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Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor
prognosis. An optimized stratification of HCC patients to discriminate clinical benefit
regarding different degrees of malignancy is urgently needed because of no effective
and reliable prognostic biomarkers currently. HCC is typically characterized by rich
vascular. The dysregulated vascular endothelial growth factor was proved a pivotal
regulator of the development of HCC. Therefore, we investigated the capability of
angiogenic factors (AFs) in stratifying patients and constructed a prognostic risk
model. A total of 6 prognostic correlated AFs (GRM8, SPC25, FSD1L, SLC386A,
FAM72A and SLC39A10) were screened via LASSO Cox regression, which provided
the basis for developing a novel prognostic risk model. Based on the risk model, HCC
patients were subdivided into high-risk and low-risk groups. Kaplan-Meier curve indicated
that patients in the high-risk group have a lower survival rate compared with those in the
low-risk group. The prognostic model showed good predictive efficacy, with AUCs
reaching 0.802 at 1 year, 0.694 at 2 years, and 0.672 at 3 years. Univariate and
multivariate cox regression analysis demonstrated that the risk score had significant
prognostic value and was an independent prognostic factor for HCC. Moreover, this
model also showed a good diagnostic positive rate in the ICGC-LIRI-JP and GSE144269.
Finally, we demonstrated the efficacy of the AF-risk model in HCC patients following
sorafenib adjuvant chemotherapy. And revealed the underlying molecular features
involving tumor stemness, immune regulation, and genomic alterations associated with
the risk score. Based on a large population, we established a novel prognostic model
based on 6 AFs to help identify HCC patients with a greater risk of death. The model may
provide a reference for better clinical management of HCC patients in the era of cancer
precision medicine.
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INTRODUCTION

Hepatocellular carcinoma (HCC), as the most common primary liver cancer, is amalignant tumor
with poor prognosis (Craig et al., 2020). HCC is currently the fifth most common cancer and the
second leading cause of cancer-related death worldwide (Degasperi and Colombo, 2016). HCC
accounts for more than 80% of primary liver cancers worldwide (Global Burden of Disease Cancer
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et al., 2017). In the past few decades, considerable progress has
been made in prevention, surveillance, early detection, diagnosis,
and treatment of HCC. However, the incidence rate and cancer-
specific mortality rate of HCC continue to increase in many
countries (Yang et al., 2019). Indeed, the current 5-years survival
rate for HCC is no more than 20% (El-Serag, 2011; Li et al., 2020)
and early diagnosis is important for the treatment of HCC
patients (Li et al., 2020). Novel prognostic biomarkers are
urgently needed because there have been no effective and
reliable prognostic biomarkers for HCC patients. Therefore, it
is critical to develop a multi-dimensional model to identify
patients at high risk and aim to achieve personalized medicine
in HCC patients.

Tumor’s access to the blood system is mainly accomplished by
sprouting angiogenesis (Hillen and Griffioen, 2007).
Angiogenesis is an essential hallmark and is induced
surprisingly early in cancer development (Hanahan and
Weinberg, 2011). The tumor microenvironment utilizes
numerous signaling factors that regulate the angiogenic
response (Weis and Cheresh, 2011). Inhibition of angiogenesis
has become an established treatment strategy for many solid
tumors (Li et al., 2019). Angiogenic factors (AFs) include pro-
and anti-AFs to keep angiogenesis in balance, while breaking this
equilibrium can turn on the switch of angiogenesis, which act as a
prerequisite for growth and metastasis of tumor (Bergers and
Benjamin, 2003; Baeriswyl and Christofori, 2009).

For example, WNT2 has been confirmed to correlate with
prognosis and considered to be an angiogenic growth factor that
promotes liver regeneration (Klein et al., 2009; Ding et al., 2010).
Expressions of the pro-angiogenic cytokines were also founded to
be associated with outcomes of patients with advanced
hepatocellular carcinoma (Miyahara et al., 2013). Therefore,
we attempted to establish a risk model using AF genes to
evaluate the prognosis of HCC and further help develop new
treatment strategies.

In this study, we constructed and verified an effective
prognostic risk model based on the expression of informative
AFs. The investigation of the risk score deepened further
understanding of the divergence of molecular features
underlying different risk groups. This model was also proved
to be suitable for patients following sorafenib adjuvant
chemotherapy and we created the predictive nomogram. As a
whole, this prognostic model might help guide the prognostic
status of patients with HCC.

MATERIALS AND METHODS

Data Acquisition and Preprocessing of HCC
Samples
The raw counts of RNA-Seq data and corresponding clinical
information of TCGA-LIHC patients were collected as the
training cohorts. Data were downloaded from UCSC Xena
(http://xena.ucsc.edu/). We also obtained two independent
validation cohorts of HCC patients from the ICGC portal
(ICGC-LIRI-JP, https://dcc.icgc.org/projects/LIRI-JP) and the

GEO (GSE144269, https://www.ncbi.nlm.nih.gov/geo/), with
transcriptomic and clinical data available.

AFs Genes Collection
We first collected genes with annotations related to
“angiogenesis” in NCBI. Then the signature gene sets of
“angiogenesis” from the MSigDB database were also obtained
(http://www.gsea-msigdb.org/gsea/msigdb/collections.jsp). The
final AFs gene set studied here was the combination of genes
from the two resources (Supplementary Table S1).

Differential Expression Analysis of the AFs
Genes
In order to obtain the differential expressed genes between tumor
and normal samples, Log-transformed fold change (FC) and FDR
of each gene was analyzed by DESeq2 (version 1.34.0) package
(Love et al., 2014). The two “recurrent solid tumor” samples were
removed from analysis. Genes with FDR < 0.05 and | log2 FC|>1
were defined as differentially expressed genes.

Survival Analysis
Univariate Cox regression was performed for each AF genes to
obtain the prognostic genes with p-value < 0.01 and HR > 1 or HR
< 0.5. Kaplan-Meier analysis was also performed to screen the
prognostic candidate AF genes using R package survival (version
3.2-13) (Borgan and Therneau, 2001). Multivariate Cox
regression was used to assess the performance of risk score
under the effects of other clinical factors.

Construction of the AFs-Derived Prognostic
Risk Model
The prognostic candidate AF genes were screened by univariate
cox regression and log-rank test. Tumor samples of the TCGA-
LIHC were used as the training cohort to establish the LASSO
model. A lasso penalty was used to find the best gene model
utilizing an R package glmnet. The risk score for each sample can
be calculated with the final LASSO model coefficient as follows:

Risk Score � ∑
n

i�1
exp ression of gene iplasso coefficient of gene i

The median risk score was used as cutoff for high-risk group
(with higher risk score) and low-risk group (with lower risk
score).

Molecular Features of HCC Samples
CIBERSORT algorithm was used to evaluate the infiltration of 22
immune cell types (Newman et al., 2015). The immune score and
stromal score were tested by the R package ESTIMATE
(Yoshihara et al., 2013). TIDE was used to predict the
potential of patients to response for immunotherapy (Jiang
et al., 2018). We also collected tumor stemness score, TMB
and HRD score of TCGA tumors from previous studies (Chen
et al., 2021). mDNAsi, EREG-mDNAsi, DMPsi and ENHsi data
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of TCGA-LIHC tumor samples were collected from exist studies
(Malta et al., 2018).

SNV and CNV Mutation Analysis
Mutation comment file (MAF) of TCGA-LIHC cohort
was downloaded from the GDC client. Differential
analysis and visualization of somatic mutations were
performed using maftools package. The Fisher ’s exact
test was used on all genes between two groups to detect
differentially mutated genes. Segment file of the TCGA-
LIHC cohort was downloaded from FIREHOSE and

analyzed using the GISTIC 2.0 pipeline (Mermel et al.,
2011).

Nomogram Construction Based on
AFs-Derived Prognosis Risk Model
AFs-derived risk scores, TNM stages, clinical stage, gender, age
and grade were used as independent prognostic factors through
univariate cox regression and AFs-derived prognosis risk model.
Nomogram was finished based on the results of multivariate cox
regression analysis. The calibration curves of the nomogram were

FIGURE 1 | Dysregulated AFs could distinguish OS of patients. (A) The volcano plot of differential expressed AFs genes between tumor and normal samples from
the TCGA-LIHC cohort. The red dots indicated upregulated genes while blue dots indicated downregulated genes in tumors. (B) The distribution of expression levels of
the differential expressed AFs genes. (C-F) Comparison of expression levels between tumor and normal samples and K-M curves for the four genes with top
significance. The prognostic group was separated using the median expression of each gene as the cutoff.
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constructed to test consistency between 1-, 3- and 5-years survival
probability prediction and actual observation. The performance
of the nomogram was evaluated using the concordance index
(C-index) and time-dependent receiver operating characteristic

(ROC) curves. Nomograms analysis and visualization were
performed using R packages rms (version 6.2-0) (JrHarrell,
2021) and survival (version 3.2-13) (Borgan and Therneau,
2001) with default parameters.

FIGURE 2 | The construction and verification of AFs-derived prognostic model in TCGA-LIHC cohort. (A) LASSO coefficient profiles of the selected AFs genes. (B)
The heatmap of z-score transformed gene expression for the 6 selected AFs genes. (C) The risk score distribution and survival status distribution of the AFs-derived
prognostic model in TCGA -LIHC cohort. (D) Kaplan–Meier OS curve with log-rank test for risk score. (E) ROC curves of the risk score in predicting 1-, 3-, and 5-years
OS. (F) Univariate and (G) multivariate Cox regression analysis of risk score and clinical factors.
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RESULTS

The Construction of AFs-Derived
Prognostic Risk Model
First, the large population of liver hepatocellular carcinoma (LIHC)
patients from theTCGAdatabasewas used as the training cohort.We
downloaded the transcriptomic and clinical data for 371 tumor
samples and 50 adjacent normal samples. A total of 8,250
differentially expressed genes were found between tumor and
normal samples (FDR <0.01, |log2FC| > 1, DEseq2). We then
systematically collected AF genes from NCBI and MSigDB (see
Methods) and noticed 1,038 AFs were differentially expressed
(hereafter termed DE-AFs, Figures 1A,B). Among them, 361 DE-
AFs were downregulated and 677 DE-AFs were upregulated in
tumors.

Then we investigated the prognostic ability and regression
characteristics of DE-AFs using univariate Cox regression analysis.
A total of 36 genes with significant differences were discovered in
univariate regression model (p-value < 0.01, hazard ratio (HR) > 1 or
HR< 0.5, Supplementary Table S2). Furthermore, the Kaplan-Meier
curve with log-rank test was also used to filter important DE-AFs and
finally screened 17 genes with confirmed prognostic efficacy (log-
rank p-value < 0.05, Supplementary Figures S1 and S2), including
EGF, GRM8, TRPM6, SLC38A6, BLM, BARD1, CLSPN, PRIM2,
MSH2, FAM72A, SPC25, IGF2BP3, CENPP, GTF2IRD1, TMC7,
FSD1L, and SLC39A10. The distribution of expression levels and
Kaplan-Meier curves of the four genes with top significance were
displayed (Figures 1C–F). It was obvious that higher expression of
them indicated poor prognosis of patients.

Although these genes showed certain predictive efficacy by means
of the intersection of univariate Cox regression analysis and log-rank
test, we preferred combining the informative genes to obtain a more
optimized prognostic model. The LASSO regression analysis was
subsequently performed to remove redundant factors and also
filtered the factors with less contribution. The 6 AFs with the
most predictive value were selected (Supplementary Figures S3
and S4), including GRM8, SPC25, FSD1L, SLC38A6, FAM72A,
and SLC39A10. In addition, several publications also supported
these genes in cancer with experimental evidence (Supplementary
Table S3), such as siRNA approach. Then a prognostic risk scoring
model of AFs with the coefficients from LASSO regression analysis
was constructed (Figure 2A). Their expression was accordantly
upregulated to define the high-risk group of HCC (Figure 2B).

Based on the 6-AFs gene prognostic model, patients of TCGA-
LIHC were stratified into high-risk group (n = 158) and low-risk
group (n = 159) according to the median cut-off value of risk
score. The overall survival (OS) time of patients in the high-risk
group was remarkably decreased (Figure 2C). The Kaplan-Meier
and C-index analysis showed the capacity of the AFs prognostic
model (log-rank test p-value < 0.001, C-index = 0.7, Figure 2D).
The predictive performance of the prognostic risk model was
further evaluated by time-dependent ROC curves, and the area
under the ROC curve (AUC) reached 0.802 at 1-year, 0.694 at 2-
years, and 0.672 at 3-years (Figure 2E).

After performing the univariate Cox regression analysis
(Figure 2F), we explored the relationship between clinical
characteristic factors and AFs risk score. Age, gender, stage,

grade, and the risk score of the prognostic model were
included in the multivariate Cox regression model. The risk
score was found to be an independent predictor for OS, with
HR = 1.93, 95% CI: 1.26–2.94, p-value = 0.002 (Figure 2G,
Table 1). Taken together, the AFs gene prognostic model was
confirmed as a credible and independent predictor of OS in HCC.

Validation of AFs-Derived Prognostic Risk
Model in Independent Datasets
To assess the robustness and generalizability of the AFs-derived
prognostic risk model, the validation data sets from ICGC-LIRI-JP
(N = 212) and GSE144269 (N = 68) were collected. Patients were all
separated into high- or low-risk groups according to the risk score.
The high-risk group of the ICGC-LIRI-JP validation cohort also
showed significantly lower survival rate than the low-risk group (log-
rank p-value = 0.03). The predictive capacity was proved as AUC
reaching 0.602 at 1-year, 0.632 at 2-years, and 0.709 at 3-years in
ICGC-LIRI-JP cohort (Figure 3A). Consistently, another validation
set from GSE144269 (N = 68) also supported the poor prognosis of
the high-risk group (log-rank p-value = 0.015, Figure 3B). Likewise,
in the ICGC-LIRI-JP and GSE144269 cohorts, the risk score still
proved to be an independent predictor for OS after correction for
other confounding clinical factors (multivariate Cox regression
analysis, ICGC-LIRI-JP cohort: HR = 2.87, 95%CI = 1.38-5.99,
p = 0.005; GSE144269 cohort: HR = 13.14, 95%CI = 1.32-130.43,
p = 0.028; Figures 3C,D).

Comparison of Molecular Features
Between Different Risk Groups
In order to explore the underlying molecular mechanisms of this
AFs-derived prognostic risk model, we assessed the associations
between the risk score and the typical clinical characteristics
including age, gender, TCGA molecular typing (iclust1, iclust2,
iclust3), tumor stage, virus infection status, etc. (Cancer Genome
Atlas Resea, 2017). Chronic infection of Hepatitis B virus (HBV) has
been commonly considered as amajor risk factor in the initiation and
development of HCC (Chan et al., 2016). We observed the AFs risk
score was positively associated with the risk of HBV infection
(Wilcoxon rank-sum test p-value = 0.0018, Figure 4A), which
further confirmed its predictive value of severe disease status.
Besides, the risk score varied in different TCGA molecular typing
groups (Kruska-Wallis test p-value = 0.00036,Figure 4B). Higher risk
score indicated a higher tumor stage, and the exception of stage IV
was probably due to the limited samples size (Kruska-Wallis test
p-value = 3.2e-6, Figure 4C). Previous analysis proved that cancer
stem cells promoted angiogenesis by secreting factors such as vascular
endothelial growth factor (VEGF) and stromal cell-derived factor 1
(SDF1). Therefore, we obtained two measurements depicting the
tumor stemness (Malta et al., 2018; Chen et al., 2021), and verified a
positive correlation between the tumor stemness andAFs risk score in
TCGA-LIHC cohorts (Figures 4D,E).

Next, we investigated the associations between the AFs risk score
and the immune response in tumors. The mutation burden (TMB)
was not differed between high- and low-risk groups (Figure 4F),
while the homologous recombination deficiency (HRD) score was
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positively correlated with the AFs risk score (Spearman R = 0.53,
p-value < 2.2e-16, Figure 4G). This was in line with the moderate
potential to induce adaptive immunity in high-risk group

(Figure 4H). As for individual immune cell types, we calculated
the relative fraction of 22 immune cell types in five cohorts (TCGA-
LIHC, ICGC-LIRI-JP, GSE10141, GSE144269 and GSE10186) by the

TABLE 1 | Univariate and Multivariate Cox regression analysis of AFs-derived risk score and clinical factors in TCGA-LIHC cohort.

Factors Univariate cox regression Multivariate cox regression

Beta HR 95%_CI p-value C-index HR 95%_CI p-value

Age 0.13 1.14 (0.77-1.68) 0.53 0.50 1.21 0.81-1.81 0.35
Gender −0.29 0.75 (0.51-1.10) 0.14 0.52 0.85 0.57-1.26 0.42
Grade 0.07 1.07 (0.73-1.59) 0.72 0.52 1.02 0.66-1.56 0.93
Risk score 0.64 1.90 (1.29-2.82) 0.00 0.70 1.93 1.26-2.94 0.00
Stage 1.05 2.86 (1.95-4.19) 8.49E-08 0.62 1.21 0.16-9.14 0.86
Stage_M 0.48 1.62 (1.06-2.47) 0.03 0.53 1.78 1.05-3 0.03
Stage_N 0.28 1.32 (0.85-2.04) 0.21 0.49 1.17 0.67-2.04 0.57
Stage_T 1.06 2.88 (1.96-4.23) 7.33E-08 0.62 2.38 0.32-17.97 0.40

abrAbbreviationHR, hazard ratio; CI, confidence interval.

FIGURE 3 | Evaluation of the AFs-derived prognostic model in ICGC-LIRI-JP andGSE144269 cohorts. (A-B) Visualization of the following analysis in ICGC-LIRI-JP
and GSE144269 HCC cohorts, respectively. Kaplan–Meier curve with log-rank test for risk model. The risk score distribution and survival status distribution of the AFs-
derived prognostic model. ROC curves of risk score in predicting 1-, 3-, and 5-years OS. The heatmap of z-score transformed gene expression for the 6 selected AFs
genes. (C-D) Multivariate Cox regression analysis of risk score in the two independent validation cohorts.
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CIBERSORT algorithm. And found that the fraction of
immunosuppressive regulatory T cells (Tregs) cells, M0
macrophages, and resting dendritic cells showed positive
correlations with the risk score, while several adaptive immune
cells showed the trends of negative correlations (Figure 4I).

Furthermore, we compared the genomic aberrations between the
different risk groups in TCGA-LIHC cohorts. The difference of copy
number variation (CNV) was analyzed through maftools and
GISTIC 2.0. As shown in Figures 5A,B, the high-risk group had
significantly more deletion events and higher CNV frequencies than

FIGURE 4 |Comparison of themolecular features between different risk groups. Distribution of risk score under the status of (A)HBV infection, (B) TCGAmolecular
typing, (C) tumor stage. (D)Comparison of the tumor stemness score (mRNAsi) between high/low-risk groups. (E-H) Spearman correlation of the risk score with I tumor
stemness score, (F) mutation burden, (G) HRD score, and (H) immune score. (I) Spearman correlation of risk score with fractions of 22 immune cell types in five liver
cancer cohorts.
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FIGURE5 |Comparison of the genomic alterations between the different risk groups. (A)Recurrent copy number aberrations of the high- and low-risk groups in the
TCGA-LIHC cohort. Regions of amplifications (red) and deletions (blue) were above and below baseline (0.0), respectively. The orange box indicated the CNV regions
with significant differences. (B) Comparison of the CNV frequency. (C) Oncoplot of the differential mutated AFs genes between high-risk and low-risk groups.
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FIGURE 6 | Potential clinical application of AFs risk score. (A) The proportion of samples responding to sorafenib in terms of the high- and low-risk groups. (B) The
distribution of risk score between sorafenib responders and non-responders. (C) The ROC curve showed the sensitivity and specificity of risk score in predicting
sorafenib response. (D) Boxplot compared the distribution of TIDE score between the high- and low-risk groups. (E) Nomogram-based AFs-derived prognostic model
and clinical factors for 1-, 3-, 5- and 10-years OS prediction. (F) Calibration plot for agreement test between 1-, 3- and 5-years OS prediction and actual
observation.
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the low-risk group. Then, the differentially mutated AFs genes
between the high-risk and low-risk groups were detected
(Figure 5C, chi-squared test, p-value <0.05). Among them, the
mutation frequency of HCC driver gene TP53 was enriched in
the high-risk group (45 versus 13%, Fisher’s exact test p-value =
6.60e-10), this observation suggested the classic role of TP53 in cell-
cycle regulation and guarding genome stability might also contribute
to the malignant progression of HCC (Gao et al., 2019). While the
CTNNB1 mutation was higher in the low-risk group than the high-
risk group (29 versus 20%), the p-value slightly failed to reach
statistical significance (Fisher’s exact test p-value = 0.063).
Previously, multi-omics integration analysis revealed three HCC
subtypes, one of which exhibited few CTNNB1 mutations
companied by poor prognosis (Cancer Genome Atlas Resea,
2017). This was consistent with our observation that relatively
lower mutation frequency of CTNNB1 in the high-risk group. In
addition, the previous analysis also found thatmicrovascular invasion
was significantly reduced in the subtype with increased CTNNB1
mutation. We expected the mechanism of somatic mutations on
angiogenesis in hepatocellular carcinoma to be further explored and
verified.

Potential Clinical Application of AFs Risk
Score
Accumulating evidence supported that sorafenib was effective in
extending the time of progression in HCC (Vitale et al., 2010). In
order to investigate the effect of our risk scoring model in HCC with
sorafenib as adjuvant treatment, GSE109211 data set was used for
analysis. The proportion of samples responding to sorafenib in the
high-risk group was significantly higher than that in the low-risk
group (0.53 versus 0.09, Figure 6A). Accordingly, the risk score was
found extremely higher in responders (Wilcoxon rank-sum test
p-value < 0.0001, Figure 6B). In other words, the risk score of
the AFs prognosis model could effectively predict the patient’s
response to sorafenib. The results of ROC curve analysis
confirmed the good sensitivity and specificity of risk score (AUC
= 0.8416, Figure 6C).

TIDE is the tumor immune dysfunction and rejection score,
depicting the primary mechanisms of tumor immune evasion. It
was proved to predict the clinical response and outcomes of patients
following immunotherapy (Jiang et al., 2018). We used TIDE to
evaluate the potential of risk score as a predictor of immunotherapy.
Interestingly, the high-risk group showed significantly lower TIDE
score (Wilcoxon rank-sum test p-value < 0.05, Figure 6D).

Finally, a graphic prognostic nomogram based on the 6-AFs
genes was developed for 1-, 3-, 5- and 10-years prediction of OS
for HCC patients from TCGA. The tumor stage, grade, age, and
gender were also included (Figure 6E). Meanwhile, the
calibration plot showed that the prediction by the nomogram
had good agreement with actual observation (Figure 6F).

DISCUSSION

In the present study, we established an important prognostic model
based on 6 DE-AFs genes significantly related to the prognosis of

HCC, and further verified it in two independent validation datasets.
The patients in the high-risk group showed poor prognosis, which
was consistent in the three cohorts. Through univariate and
multivariate Cox regression analysis, the risk score had significant
prognostic value and was an independent prognostic factor of HCC.
The model suggested that high risk may cause the regulation of
immune mechanism, and these 6 gene signatures in the model could
be used as potential prognostic molecular markers of AFs in HCC.

Several prognostic staging systems have been built for liver
cancers, such as the Japan Integrated Staging score (Kudo et al.,
2003), the Cancer of the Liver Italian Program score (Llovet and
Bruix, 2000), the Tokyo Score (Tateishi et al., 2005), and the
Barcelona Clinic Liver Cancer staging system (Llovet et al., 1999).
These scoring systems mainly defined by tumor characteristics based
on systemic literature reviews (Farinati et al., 2016). Some studies
revealed that these scoring systems still lack substantial power for
accurately predicting the survival of patients with liver cancer after
curative resection, which may due to the high heterogeneity of liver
cancer and lacking of molecular characteristics (Kim et al., 2014).
Furthermore, hypervascularity and marked vascular abnormalities
played amajor role in tumor growth and spread ofHCC (Morse et al.,
2019). Thus, we constructed a machine learning model to distinguish
patients survival using Least absolute shrinkage and selection
operator (LASSO) regression. LASSO regression has obvious
advantages in analyzing gene expression data due to the exists of
multicollinearrity variables (McEligot et al., 2020). By adding L1
penalty, LASSO regression could effectively identify themost relevant
variables for the outcome and reduce the dimensionality of the
independent variables, reducing the effect of multicollinearity (Dai
et al., 2021; Jia et al., 2021). By selecting an appropriate lamada,
LASSO regression model could reduce model complexity and
improve model prediction accuracy, resulting a good predictive
efficiency for other datasets (Dai et al., 2021).

In this study, 6 DE-AFs genes were identified and included in the
final prognostic model. The expression of GRM8, SPC25, and
FAM72A was negatively correlated with favorable outcomes and
also observed in other cancer types such as lung cancer (Zhang et al.,
2019; Chen et al., 2018) and breast cancer (Wang et al., 2019). Recent
research reports that the transcriptional activation of Metabotropic
glutamate receptor 8 (GRM8) was elucidated to promote the survival
of squamous cell lung carcinoma (LUSC) tumor cell through
inhibiting cAMP pathway and activating MAPK pathway and the
transcription level of GRM8 was reversely correlated with the
prognosis of LUSC cases (Zhang et al., 2019), which is similar to
our results. The upregulation of SPC25 increased the cancer stem cell
properties of non-small cell lung adenocarcinoma cells and was
negatively correlated with survival (Chen et al., 2018). SPC25 is
also associated with poor prognosis in breast cancer patients (Wang
et al., 2019). Zhang B et al’s study (Zhang et al., 2020) showed that
SPC25 overexpression promoted tumor proliferation and was a
prognostic factor for a low survival rate of HCC, which is
consistent with our results. FAM72A protein is overexpressed in
several cancers (Guo et al., 2008). In a recent study based on the mice
model, Rogier M et al found that the reduced levels of UNG2
mediated by overexpression of Fam72a would shift the balance
towards mutagenic DNA repair, rendering cells more prone to
acquire mutations (Rogier et al., 2021). In our study, there was a
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significant positive correlation between dryness and HRD score and
risk score, and the high-risk group had significantly more missing
events and higher CNV frequency. Among the 32 common high-
frequency mutation information between high- and low-risk groups,
the proportion of TP53mutation in high-risk group was significantly
higher than that in the low-risk group (Figure 5). This echoes the
standpoint that TP53 is included in genes with frequent mutations in
HCC (Totoki et al., 2014; Schulze et al., 2015; Chaisaingmongkol
et al., 2017; Khemlina et al., 2017). The present results suggested that
the identified DE-AFs signature was closely related to a worse
prognosis of HCC. Therefore, the DE-AFs signature might be an
easily applicable tool directing clinical decision-making.

The tumor microenvironment (TME) is a complex ecosystem
consisting of various types of cells and the extracellular matrix
with obvious heterogeneity (Maman andWitz, 2018). Tumor cell
survival, growth, migration, and even dormancy are influenced by
the surrounding TME (Biffi and Tuveson, 2021). Indeed, tumor
angiogenesis is not only mediated by tumor cells, but also by
cancer-associated fibroblasts (CAFs) and immune cells in the
tumor stroma (Nyberg et al., 2008; Watnick, 2012; Mongiat et al.,
2016). Increasing evidence suggests that solid tumors can be
divided into hot tumors and cold tumors. Hot tumors are
immune-inflammatory types characterized by adaptive
immune activation, while cold tumors are immune rejection
types characterized by innate immunity and interstitial
activation (Turley et al., 2015; Chen and Mellman, 2017;
Binnewies et al., 2018; Lin, 2021). We analyzed the difference
of immune cell infiltration between high-risk and low-risk groups
based on five independent HCC cohorts. The infiltration level of
Treg cells with immunosuppressive effect and resting dendritic
cells was positively correlated with the risk score, while most
adaptive immune cells were just the opposite (Figure 4K). Our
study revealed that the high-risk group may be more inclined to
cold tumors. We also found follicular helper T cells (Tfh) showed
a positive correlation with risk score in TCGA-LIHC cohort,
while it was negatively correlated with risk score in GSE10141 and
GSE10186 cohorts. This opposite situation may be due to the
dynamic balance of various biological processes in organisms, or
the role of immunosuppressive cells in the mechanism of immune
escape, and further research is required.

Sorafenib is an oral multikinase inhibitor, its action
mechanism includes inhibition of both MAPK/ERK-mediated
cell proliferation and angiogenesis driven by VEGF signalling
(Wilhelm et al., 2008). Sorafenib has been the standard systemic
therapy for advanced HCC for a decade (Bouattour et al., 2019;
Pinyol et al., 2019). In this study, among patients receiving
sorafenib adjuvant chemotherapy, the proportion of non-
responders in the low-risk group reached 91%. The results
indicated that patients with higher risk score could benefit
more from sorafenib, and it is recommended that patients
with higher risk score undergo sorafenib adjuvant chemotherapy.

Nomograms have been widely used as prognostic devices in
oncology and medicine (Balachandran et al., 2015; Song et al.,
2018). Constructing a nomogram can transform the prediction
model into a single factor of patient status evaluation, which
provides effective support for personalized medical treatment for

each patient. The nomogram of this study combined risk score,
stage, gender, age, and grade, produced a favorable prediction
effect. Although the impact of tumor heterogeneity on individual
prognosis is still difficult to evaluate, the risk score as a practicable
tool makes the nomogram more reliable and provides reference
for clinical decision-making.

In summary, we constructed and validated a novel risk model
consisting of 6 prognostic-associated AFs genes. This risk model
showed effective and independent prognostic power, thereby
providing important insight into the survival prediction of
HCC. To our knowledge, this is the first study to predict
prognosis of HCC patients based on the expression levels of
AFs. Therefore, our study provided novel insights into the
relationship between the regulation of AFs and development
of HCC. In addition, we also revealed the underlying
molecular features involving tumor stemness, immune
regulation and genomic alterations between high/low-risk
groups in this model. We expected further verification and
mechanism exploration by the accumulated datasets in the future.
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