bands using this filter bank.

In order to extract features, the channel pairs with the highest
correlation with movement along the x-axis and y-axis were
selected. The algorithm for channels pairs selection will be
discussed in Section Channel Pair Selection. The PLV and MSC
measures were calculated in 30 sub-bands using a one-second
sliding window (512 samples) between each selected channel pair.
The time window moved along signals with a 125ms stride (64
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FIGURE 3 | Schematic of proposed EEG data processing pipeline. The blue and the green parts indicate the training and test dataset of outer cross-validation

(10-fold CV).

samples). Therefore, after feature extraction, the sampling rate
was equal to 512

64 = 8 Hz. This procedure was applied to 40
pairs of channels representing the highest correlation with hand
motions. The corresponding hand motion position signals were
downsampled accordingly to reach a sampling rate of 8Hz. We
also considered six time-lags of signals (0, 125, 250, 375, 500,
and 625ms). So, the feature space contained 30 × 40 × 6 =

7, 200 features. This feature space was colossal and led to the
overfitting problem. Hence, a feature selection algorithm was
exploited to select the best feature subset and alleviate the effect
of the overfitting problem. The feature selection method will be
explained in Section Feature Selection.

Decoding Model
The multiple linear regression (MLR) model has been exploited
to decode the right hand’s position in two dimensions. The
mathematics of MLR is straightforward. It attempts to linearly
combine features (regression predictors) to reconstruct the
response variable (hand position). MLR model is defined
as follows:

yMLR (t) = β0 +

Nc
∑

c=1

Nf
∑

i=1

Nτ−1
∑

τ=0

βciτ xci(t − τ )+ ǫ(t) (9)

where yMLR (t) is the estimation of actual hand position y(t),
βciτ indicates the weights of regression and ǫ (t) is the Gaussian
noise with zero mean and σ 2 variance representing the error of
the model. The intercept is indicated by β0. The Nc, Nτ ,and Nf

denote the number of channel pairs, signal lags, and frequency
sub-bands, respectively. The above equation can be rewritten in
the matrix format:

YMLR = X.β + ǫ (10)

where matrix X ∈ R
n×(p+1) denotes the predictor matrix with

n time samples and p = Nc × Nf × Nτ predictor variables. The
columns of X contain the time-resolved PLV or MSC features

with their lags. An extra column of ones is included to introduce
the intercept term. By employing the least-squares method, the
solution for β is straightforward:

β =

(

XTX
)−1

XTY (11)

In this study, the metric exploited to assess the model accuracy is
the Pearson correlation. It is very common to employ this metric
in hand trajectory decoding studies (Bradberry et al., 2010; Úbeda
et al., 2017; Mondini et al., 2020). For two random variables X,
and Y , the Pearson correlation coefficient (PCC) is defined as:

PCC (X,Y) =
cov (X,Y)

√

var (X) .var(Y)
(12)

where cov(.) and var(.) denote the covariance and variance
functions, respectively.

Channel Pair Selection
The connectivity is a measure calculated between two channels,
so the main question is how to find channel pairs that contain
the most information related to the hand motion. To address this
problem, we employed a brute-force approach to find electrode
pairs that represent the highest correlation with movement
signals. The brute-force approach is based on searching the
whole space of features. In this case, there was

( 56
2

)

= 1,540
different channel pairs. The training dataset for each subject
was used for the brute-force search algorithm. PLV or MSC
features based on each channel combination were calculated.
There were 30 frequency bands and six time-lags, so a total of
30 × 6 = 180 features were extracted from each channel pair.
Regression analysis for each pair was performed based on five-
fold cross-validations (inner CV). The channel pairs were ranked
based on the highest Pearson correlation values. The algorithm
was implemented with different numbers of selected channel
pairs ranging from 10 to 40. The best result was achieved with
20 channel pairs. Hence, for the rest of the study, we selected
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20 channel pairs, each corresponding to the highest positive
correlation values alongside each movement axis, resulting in 40
channel pairs per subject.

Feature Selection
Selecting channel pairs highly correlated with movement shrinks
the feature space. However, concatenating features from pairs
chosen leads to a huge feature space. It contains 40 channel
pairs where each of them represents 180 features. So the whole
feature matrix includes 40∗180 = 7, 200 columns, which may
represent redundant information for decoding hand movement.
The goal of the feature selection algorithm is to select the
most relevant features to hand movement. This study exploits
a two-stage feature selection algorithm (Robinson et al., 2015).
The features representing higher Pearson correlation with hand
motion are selected at the first stage. These features can be from
various channel pairs, frequency sub-bands, or time lags. Then,
a regression-based predictor subset selection by a backward
elimination process is employed (Myers, 1990). This approach is
common in MLR models to obtain the best fitting combination
of variables. The advantage of backward elimination is that
it considers the joint predictive capabilities of predictors. The
description of backward elimination is as follows: theMLRmodel
is built with a set of features based on Equation (10). The
regression weights vector is calculated via Equation (11). Then,
the least significant feature (with highest p-value) is removed
from the feature matrix. After that, the model is re-calculated
with remaining set of features. This process is repeated until the
optimum number of features is achieved. In summary, at the first
stage, predictors showing high correlation with hand movement
are selected, then the regression model will be fine-tuned from
statistical point of view.

RESULTS

The procedure of feature extraction, channel pairs selection, and
feature selection were discussed in the previous sections. In this
section, the results obtained from the proposed approach are
presented. As we stated earlier, the first step of processing data
from each subject was to find the best channel pairs for each
feature type (PLV or MSC) separately. Then, the best 40 channel
pairs have been used for feature extraction. The next step was
to apply the proposed feature selection method to find the most
related features to handmovement. Experimental results revealed
that 300 features would lead to optimum results for all subjects,
so the number of features selected via the proposed algorithm
was set to 300 throughout the results. The Pearson correlation
coefficient has been calculated and averaged between predicted
and actual movement based on ten repetitions of nested CV for
all data blocks of each subject. Figure 4 shows the mean ± SD of
Pearson correlation coefficients for all seven subjects. The results
for the x-axis and y-axis are reported separately.

In order to verify the statistical significance of results in
Figure 4, two surrogate approaches for chance level calculation
are employed. The first approach randomly shuffles the
movement data (Vidaurre et al., 2019). This approach is denoted
by chance1. The second approach randomly assign recorded

EEG signals to movement profiles (Antelis et al., 2013; Úbeda
et al., 2017). In this method, the movement data remains intact.
Chance2 denotes this approach. The Wilcoxon rank-sum test is
employed to verify the statistical significance of the proposed
method against the chance level. The results–averaged on all
subjects- are summarized in Figure 5.

The average of Pearson correlations for MSC features
along the x-axis, and y-axis for all subjects equal 0.44 and
0.40, respectively. Similarly, the average Pearson correlation
coefficients for PLV features along the x-axis and y-axis are equal
to 0.44 and 0.43, respectively.

Representative hand position reconstruction results with PLV
and MSC features for a single subject are presented in Figure 6.
The hand trajectory reconstruction method is able to follow the
variations of actual movement.

Figure 7 demonstrates the scalp locations of 40 pairs of
channels which show the highest contribution in regression
decoding for MSC and PLV features over all subjects. The color
bar demonstrates the PCC of each single channel pair calculated
in a five-fold inner CV.

In order to investigate the contribution of each frequency
band in movement reconstruction, the regressor weights have
been analyzed. The formula below describes the contribution of
ith frequency band in movement reconstruction based on the
regression weight vector (Khorasani et al., 2016).

%Cfreq(i) =

∑Nc
c=1

∑Nτ−1
τ=0 |βciτ |

∑Nc
c=1

∑Nf

i=1

∑Nτ−1
τ=0 |βciτ |

(13)

The percentage of frequency contributions has been calculated
and averaged over delta (1–4Hz), theta (4–8Hz), alpha (8–
14Hz), beta (14–30Hz), and gamma (30–45Hz) frequency
bands. The results are depicted in Figure 8 for MSC and PLV
features. The delta and alpha bands show a higher contribution
inmotion decoding for PLV andMSC features. The features from
gamma-band have the least contribution in movement decoding.

DISCUSSION

Estimating kinematic parameters of hand movement is one of
the main goals in the BCI research field. Numerous studies
have investigated this subject from both invasive and non-
invasive modalities. In the realm of non-invasive BCIs, The
first attempts focused on decoding hand movement directions
as a discrete parameter (Hammon et al., 2007; Waldert et al.,
2008). However, the continuous nature of hand motion requires
continuous decoding of kinematic parameters. Therefore, the
new generation of BCIs aims to decode continuous movement
parameters such as position and velocity (Bradberry et al., 2010;
Korik et al., 2018). The motion trajectory decoder BCIs are
generally based on features extracted from the amplitude of
brain signals. At the same time, a type of feature extraction
that relies on bivariate connectivity analysis is usually ignored.
The main objective of this study was to explore the feasibility
of using phase-based connectivity features in predicting hand
position from EEG signals. We proposed PLV and MSC-
based feature extraction methods to reconstruct hand trajectory.
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FIGURE 4 | Decoding performance of center-out trajectory reconstruction for MSC and PLV features. The bar plots represent the mean ± SD of the Pearson

correlation coefficients for each feature alongside each axis.

FIGURE 5 | Verifying the statistical significance of the proposed method with MSC and PLV features as regression predictors via Wilcoxon rank-sum test. Two

surrogate methods are used for calculating chance levels. The method denoted by chance1 is based on shuffling the target response. The second method indicated

as chance2 is based on shuffling EEG signals. The above graph shows the average (mean ± SD) results over all subjects (Wilcoxon rank-sum test, ***p < 0.001).

First, some studies investigating the phase-based connectivity
during hand movement tasks are summarized in this section.
Then some interpretations and rationale of our study are
presented. Next, our regression results are compared to two other
methods. Finally, the strengths, limitations, and future works
are summarized.

Phase-Based Connectivity in Hand
Movement Tasks
The phase-based connectivity features are widely used to analyze
and interpret the functional relationship between brain regions.
There are several studies that investigate functional brain
connectivity during upper limb movement tasks. Ford et al.
(1986) studied the EEG coherence during a fist-clenching and
finger extension task of right/left or both hands. They found
that MSC increases especially in the 9–12Hz band during hand

movement conditions compared to the rest state. The MSC
changes were more apparent in the prefrontal, premotor, and
motor areas. The event-related coherence was investigated by
Leocani et al. (1997) in a self-paced right index finger movement
task. They found that the magnitude and phase of coherence
in 10Hz and 18–22Hz EEG signals in the frontal lobe are
involved in movement planning and execution. Manganotti
et al. (1998) studied the task-related MSC in a sequential
finger movement that involved simple to complex movements.
They found an increase in task-related MSC over frontocentral
regions and a decrease in temporal and occipital areas. For
all movement sequences, the increase of MSC in alpha and
beta band compared to the rest state was the largest in the
electrode pairs overlying both hemispheres’ frontal, central and
parietal regions. A decrease ofMSC occurredmostly for electrode
pairs overlying the temporal, occipital, and prefrontal regions.
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FIGURE 6 | A representative sample of the MLR reconstructed movement positions with the PLV features (left) and MSC features (right) from subject 6 data.

FIGURE 7 | Topographic map of 40 channel pairs with highest PCC over all subjects for (A) MSC features and (B) PLV features. Color bar represents the value of the

PCC related to the specific channel pair.

Santos Filho et al. (2009) investigated the MSC for detection
of event-related potentials related to index finger movement
execution and imagination task. They found that MSC in the

delta band is related to the detection of movement execution or
imagination. There are also some research studies investigating
PLV in motor tasks. Popovych et al. (2016) found phase locking
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FIGURE 8 | Contribution of each frequency band in movement decoding with (A) MSC and (B) PLV features. Each bar displays contribution weights’ mean and

standard deviation in each frequency band.

in delta–theta frequency band (2–7Hz) in motor areas prior to
and at the onset of movement execution. PLV features from
EEG signals were also used in the binary classification of hand
movement in a center-out task in work by Chouhan et al. (2018).
They found that features at low delta play a significant role
in the classification of hand direction. In addition, including
features from theta and alpha bands increased the classification
accuracy significantly.

In this work, we exploited MSC, and PLV features as
predictors for linear regression to decode continuous hand
movement. Figure 7A demonstrates the MSC topography of
channel pairs with the most contribution in hand movement
decoding. The channel pairs overlay centroparietal and
frontoparietal areas show the most contribution in regression.
These topographic results are in agreement with Leocani et al.
(1997) and Manganotti et al. (1998) that report MSC changes in
these areas during movement. Figure 7B shows the topographic
map of PLV features. The most important channel pairs for PLV
features overlay central and parietal areas. Figure 8A displays the
contribution of each frequency band in regression using MSC
features. The decoder algorithm has been used MSC features
mostly in delta and alpha bands. This is generally in agreement
with results in Ford et al. (1986), Manganotti et al. (1998), and
Santos Filho et al. (2009). For PLV features, the decoder has
mostly selected features in the delta band (Figure 8B) which
corroborates the results in Chouhan et al. (2018).

The rationale behind using phase-based connectivity in
this study can be explained as follows: from a mathematical
perspective, phase and power are mostly independent signal
measures (Cohen, 2014). Consequently, the phase-based and
power-based connectivity can reveal different patterns of a
neural phenomenon. Typically, phase and power reflect different
neurophysiological dynamics. Phase mostly indicates the timing
of the activity within a neural population, and power generally

reflects the spatial extent of the neural population (Cohen, 2014).
Therefore, employing the phase-based features can address the
problem of continuous decoding from a new perspective. The
advantage is that the phase-based features are related to the
timing of neural activity. So, the features such as PLV would
be an appropriate choice as predictors. The second connectivity
measure used throughout our analysis is MSC. It can be seen as a
PLV measure in which the power values weigh the phase values.
Hence, the MSC measure relies on both the amplitude and phase
of signals.

The MLR method was exploited to estimate the hand position
in this study. The reason behind this selection is that in situations
with a low signal-to-noise ratio (such as EEG recordings) or a
small number of training cases, the MLR can outperform non-
linear methods (Hastie et al., 2009). In addition, the parameters
of linear models are neurophysiologically interpretable. It means
that significant nonzero regression weights are only observed at
channels which their activities are related to the brain process
under study (Haufe et al., 2014). The disadvantage of MLR is that
it is heavily susceptible to overfitting problems in the presence of
a large number of features. Thus, a channel pairs selection and a
feature selection algorithm have been employed to reduce the size
of feature space and prevent the linear model from overfitting.

Comparison of the Proposed Method to
Other Approaches
In this part, we compare our results to two recently proposed
approaches: first, a method proposed by Zeng et al. (2019) has
been exploited to decode the hand movements of our center-out
task. Zeng et al. have shown that using the phase of low-delta EEG
as predictors would outperform the results of amplitude features
in a center-out reaching task. The method is based on using the
phase of low-delta 0.1–1Hz EEG signals and their time lags as
predictors for linear regression; for more details, see Zeng et al.
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TABLE 1 | Comparing reconstruction performance of the proposed method to Zeng’s and BTS methods.

Zeng’s method

(Zeng et al., 2019)

BTS method

(Korik et al., 2018)

PLV MSC

x-axis y-axis x-axis y-axis x-axis y-axis x-axis y-axis

sub1 0.32 ± 06 0.27 ± 07 0.39 ± 08 0.32 ± 07 0.46 ± 0.03 0.45 ± 0.02 0.58 ± 0.03 0.41 ± 0.04

sub2 0.22 ± 04 0.19 ± 03 0.31 ± 0.07 0.24 ± 0.06 0.45 ± 0.05 0.41 ± 0.04 0.47 ± 0.04 0.42 ± 0.04

sub3 0.11 ± 06 0.21 ± 0.5 0.26 ± 0.08 0.22 ± 0.06 0.41 ± 0.04 0.42 ± 0.06 0.48 ± 0.03 0.39 ± 0.04

sub4 0.26 ± 0.04 0.12 ± 0.04 0.31 ± 0.04 0.33 ± 0.05 0.39 ± 0.03 0.42 ± 0.04 0.36 ± 0.05 0.33 ± 0.06

sub5 0.12 ± 0.04 0.20 ± 0.04 0.38 ± 0.03 0.31 ± 0.03 0.48 ± 0.03 0.41 ± 0.04 0.38 ± 0.04 0.38 ± 0.05

sub6 0.20 ± 0.08 0.11 ± 0.06 0.26 ± 0.1 0.16 ± 0.07 0.47 ± 0.03 0.50 ± 0.03 0.45 ± 0.04 0.47 ± 0.02

sub7 0.19 ± 0.08 0.18 ± 0.06 0.28 ± 0.09 0.29 ± 0.07 0.45 ± 0.04 0.42 ± 0.05 0.41 ± 0.04 0.40 ± 0.05

average 0.20 ± 0.07 0.18 ± 0.05 0.31 ± 0.05 0.27 ± 0.06 0.44 ± 0.03 0.43 ± 0.03 0.44 ± 0.07 0.40 ± 0.04

The best result on each axis is bolded for each dataset.

(2019). The results of applying the Zeng method to our data are
summarized in Table 1.

Using the low-delta phase features as predictors in our center-
out task led to inferior results compared to our proposed
methods. We speculate it is due to the differences in tasks and
analysis intervals. The movement period which was analyzed in
Zeng’s paper was in the 0–0.2 s interval relative to movement
onset. It was equal to their shortest trial. The center-out task in
Zeng’s paper is just focused on moving from the home position
to the target. In contrast, the length of trials in our study is not
equal. Additionally, as we said earlier, the movement in our task
comprises three phases. We believe that the Zeng method failed
in our study because our task trials are much longer with different
lengths and entail forward and backward movement.

The second approach used as an alternative method is band
power time-series (BTS) proposed by Korik et al. (2018). The
BTS method calculates power time series in six different sub-
bands of EEG signal using a 500ms time window. The task in
the Korik study was a 3D reaching task where a subject sitting on
a comfortable chair had to generate pointing movements with his
right hand to four targets distributed in 3D space in synchrony
with an auditory cue. We exploited the BTS method as described
in Korik et al. (2018) to extract features from different frequency
bands and then the 300 best features selected via our proposed
feature selection technique. The results of the BTS method on
our data are presented in Table 1. This method can achieve the
average correlation coefficient of 0.29 on both axes. The results
in Table 1 demonstrate that the proposed methods improve the
average of Pearson correlation coefficient on both axes over
all subjects.

To evaluate the statistical significance of proposed methods,
a one-way Friedman ANOVA test (n = 7, k = 4, p < 0.0003)
followed by Benjamini et al. (2006) correction for multiple
comparisons has been applied to the average Pearson correlation
coefficient of each subject in four methods. The statistical test
result is presented in Figure 9, which is produced using Prism
GraphPad 9. In a nutshell, our result reveals that in a center-
out movement task with variable length trials, the phase-based
connectivity features that address neural activity timing can
achieve statistically superior results.

FIGURE 9 | The result of Friedman ANOVA test with FDR correction. Each dot

indicates the average of PCC for each subject. The horizontal bars display the

mean of each group (*p < 0.05, ***p < 0.001, ns, not significant).

Strengths, Limitations, and Future Works
Here we briefly summarize the strengths of the study. First,
using the optical motion tracker allows the subjects to perform
the task naturally without using manipulandum or exoskeleton,
which may introduce inconvenience to the movement. Second,
the subjects did perform the task at their own pace without
any limitation. In fact, the task was not synchronized with any
auditory or visual cue tomake the length of trials equal. To reduce
the effect of muscle artifact on EEG recording, the participants
were just advised to do the task at a desirable slow pace. The next
strength of this work is the usage of phase-based connectivity
features to decode continuous movement in an EEG center-
out task. This approach has led to superior results compared to
amplitude and phase-based methods.

The usage of connectivity features is not without caveats.
Because the connectivity measure is naturally defined between
two signals, the dimension of feature space for a multi-channel
recording will become colossal. This issue has been addressed
with a channel pairs selection technique. The brute-force
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algorithm exploited to find the best channel pairs is time-
consuming because it considers all possible combinations of
channel pairs. In fact, the computational complexity escalates as
the number of recording channels increases. One possible way
to improve the time efficiency of brute-force search is to reduce
the size of search space by selecting a relevant subset of recording
channels before channel-pair selection.

The second limitation is that the nature of the center-out task
is restricted. In other words, the hand movement is limited to
reaching four orthogonal targets in the horizontal plane. We are
working on a future study based on a pursuit tracking task in
which the hand is freely moving in a 2D horizontal plane.

To date, most studies on decoding continuous hand
movement from EEG signals rely on extracting features from the
amplitude of recording channels, and the connectivity features
are mostly ignored. This work reveals that using PLV and
MSC features from EEG recordings can be considered as a
competent features set for decoding hand movement trajectories
in a center-out task. The overall results of all subjects suggest that
using phase-based connectivity features would improve the hand
trajectory reconstruction on our data compared to two recent
methods based on amplitude or phase feature extraction. This
new approach could be exploited in designing new types of BCIs

that use information between recording channels to increase the
reliability and accuracy of predicting hand motion trajectories.
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