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Introduction
In a world of fast-advancing technology, a vast 
amount of data are generated and constantly 
increasing.1 Given appropriate tools, these data 
can be captured and could provide a very insight-
ful resource. Data capture for this purpose has 
already been implemented in various fields such 
as defense, healthcare, media and communica-
tion, cybersecurity, and banking, to name a few.

Evolution in hardware and software application 
has led to an escalating number of tasks per-
formed by machines that were initially unimagi-
nable.2 The most noteworthy tool has been the 
introduction of learning algorithms. Tasks can 
now be performed, which were previously limited 
to humans, thus indicating that these algorithms 
have significantly improved recently.3 Among the 
myriad methods available, it is comparatively less 

challenging to train deep learning (DL) algo-
rithms; however, the downsides are vast data 
requirements and high supervision during the 
interpretation of results.4 For example, in DL sys-
tems, the activation function rectified linear unit 
(ReLU) outshined the sigmoid function in terms 
of performance. To understand this better, the 
ReLU function calculates the sum of input val-
ues, and if it falls below 0, it gives an output of 0; 
else, the output will be the same as the input.5–7

In addition, DL algorithms have been able to 
outdo the performance of other AI approaches 
and medical experts in specific tasks such as rec-
ognizing pneumonia on imaging scans.8–10 In 
2012, a DL algorithm first entered this field, 
which dramatically reduced the error rate from 
0.258 to 0.153 in 1 year. After 3 years, in 2015, 
using DL methods, the quality of error decreased 
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to the extent that it was the lowest value obtained 
by human observers.11

While radiology is an expanding field, these novel 
learning algorithms could improve its standards 
and clinical efficiency by achieving swift clinical 
and economic benefits. Healthcare today is an 
evolving technological landscape in which data-
generating devices are increasingly ubiquitous, 
creating what is commonly referred to as ‘Big 
Data’. Researchers are investigating how these 
quantifications benefit radiological improve-
ments, and quite enthralling pioneers have been 
identified. In their current application, a method-
ology where a vast number of quantitative fea-
tures are extracted using mathematical equations 
from radiographic medical images is known as 
radiomics.12 The radiomics features can be cate-
gorized into texture features (wavelet texture, 
laws’ texture, run-length encoding, gray-level  
co-occurrence matrix, etc.), first- and second-
order statistics features (homogeneity, entropy, 
standard deviation, skewness, etc.), and shape-
size features (volume, longest diameter, etc.). 
Radiomics can offer a comprehensive under-
standing of radiographic qualities of fundamental 
tissues. The acquired information can be used 
throughout the clinical care path to improve diag-
nosis and treatment planning, as well as assess the 
potential and subsequent response to treatment.12 
Figure 1 shows the patient journey in conven-
tional versus artificial intelligence (AI) setup for 
diagnosis and prediction of the disease.

In this article, previously used learning algorithms 
will be explained and those most useful to the 
field of radiology will be described, examining 
current and upcoming applications. We will 
endeavor to evaluate how this noteworthy new-
fangled tool will be able to benefit radiologists in 
the future.13 The concept of data science and 
various learning algorithms including the applica-
tion of these radiology techniques will be reviewed. 
Furthermore, we will discuss various roles these 
techniques play, their pitfalls, advantages, and 
scope in the field of radiology.

Methods

Search strategy and article selection
A non-systematic review of all relevant English-
language literature in Radiology that were pub-
lished in the last decade (2010–2020) was 
conducted in June 2020 using MEDLINE, 

Elsevier, Springer, RSNA, Scopus, and Google 
Scholar. Our search strategy involved creating a 
search string based on a combination of key-
words. They were as follows: ‘Data Science’, 
‘radiology’, ‘Artificial intelligence’, ‘AI’, ‘Machine 
learning’, ‘ML’, ‘ANN’, ‘Neural networks’, ‘con-
volutional networks’, ‘Deep Learning’, ‘DL’, 
‘MRI’, ‘CT scans’, ‘X-Ray’, ‘healthcare’, ‘diag-
nosis’, ‘medicine’, ‘algorithms’, ‘image process-
ing’, ‘image recognition’, and ‘image 
reconstruction’. This review includes only the 
original research work published in English.

Inclusion criteria
1. Articles on Radiology that address data sci-

ence, DL, and machine learning (ML).
2. Full-text original articles on all aspects of 

analysis, algorithms, and outcomes of radi-
ological diagnosis.

Exclusion criteria
1. Commentaries, articles with no full-text 

context, and book chapters.
2. Articles without image processing and arti-

cles that do not address radiology directly 
but are generic healthcare articles.

The literature review was performed, conforming 
to the inclusion and exclusion criteria. The evalu-
ation of titles and abstracts, screening, and full 
article text was conducted for the chosen articles 
that satisfied the inclusion criteria. Furthermore, 
the authors manually reviewed the selected arti-
cles’ reference list to screen for any additional 
work of interest. The authors resolved the disa-
greements about eligibility for a consensus deci-
sion after discussion.

Results

Contemporary history of data science and 
learning algorithms
AI is expressed as ‘the capacity of computers or 
other machines to exhibit or simulate intelligent 
behavior’, and it is now a flourishing area and the 
subject of extensive research in several fields.14,15 
The advent of ML, which is the potential of an AI 
system to extract information from un-processed 
data (raw data) and learn from experience, was 
also growing. Thus, the need for ‘human opera-
tors to formally define all the information needed 
by computers’ was avoided to an extent.16
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ML algorithms were developed and used to eval-
uate healthcare data sets. ML provides a number 
of vital tools for performing intelligent data analy-
sis. The digital revolution has made data collec-
tion and storage extremely inexpensive and 
accessible. Modern hospitals have state-of-the-art 
monitoring and data collection systems. In con-
trast to rule-based algorithms, ML takes advan-
tage of increased exposure to large and new data 
sets and has the ability to improve and learn with 
experience.14

DL is often referred to as being one of the most 
complex collections of algorithms. Although DL 
has made considerable strides in recent times, 
some may consider DL algorithms a hindrance to 
healthcare and radiology.16 DL is nevertheless a 

useful tool, although it depends on the require-
ment and usage, and is much easier to train. 
Figure 2 shows the pathway of artificial intelli-
gence (AI) in various medical imaging modalities.

To understand the above terms, one must be 
able to differentiate DL algorithms from ML 
algorithms, especially the data presentation tech-
nique in the system. ML is a branch of AI that 
enables machines to learn the shape of data as 
well as adapt and improve their performance 
without the need for human intervention. DL is a 
class of ML algorithms that gradually extracts 
higher level features from the raw data using sev-
eral layers. Almost always, ML algorithms require 
structured data, whereas DL networks rely on 
artificial neural network (ANN) layers. The 

Figure 1. Patient journey: conventional versus artificial intelligence.
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biological neural network of the human brain is 
the inspiration for ANNs. An ANN is made up of 
numerous artificial neurons, each with its own 
weight, that form a layer (or level). A multilevel 
representation or network, which is a fully con-
nected network, is created by connecting neu-
rons on one level to neurons on the next level in 
a multitude of ways. An ANN is built up of input 
(shape of input data), hidden (one or multiple 
level), and output layers (number of class labels). 
Because each successive layer is interconnected 
in an ANN, the number of weights will rapidly 
increase as the number of layers increases, affect-
ing the scaling and learning of ANN. For image 
analysis, this problem can be solved by applying 
a series of small filters (convolution filters) to the 
input image and subsampling the filter activation 
space until there are enough high-level features 
to use ANN, which leads to Convolutional 
Neural Networks (CNNs). CNNs are currently a 
very successful solution for image classification 
and recognition applications. A CNN can be 
built with a few convolutional layers with some 
activation function, which are frequently accom-
panied by a max-pooling layer for subsampling. 
Following the acquisition of high-level features 
via subsampling and convolution, the high-level 
features are fed through the fully connected lay-
ers (hidden layer and output layer) to achieve the 
final decision. Lately, DL has gained significant 
recognition in the consumer world and the 
healthcare community, while ML algorithms 

Figure 2. Pathway of artificial intelligence in medical imaging.

have been a research subject for several years.17 
The difference between DL and ‘traditional’ ML 
is extensively discussed over its functionality and 
capability. The distinction is critical, especially in 
the context of medical imaging. In traditional 
machine learning, the first step typically is fea-
ture extraction. This indicates that in order to 
classify an item, one must first establish which 
qualities are significant and then implement algo-
rithms that can classify the object,18 whereas DL 
utilizes several layers of algorithms to find pat-
terns and imitate human cognition. DL algo-
rithms have recently gained a resurgence of 
interest after observing a 10% decrease in the 
top-5 error on the ImageNet data set.17 DL out-
performs traditional ML as data volume increases 
and does not perform well when the data are 
small. A large volume of data is required for DL 
algorithms to fully understand the data. High-
end devices are required for the majority of DL 
algorithms, while traditional ML algorithms can 
run on low-end machines. Mathematical pro-
cesses such as matrix multiplication are inherent 
to DL algorithms.

It usually takes a long time to train a DL algo-
rithm. An algorithm’s training time is longer than 
typical because there are so many parameters 
involved. Training the state-of-the-art DL system 
‘ResNet’ takes approximately 2 weeks. ML, on 
the contrary, can be trained in a matter of seconds 
to a few hours.

https://journals.sagepub.com/home/tau
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The era of modern medicine
Statistics is a critical feature of ML, and statistical 
interference is the basis of ML algorithms. Different 
ML models are developed using different statistical 
models, and these are crucial steps in making the 
right assumptions while training the data. Statistics 
alone may not be able to bring about a change in 
radiology, but its application in promising fields will 
give us better insights when used in radiology. The 
development of AI-driven applications in healthcare 
has significantly augmented the demand for image 
identification tools. ML and DL algorithms are 
widely used in various domains of healthcare and 
are applied to the images for extraction of features 
which help to provide valuable insights into diagno-
sis and patient treatment (Figure 3).

Radiology has dealt with accelerated technologi-
cal advancements almost as much as in any other 
clinical field. Since radiology is fundamentally a 
data-driven discipline, it is particularly suited to 
the use of data processing methods. The world 
market for algorithms in image analysis is growing 
rapidly, and progress in ML and its applications, 
including medical imaging, seems to be quite 
promising.19 ML enables computers to under-
stand like humans and extract or identify pat-
terns. Therefore, machines can process more data 
sets and derive data characteristics than we can 
do manually.20 One of the most challenging tasks 
during clinical image interpretation is identifying 
the disease and swiftly separating anomalies from 
normal anatomy.

Google’s Peter Norvig has demonstrated that vast 
volumes of information and data will address weak 
points in ML algorithms.21 Narrow-scope ML 
algorithms do not need vast data from testing but 
might need data from high-quality ground truth 
training. In medical imaging research, as with 
some other ML forms, the volume of data required 
differs significantly according to the task at hand. 
For instance, segmentation tasks may need only 
limited data; however, performance classification 
tasks such as classifying a liver lesion as malignant 
or benign may require many more labeled data. 
This ultimately depends on the number of classifi-
cation methods used to differentiate and classify a 
lesion as malignant or benign.22

Learning algorithms in radiology: a 
breakthrough
DL approaches and ML algorithms, in general, 
have a tremendous opportunity to shape the 

radiology practice. Disease identification is one of 
the most challenging and time-consuming tasks, 
especially when interpreting images and identify-
ing them as normal or abnormal findings. The 
type of data used in radiology is mostly ‘labeled 
data’. Since we are dealing with labeled data, the 
supervised learning model is preferred in most 
cases of radiology. The algorithm is trained with 
enough labeled data to build an optimal model. A 
substrate for developing ‘learning algorithms’ is 
provided by a substantial quantity of image and 
report data, now available in digital form (‘Big 
Data’). The inability to compile a sufficiently 
large training set is a possible setback, resulting in 
less reliable or generalizable tests. Figure 4 shows 
the learning algorithms and their practical utility 
that are implemented in radiology applications.23

Image acquisition. ML can make imaging appli-
cations smart and time-efficient. ML-based mod-
els of data analysis can minimize imaging time. 
Thus, intelligent imaging systems may eliminate 
needless imaging, improve orientation, and 
improve detecting characterization. For example, 
smart magnetic resonance imaging (MRI) will 
identify a lesion and propose changes in the sub-
sequent sequence to obtain favorable lesion char-
acterization.24 This will, therefore, benefit patients 
from faster scanning and enhanced and improved 
scan reports.

Automated detection and interpretation of find-
ings. ML can detect significant unintended find-
ings. Certain fields that may benefit from potential 
ML include cancer detection through mammo-
grams and diagnosis of pulmonary nodules. 
Examining the bone age and automated assess-
ment of anatomical age based on medical imaging 
has great utility for pediatric radiology and 

Figure 3. Global market for machine leaning (ML)-based image analysis.
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endocrinology. Additional ML studies that were 
carried out identified important findings such as 
pneumothoraces, fractures, organ lacerations, 
and stroke.25–31

Interpretation of scans is a frequent discussion 
area and the topic of contention as to whether 
such techniques could/would eventually fully 
replace radiologists. The interpretation of 
detected findings ‘requires a high level of expert 
knowledge, experience, clinical judgment and 
correlation based on each clinical scenario’. Most 
opinionated leaders in this field have indicated 
that radiologists should utilize these techniques to 
increase their reporting accuracy rather than 
replacing them. With ML, extraction of the 

features from breast MRI might enhance the 
analysis of breast cancer diagnostic results.26 An 
ML approach based on radiological attributes 
(semantic characteristics such as contour, tex-
ture, and margin) of incidental pulmonary nod-
ules was shown to enhance cancer prediction 
accuracy and diagnostic understanding of the 
same.27

Post-processing: image segmentation, registra-
tion, quantification. With the accessibility of large 
image data set and using ML, medical imaging 
has made substantial advances in post-processing 
activities such as image recognition, segmenta-
tion, and quantification. Studies have demon-
strated how to use ML to segment images and aid 

Figure 5. Graphical representation of detection versus error in prediction.

Figure 4. Clinical applications of machine learning in radiology.
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radiologists with image synthesis, image analysis, 
and image quantification. For example, an algo-
rithm based on a CNN to segment the volume of 
adipose tissue on computed tomography (CT) 
scan images or even an estimate of CT images 
from the accompanying MR images can be ren-
dered using an adversarial generative network.32 
ML can also be applied for the quantitative assess-
ment of three-dimensional (3D) structures in 
cross-sectional imaging.33,34

Image quality analytics. The image quality and 
accuracy are crucial in radiology (Figure 5). How-
ever, the large number of images, the greater the 
time required for analysis. To solve this issue, 
numerical observers in ML (also known as model 
observers) have been developed as a proxy for 
image quality measurement for human observers. 
With ML and DL advancements, it is now possi-
ble to detect or even anticipate bad image quality 
immediately, enabling radiologists to resolve these 
irregularities before reviewing the images.35

Although significant technical advancements in 
ML have been made in recent years, including 
improvements in DL algorithms, further progress 
in the performance of graphics processing units 
(GPUs) and memory will enhance its capabilities.

Thinking beyond image analysis
The learning algorithms aid radiologists in image 
analysis and interpretation. However, they also 
have a use beyond imaging. For instance, the 
introduction of speech recognition and transla-
tion of texts in the final radiology reports was 
advantageous to patients as they could be trans-
lated into various languages and could reduce the 
potential for errors.1,36–38 These algorithms are 
continuously learning and can handle various 
tasks apart from image analysis. (Table 1).

Optimize MR scanner utilization. MRI scanning is 
particularly time-consuming due to the variety 
and number of sequences often required, improve-
ments in efficiency, and the number of scans/
sequences obtained per time could reduce cost. 
An ongoing fundamental study utilized neural 
networks to help decide the ideal time allotment 
per scan dependent on different information 
boundaries (scan protocol, patient age, contrast 
utilization, and convention mean of impromptu 
sequence recurrences). This can optimize scanner 
usage and diminish costs.46

Image reconstruction. Recently, a deep image 
prior (DIP) framework was proposed, which 
showed that CNNs have the intrinsic ability to 
regularize various problems without pre-train-
ing. Since no prior training pairs are needed, 
random noise can be employed as the network 
input to generate denoised images.47,48 In addi-
tion to using training pairs to perform super-
vised learning, many methods focus on exploiting 
images acquired from the same patient from a 
previous scan to improve the quality of the 
image. To test the effectiveness of the conditional 
DIP framework, an experiment was performed 
by using either the uniform random noise or the 
patient’s MR image from before as the network 
input. ML reconstruction of the real brain data 
at the 60th iteration was treated as the label 
image and 300 epochs were run.49 When the 
input was random noise, the image was smooth, 
but some cortex structures could be recovered. 
When the input was MR image, more cortex 
structures showed up.49 As per the studies, com-
pared with the ML-plus-filter method and the 
CNN Penalty method, the kernel method and 
the DIP Recon method can recover more cortex 
details, and the image noise in the white matter 
is much reduced.49

In another method, DL was used to rapidly per-
form phase recovery and reconstruct complex-
valued images of the specimen using a single 
intensity–only hologram. This process was less 
time-consuming and necessitated approximately 
3.11 s on a GPU-based laptop or computer to 
recover the phase and amplitude images of a 
specimen.50

Radiology reporting and analytics. By applying 
ML methods to natural language processing 
(NLP), researchers can extricate information 
from free-text radiology reports, additional data 
and estimations from descriptive radiology 
reports, and even track commendations made by 
radiologists to alluding doctors. There have been 
efforts to extricate clinically significant informa-
tion from such content with progress in NLP, 
including important findings, which could help in 
the detection of breast cancer with the help of 
Breast Imaging-Reporting and Data System (BI-
RADS) classes and discoveries. Fleischner Soci-
ety commends frequently utilizing heuristic 
methods.51–55 ML and NLP algorithm calcula-
tions could help track radiologists’ proposals and 
help in the follow-up.56

https://journals.sagepub.com/home/tau
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Table 1. Beyond image analysis: detection of medical conditions using learning algorithms.

Authors Objective Model and algorithm Outcome Results

Wu et al.39 Diagnosis of 
breast cancer

•  A three-layer ANN is used
•  The interpretation is based 

on features retrieved from 
mammograms by radiologists

The performance of ANN was 
better than that of radiologists 
alone, to distinguish between 
benign and malignant lesions

Yielding a value of 0.95 
for the area under the 
curve (AUC)

McBee et al.40 Detect 
metastatic 
disease

A five-layer CNN is developed to detect 
metastatic disease

This result was complementary 
to the low false-positive rates 
obtained by researchers 
using a DL algorithm for 
ophthalmologists

The model achieved an 
image-level AUC score 
above 97%

Diabetic 
retinopathy

A five-layer CNN with two different 
validation sets and different set points

It achieved 90.3% 
and 87.0% sensitivity 
and 98.1% and 98.5% 
specificity

Wang and 
Summers 20

Neurological 
disease 
diagnosis

•  Kernel-based learning methods in 
radiology are used in computer- 
aided design (CAD)

•  SVMs for detection of micro 
calcifications on mammography

ML algorithm allows 
radiologists to make decision on 
data like traditional X-rays, CT, 
MRI, PET, and radiology records

It is likely to be applied in 
reinforcement learning. 
The CAD system reported 
80% sensitivity.

Text analysis 
of radiology 
reports

•  Converting text into a structured 
format using NLP.

•  This enabled computers to derive 
meaning from human language.

Tests on a set of 230 
radiology reports showed 
high accuracy and recall 
in text recovery.

Hussain et al.41 Prostate cancer 
detection

•  The Gaussian kernel method is used
•  It is used to solve specific 

applications involving many, 
heterogeneous types of data with 
the help of support vector machine 
(SVM)

80 cancerous tissues were 
perceived efficiently with a high 
specificity and sensitivity

Accuracy of 98.34% with 
AUC of 0.999, specificity 
of 90–95%, and sensitivity 
of 92–96%

Jnawali et al.42 Intracranial 
hemorrhage 
(ICH) detection

•  A DL algorithm consists of 1D CNN, 
long short-term memory (LSTM) 
units

•  Trained and tested on a data set CT 
radiological report

LSTMs are able to extract key 
ICH features, already been 
proved using a weakly labeled 
data set in the computer vision 
problems

The AUC is 0.94, which is 
very promising

Al-antari et al.43 Breast cancer 
detection

•  First model: It randomly extracts 
four regions of interest with a size 
of 32 × 32 pixels from a detected 
mass

•  Second model: The whole detected 
breast mass is utilized

•  Using deep belief network (DBN).

The outcomes prove that the 
proposed DBN outperforms the 
traditional classifiers

The overall accuracies 
of DBN are 92.86% and 
90.84% for the two ROI 
techniques, respectively.

Dikaios et al.44 Prostate cancer 
detection

•  A layer-wise unsupervised 
pre-training model, followed by 
supervised fine-tuning

•  Each layer is pre-trained using 
a restricted Boltzmann machine 
(RBM)

DBN outperformed the other 
models; when extended to 
an individual patient cohort, 
their performance was not 
significantly reduced

DBN performed better 
than the other models, 
demonstrating value of 
ROC-AUC = 0.811

Pavithra and 
Pattar45

Pneumonia or 
lung cancer 
detection

•  Two stages of feature extraction and 
classification; feature extraction is 
done using Gabor filter

•  Classification is using neural 
network.

•  Feed-forward network (FFN) and 
radial bias function (RBF)

Three types of ANN classifiers 
were studied, out of which, FFN 
and RBF network have shown 
best performance

Accuracy been obtained 
is about 94.8% for FFN.
Accuracy is 94.82% for 
RBF network

ANN, artificial neural network; AUC, area under curve; CAD, computer-aided design; CNN, convolutional neural network; CT, computed tomography; 
DBN, deep belief network; DL, deep learning; FFN, feed-forward network; ICH, intracranial hemorrhage; LSTM, long short-term memory; ML, 
machine learning; MRI, magnetic resonance imaging; NLP, natural language processing; PET, positron emission tomography; RBF, radial bias 
function; RBM, restricted Boltzmann machine; ROC, receiver operating characteristic; ROI, region of interest; SVM, support vector machine.
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Creation of study schedules. Creating study pro-
tocols is a part of a radiologist’s role.57 It includes 
referring to health records, information on the 
clinical details and imaging request, previous 
images, and radiology reports. It is a crucial step 
and has radiation dose implications for patients. 
By applying data interpretation to the available 
information, these learning algorithms can pre-
cisely ascertain imaging protocols, saving time 
and money.58,59

Scheduling, screening, and optimization. One sig-
nificant way radiomics is changing healthcare is 
by ‘well man or woman’ screening, thereby 
improving general health and using AI to recog-
nize patients at risk of harm. These advances like-
wise can help improve on-going screening. AI 
applications are can help in understanding well-
being via patient screening60 or add an addendum 
to existing reports which can potentially change 
radiology practice.61

Automated radiation dose estimation. ML algo-
rithms could support radiologists and technolo-
gists by making dose estimations before tests and 
helping to reduce the dosage. Many studies to 
improve image quality and decrease radiation 
dose in CT scans are being carried out. They 
want to reduce CT radiation, even though these 
outcomes compromise with expanded image 
noise and lower quality of images because there 
are confinements of the usually utilized filtered 
back-projection reconstruction strategies. A por-
tion of the more current iterative recreation 
advances has diminished noise in images pro-
duced with lower dosages.62 DL can decrease 
radiation dose significantly. The idea is to train a 
classifier for mapping out ‘noisy’ images produced 
from ultra-dose CT protocols to excellent quality 
images from standard protocols, utilizing DL 
strategies.63,64

Complications and future of learning 
algorithms in radiology
While a significant number of training models are 
accessible for issues identified with images, the 
data sets for clinical images are usually very small, 
with an average number of patients on the scale of 
hundreds. The huge number of parameters in a 
deep neural network that requires streamlining 
brings about a great danger of over-training and 
ensuing low performances on data sets that were 
not utilized in the training procedure. Given the 
probability of over-training and over-fitting of 

images, a high probability of reporting perfor-
mance does not show the actual capacity of a 
model to group, predict, or segment when the 
validation is not handled appropriately. Every 
new development contributes to computational 
speed, although this does not mean fewer flaws. 
The inability to gather an adequately sized train-
ing set is a potential limitation, which could 
impact the outcomes, making them less precise or 
generalized.4 This complication of over-fitting 
was already noted.50

Concerning the future scope of learning algo-
rithms, there is an overall understanding that DL 
will have a significant role in the practice of radi-
ology, especially for MRI. There will be no lack of 
data as they are continuously generated; learning 
algorithms can extract information and make use-
ful predictions and outcomes. Some anticipate 
that DL algorithms will handle enormous tasks, 
leaving radiologists with more opportunity to 
concentrate on more clinical duties such as multi-
disciplinary meetings (MDTs) and intellectually 
taxing tasks. In contrast, others agree that radiol-
ogists and DL algorithms will work together to 
produce a performance that is better than when 
working as individuals. Finally, some foresee that 
DL algorithms will supplant radiologists (at least 
in their image interpretation analysis) altogether. 
It seems that the future of AI is intricately linked 
to radiology, and specialist scan reporting will 
increasingly use AI to work synergistically.

Conclusion
This article discusses the current practices using 
ML algorithms and advancements in this field. 
Although the extent of their influence on radiol-
ogy is unclear, these algorithms give a promising 
new arrangement of methods for cross-examining 
image data that ought to be analyzed with robust-
ness. Radiology has needed to cope with techno-
logical change as much as any other branch in 
healthcare, with radiologists having profited enor-
mously from working with advanced digital 
frameworks. Yet, concerns exist about machines 
taking these jobs away from humans, showing a 
potential, even likely, cultural boundary to accept 
DL in radiology.

Although some envision that machines may 
replace radiologists in the near future, most 
healthcare leaders do not accept that idea. It is 
believed that machines may help to improve the 
accuracy, but will not eradicate radiologists’ need. 

https://journals.sagepub.com/home/tau


Therapeutic Advances in Urology 13

10 journals.sagepub.com/home/tau

The job of a radiologist is not only to analyze 
images and identify the pathology, but it also 
extends much beyond just interpreting images 
into clinical knowledge and correlation, and so 
although machines can perform many sophisti-
cated tasks, they may or may not be able to replace 
medical practitioners in their application beyond 
image diagnosis.

In addition, if the quantity of the available labeled 
image is constrained for a given application, it will 
be exigent to train DL algorithm frameworks or 
systems, and there is a danger of ‘over-fitting’ the 
information with an increase in generalization 
and lack of specific detail. Data science and learn-
ing algorithms contribute extensively to the 
healthcare field, and there is a positive growth in 
this field. More healthcare practitioners are 
becoming aware of these techniques, and the true 
potential of these tools will be harnessed in the 
years to come.
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