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Autoimmune diseases are a broad spectrum of human diseases that are characterized by
the breakdown of immune tolerance and the production of autoantibodies. Recently,
dysfunction of innate and adaptive immunity is considered to be a key step in the initiation
and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain
containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect
exogenous pathogen irritants and endogenous danger signals. The main function of
NLRP3 inflammasome is to promote secretion of interleukin (IL)-1b and IL-18, and
pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive
immunity, aberrant activation and regulation of NLRP3 inflammasome plays an
important role in the pathogenesis of autoimmune diseases. This paper reviewed the
roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3
inflammasome may be a potential target for autoimmune diseases deserved further study.

Keywords: NLRP3, autoimmune diseases, inflammatory bowel disease, rheumatoid arthritis, type 1 diabetes,
systemic lupus erythematosus
INTRODUCTION

Autoimmune diseases are characterized by self-reactive cells and the overproduction of
autoantibodies, which are led by the breakdown of immunological tolerance and aberrant
autoreactive immune responses (1). Autoimmune diseases include organ-specific autoimmune
diseases, such as type 1 diabetes, autoimmune thyroid diseases, and rheumatoid arthritis, and
systemic autoimmune diseases, such as systemic lupus erythematosus and systemic sclerosis (2).
Although the pathogenesis of autoimmune diseases is still unclear, numerous studies have shown
that aberrant innate and adaptive immunity is involved in the pathogenesis of autoimmune diseases
(3, 4). Recently, emerging appreciation showed that NLRP3 inflammasome plays an important role
in recognizing innate immune signals and inducing autoreactive immune responses, which
probably acts as a checkpoint in innate immunity to cause skewed adaptive immune
responses (Figure 1).

Inflammasomes are protein complexes composed of three parts: a sensor, an adaptor, and an
effector. Tschopp et al. firstly proposed the concept of inflammasomes in 2002 (5), following which
several inflammasome subtypes were discovered, including NLRP1 inflammasome, NLRP3
inflammasome, absent in melanoma 2 (AIM2) inflammasome, etc. In most of the inflammasome
subtypes, the component of adaptor is usually apoptosis-associated speck-like protein (ASC), which
org October 2021 | Volume 12 | Article 7329331
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contains a caspase activation and recruitment domain. The
effector component is usually caspase-1. The differences among
inflammasomes subtypes are the sensor component (Figure 2).

NOD-like receptor (NLR) is a typical type of pattern recognition
receptors (PRRs), via which innate immune system recognizes
pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs). According to different
subcellular localization, PRRs are classified into two categories: (a)
PRRs located in the plasma membrane, which mainly play the role
to recognize PAMPs and DAMPs, typically including Toll-like
receptors (TLRs) and C-type lectin receptors (CLRs); (b) PRRs
located in intracellular partitions, which mainly include NLRs,
AIM2-like receptor (ALRs), and cytosolic sensor cyclic GMP-
AMP (cGAMP) synthase (6, 7). NLRP3 inflammasome is one of
the most widely studied inflammasomes. Effect of NLRP3
inflammasome to various physiological and pathogenic stimuli
mainly includes caspase-1 activation, secretion of IL-1b and IL-
18, and pyroptosis mediated by caspase-1. Under physiological
conditions, inflammasomes play an important role in clearing
pathogens and damaged cells, and serve as a critical composition
of innate immune response. Whereas under pathological
conditions, the overactivation of inflammasomes may trigger
autoinflammatory and autoimmune responses and result in
numerous diseases.

In this review, we summarized the references and presented
that as the checkpoint, NLRP3 inflammasome connects innate
Frontiers in Immunology | www.frontiersin.org 2
and adaptive immunity in several autoimmune diseases,
including inflammatory bowel disease, psoriasis, rheumatoid
arthritis, systemic sclerosis, type 1 diabetes, systemic lupus
erythematosus, and autoimmune thyroid diseases. Finally, we
discussed the effect of new-onset inhibitors of NLRP3
inflammasome in autoimmune diseases, which implies their
potential therapeutic value for clinical applications deserved
further study.
STRUCTURE, ACTIVATION, AND
REGULATION OF NLRP3
INFLAMMASOME

Structure
NLRP3 inflammasome consists of three components including
NLRP3 scaffold, a pyrin domain (PYD), and a caspase
recruitment domain (CARD), known as ASC, and caspase-1
(8). NLRP3 belongs to NLR protein family which includes 22
members widely expressed in human histiocytes, such as
dendritic cells, macrophages, and monocytes. NLRP3 contains
three segments (Figure 2): (a) PYD in amino-terminal; (b) a
NACHT domain in central part: executes the function of NLRP3
self-association via ATPase activity; (c) a leucine-rich repeat
domain (LRR domain) in carboxy-terminal: depresses NLRP3
FIGURE 1 | NLRP3 inflammasome connects innate and adaptive immunity in autoimmune diseases. NLRP3 inflammasome is activated abnormally in autoimmune
diseases. In the upstream process, exogenous pathogen irritants and endogenous danger signals initiate assembly of NLRP3 inflammasome. In the upstream
process, IL-1b, IL-18, and pyroptosis, which are modulated by NLRP3 inflammasome, regulate adaptive immune response. Namely, NLRP3 inflammasome might
participate in the transition from innate immunity to adaptive immunity in the pathogenesis of autoimmune diseases as a checkpoint. The detailed process of
activation, assembly, regulation, and effects on adaptive immunity are shown in Figure 2.
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activation by inhibiting the ATPase activity of the NACHT
domain. ASC includes PYD in amino-terminal and CARD in
carboxy-terminal, which interact with each other to activate
caspase-1. Caspase-1 consists of three parts from amino-
terminal to carboxy-terminal: CARD, central large catalytic
domain (p20), and small catalytic subunit domain (p10) (9, 10).

All of the substructures execute specific function in NLRP3
inflammasome assembly. Activated by upstream signals, the
NACHT domains of NLRP3 interact with each other to induce
NLRP3 oligomerization. And then the homotypic PYD-PYD
interaction promotes ASC recruitments and formation of
nucleates helical ASC filament. ASC recruits and activates
caspase-1 via homotypic CARD-CARD interactions. At last,
the clustered caspase-1 cleaves to a complex of p33 which
comprises CARD and p20, a formation with proteolytical
activation (11, Figure 2). NIMA-related kinase 7 (NEK7) is a
new component in recent studies (Figure 2). Genetic research
showed that NEK7 functioned as an indispensable component to
NLRP3 inflammasome activation (12). NEK7 belongs to the
Frontiers in Immunology | www.frontiersin.org 3
family of mammalian NIMA-related kinases and is a serine or
threonine kinase involved in mitosis. In the mediation of
potassium efflux and mitochondrial reactive oxygen species
(ROS), NEK7 binds to LRR domain of NLRP3, which is
essential to NLRP3 inflammasome activation (13).

Activation
The activation of NLRP3 inflammasome includes two steps:
firstly, it should be primed, sequentially activated. Priming is a
preparation stage for subsequent responses. On the one hand,
upregulated expression of NLRP3, caspase-1, and pro-IL-1b is
induced by gene transcription and activation of nuclear factor-
kB (NF-kB). This process is initiated through three ways
(Figure 2): (a) PRRs, such as NOD2 or TLRs, recognize
PAMPs and DAMPs; (b) cytokines directly activate NF-kB
pathway, including tumor necrosis factor (TNF) and IL-1b; (c)
lipopolysaccharide (LPS) upregulates IL-1b transcription by
shifting specific metabolism status (14–16). On the other hand,
NLRP3 post-translational modifications (PTMs) are induced in
FIGURE 2 | Signaling pathway of NLRP3 inflammasome and the role of NLRP3 inflammasome in autoimmune diseases. The priming stage: the binding of cytokines
or PAMPs to its receptors can activate NF-kB signaling pathway, which upregulates transcription of NLRP3, pro-IL-1b, and pro-IL-18. The activation stage: this
stage is stimulated by PAMPs and DAMPs. The activating signals, including K+ efflux, Ca2+flux, Cl− efflux, mitochondrial dysfunction, ROS production, lysosomal
disruption, and NEK7 promote oligomerization of NLRP3, ASC, and pro-caspase-1 to format NLRP3 inflammasome complex. The active caspase-1 can cleave
proinflammatory cytokines IL-1b and IL-18, and promote pyroptosis mediated by Gasdermin D. The role of NLRP3 inflammasome in autoimmune diseases:
inflammation promoted by cytokines IL-1b and IL-18; adaptive immune dysfunction caused by cytokines, such as proliferation and differentiation of T cells;
pyroptosis, which can cause histiocytic death such as insulin b-cells.
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the priming stage. NLRP3 is stabilized into a state in which the
NLRP3 activity is auto-suppressed, but it still can respond to
various signals (17). Importantly, NLRP3 PTMs occurs in the
whole process of NLRP3 inflammasome activation, even in the
unstimulated stage (18).

PAMPs and DAMPs stimuli varies in chemical properties and
structures, and the direct binding of stimuli to NLRP3 are rarely
detected. It is hypothesized that NLRP3 may sense common
upstream signals which are induced by NLRP3 activators. This
character of indirect activation is the core to understand
molecu l a r mechan i sm of NLRP3 ac t i va t ion . The
comprehensive signal has not been determined, and relevant
researches are contradictory. The common upstream signals
identified include K+ efflux, Ca2+ flux, Cl− efflux, mitochondrial
dysfunction, ROS production, lysosomal damage, trans-Golgi
disassembly, metabolic changes, and so on. There are three
typical consensus models of common upstream signals.

Model of Ion Fluxes
The ion fluxes are common triggers of NLRP3 inflammasome
activation. They include K+ efflux, Ca2+ flux, and Cl− efflux, of
which K+ efflux is an indispensable upstream event. It was first
proposed that ATP-mediated P2X purinoceptor 7 (P2X7)
promoted production of mature IL-1b through K+ efflux (19).
And the high concentration of extracellular K+ can depress
NLRP3 inflammasome activation (20, 21). It suggests that
intracellular low potassium status may trigger NLRP3
inflammasome activation. Meanwhile, the activated P2X7-
ATP-dependent pore recruits a pannexin-1 hemi-channel,
through which extracellular agonists could enter the cytoplasm
and interact with NLRP3 inflammasome complex to promote
mature IL-1b secretion (22, 23). In addition, the silica, particulate
stimuli alum and calciumpyrophosphate crystals are demonstrated
to induceK+ efflux to triggerNLRP3 inflammasome activation (24).
However, the mechanism of how intracellular decreased K+ levels
triggerNLRP3 activation has not beenprecisely illuminated.One of
the presuppositions suggested that the drop in intracellular K+

concentrationmay induce the conformational changesofNLRP3 to
activate the following response (25, 26).

Model of Lysosomal Disruption
Particulate activation is a major factor to effect NLRP3
inflammasome. Self-derived particulate matter (such as uric
acid, cholesterol crystals) and foreign-derived particulate
matter (such as asbestos, alum, silica) could be endocytosed by
lysosomal and cause subsequent lysosome membrane damages
and release of the particulates and cathepsin B (27). NLRP3
inflammasome can be suppressed by broad-spectrum cathepsin
inhibitors, such as CA-074-Me (a chemical cathepsin B
inhibitor), which indicates that cathepsin is an important
triggered signal of NLRP3 inflammasome (28, 29). Moreover, a
variety of cathepsins exhibit function of promoting NLRP3
priming and activation, which is also blocked by CA-074-Me,
and the NLRP3 activation process is rarely inhibited by the
treatment of cathepsin B, X, L, or S gene deletion respectively
(30). Hence, the redundancy among various cathepsin is vital for
NLRP3 activation. In addition, lysosomal rupture can activate
Frontiers in Immunology | www.frontiersin.org 4
ion fluxes, including K+ efflux and Ca2+ influx. It indicates that
ion fluxes may be a common-converged point in different
NLRP3 activation models (25, Figure 2).

Model of Mitochondrial Dysfunction and ROS
The act ivated NLRP3 inflammasome can eliminate
dysfunctional mitochondria and reduce ROS, which are vital
upstream events in NLRP3 inflammasome activation. NLRP3
inflammasome activation can be blocked by ROS scavenging
agents or NAPDH oxidase inhibitors (31) . NLRP3
inflammasome activation was also detected in mouse
macrophages and human peripheral blood monocytes which
are depleted of NAPDH oxidase activity (32). Further study is
required to determine the comprehensive role of mitochondria
in NLRP3 inflammasome activation. In addition, mitochondria
can provide a docking site for assembly of NLRP3
inflammasome. Cardiolipin, mitochondrial antiviral signaling
protein, and mitofusin 2 may serve as the connective point of
NLRP3 to the mitochondria (33, 34).

The priming and activation stages result in a multimeric
protein complex assembled by NLRP3, ASC and caspase-1.
There are two major functions of activated caspase-1: (a)
Promoting maturity and release of IL-1b and IL-18 by cleaving
their precursors; (b) Initiating pyroptosis, a specific cell death
between necrosis and apoptosis, by cleaving gasdermin D (11,
35). IL-1b and IL-18 are important members of the IL-1 family,
which also include IL-1a, IL-33, IL 37, and so on. The IL-1
family play vital roles in inflammatory responses and immune
regulation (36). IL-1b, as a typical pro-inflammatory cytokine,
can induce autoinflammatory response and tissue destruction. It
can improve macrophages’ functions, recruit leukocytes via
upregulating adhesion molecules and chemokines, and
promote leukocytes to produce proinflammatory mediators
(36–38). IL-1b, as a kind of T cell co-stimulatory factor, can
provide pro-survival and proliferation signals for T cells (36),
which also induce differentiation and polarization of T cell. IL-1b
can promote naive CD4+ T cells differentiation into Th17 cells
and Th9 cells cooperating with other cytokines (39). IL-18, as a
kind of IFN g-inducing factor, can induce natural killer (NK)
cells to product IFN-g and IL-8 (40). IL-18 induces Th2
responses and promotes Th1 responses, synergizing with
which induce IFN-g production of T helper cells (36, 41). In
epithelial cells, IL-18 regulates function of Th17 cell and Treg
cell, which contributes to Th17/Treg imbalance (42).

Regulation
By recognizing pathological infections and endogenous danger
signals, NLRP3 inflammasome can trigger immune responses
and inflammatory responses. The regulation of NLRP3
inflammasome activation is as critical for immune regulation
in immune homeostasis, as for inflammose function itself.
The aberrant regulation can induce NLRP3 inflammasome
overactivation and excessive cytokine production, resulting
in skewed inflammatory responses, which might induce
adaptive immune dysfunction. The statue can be switched
from physiological defense to pathogenic damage by
aberrant regulation.
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The strict regulation of NLRP3 inflammasome activation is
essential to maintain immune system homeostasis. More
importantly, accurate understanding of the regulatory
mechanisms is crucial to identify triggers of autoimmune
diseases involved in NLRP3 inflammasome, and treatments
targeted on it may show great therapeutic potential. Various
potential regulation mechanisms have been reported, such as cell
surface associated mucin 1, MicroRNA (miRNA), small
heterodimer partner (Table 1). Clarifying traits of regulations
from the following aspects might contribute to a more
comprehensive understanding: positive or negative regulation;
the specific stage on which the regulator targets, including
priming stage and activation stage; and specific subcellular
location, such as mitochondria and Golgi apparatus (Table 1).

PTMs of NLRP3 can participate in various phases of NLRP3
inflammasome activation and regulate innate immunity. Covalent
additions including ubiquitylation, phosphorylation, and
sumoylation have been reported in NLRP3 PTMs. For example,
sumoylation by the protein E3 SUMO protein ligase MUL1 (also
known as MAPL) depresses NLRP3 activation. However, both
promoted and suppressed effect of phosphorylation on NLRP3
have been detected (54, 55). In addition, PTMs can interact with
each other. Phosphorylation can promote deubiquitylation by
interaction between BRCA1/BRCA2-containing complex subunit
3 and LRR domain of NLRP3 (54). It indicates that regulation of
NLRP3 activation is a delicate and complex process.

Overreaction of innate immune responses may cause
overactivity of cytokines and pyroptosis, which contribute to
inflammatory and autoimmune diseases, the same as
overreaction of skewed adaptive immune responses may cause
Frontiers in Immunology | www.frontiersin.org 5
hypersensitivity. Therefore, identifying critical triggers of the
unbalanced immunoregulation would be an important direction
in the future researches.
NLRP3 INFLAMMASOME IN
AUTOIMMUNE DISEASES

Autoimmune diseases are characterized by loss of immunological
tolerance and inappropriately autoreactive immune responses
against histocytes and organs. However, the exact pathogenesis
of autoimmune diseases has not been identified, and existing
treatments are unsatisfactory (56). Current studies have proposed
the role of NLRP3 inflammasome in autoimmune diseases and its
clinical therapeutic potential (Table 2).

Inflammatory Bowel Disease
Inflammatory bowel disease (IBD) is the most common intestinal
tract disorders, characterized by dysfunction of innate immunity
and aberrant inflammation in intestinal mucosa. It is comprised
mainly of Crohn’s disease (CD) and ulcerative colitis (UC) (133).
Though the specific pathogenesis of IBD has not been elucidated
until now, several researches have revealed that NLRP3
inflammasome activation is upregulated in IBD. Serum
concentration of NLRP3 is elevated, positively correlated with
serum IL-1b level and severity of IBD patients (134). Furtherly,
NLRP3 inflammasome is activated in early stage of CD patients,
whereas in late stage of UC patients, which implies that there are
differences between the development of UC and DC (135).
TABLE 1 | Regulation of NLRP3 inflammasome.

Regulation Effect on NLRP3
inflammasome

activation

Stage Subcellular
location

Promote Inhibit Priming
stage

Activation
stage

Cell surface associated mucin 1 depresses phosphorylation of interleukin 1 receptor associated kinase 1
to downregulate activity of NF-kB (43).

√ √ Nucleus

A20 depresses degradation of NF-kB essential modulator by ubiquitination (44). √ √ Nucleus
2,3,7,8-tetrachlorodibenzo-P-dioxin mediate aryl hydrocarbon receptor to enter the cell nucleus and
combine to ARNT, which could bind to xenobiotic response element (45).

√ √ Nucleus

MicroRNA (miRNA) targets on specific region of NLRP3 mRNA to inhibit its expression (46). √ √ Nucleus
Ubiquitylation of NLRP3, a type of post-translational modifications (PTMs) of NLRP3 (18). √ √ √

Proteins bind to PYCARD competitively, such as POPs (PYD-only proteins), COPs (CARD-only proteins),
PYNOD (NLRPIO), and so on (47).

√ √ Cytoplasm

Leucine-rich repeat flightless-interacting protein recruits lightless I (the inhibitor protein of caspase
substrate) (48).

√ √ Cytoplasm

Small heterodimer partner combines to NLRP3 competed with ASC (49). √ √ Mitochondria
Cellular Fas-associated death domain-like IL-1b converting enzyme inhibitory protein interact with NLRP3
and pro-caspase-1 (50).

√ √ Cytoplasm

The functions of mitochondria, such as providing a docking site for NLRP3 inflammasome assembly (51,
52).

√ √ Mitochondria

Lysosomal disruption induced by phagocytosis of particulates (28). √ √ Lysosome
and
cytoplasm

The trans-Golgi network is disassembled into vesicles, which recruit NLRP3 and promote NLRP3
aggregation (53).

√ √ Golgi
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Downstream effects of NLRP3 inflammasome activation
contribute to chronic inflammation, alterations in innate
immune responses and disorders in mucosal immune
response. These effects mainly include the consequent
processes: pro-inflammatory cytokine release, macrophage
hyperactivation with uncontrolled damage, and pyroptosis
(136). In vitro, Monocarboxylate Transporter 4 contributed to
intestinal enterocyte pyroptosis mediated by Caspase-1 through
ERK1/2-NF-kB pathway, which can promote intestinal
inflammation (58). Recent studies show that non-canonical
endogenous irritants such as non-infectious stress conditions
can also affect NLRP3 inflammasome activation. Fasting-
mimicking diet reduced the expression of NLRP3
inflammasome and CD4+ T cells percentage in peripheral
blood and spleen to alleviate intestinal inflammation, which
indicated that calorie restriction might modulate immune
Frontiers in Immunology | www.frontiersin.org 6
response via NLRP3 inflammasome (61). Yun et al. presented
that NLRP3 inflammasome was removed by ubiquitin-mediated
degradation, which was promoted by autophagy under nutrient
deprivation (62). The downstream proinflammatory cytokines
IL-1and IL-17E/25 could be suppressed to strengthen intestinal
barrier function (62). CircRNA HECTD1 (circHECTD1) can
alleviate UC by inhibiting NLRP3 inflammasome. And in Caco-2
cells, circHECTD1 can induce human antigen R (HuR) viamiR-
182-5p, which contributes to NLRP3 inflammasome activation
by autophagy (63). NLRP3 inflammasome may have a double
effect on IBD: some reports showed that IL-1b and IL-18 play a
protective role in gastrointestinal inflammation. Oxazolone can
stimulate maturation of pro-caspase-1 and pro-IL-1b, and colitis
induced by oxazolone can be ameliorated by exogenous IL-1b or
IL-18 (59). Higher sensitivity to oxazolone treatment and
decreased IL-1b or IL-18 production were detected in
TABLE 2 | Studies of the roles of NLRP3 inflammasome in autoimmune diseases.

Effect of NLRP3 inflammasome Regulation of NLRP3 inflammasome activation and relevant pathway in
autoimmune diseases.

Specific mechanism Common mechanism Positive regulation Negative regulation

IBD Disrupted inflammasome
responses result in dysbiosis
and increased colonization of
pathobionts (57).
.

Physiological condition:
sense and respond to foreign milieu
in the extracellular environment, via
pathogen-associated molecular
patterns (PAMPs) and damage-
associated molecular patterns
(DAMPs), mediate host immune
responses to microbial infection and
cellular damage.
Pathological conditions:
1) Histiocytic and organic
inflammation promoted by cytokine
IL-1 and IL-18;
2) Induce adaptive immune
dysfunction via NLRP3
inflammasome activation, inducing
the migration and differentiation of T
cell by cytokines;
3) Pyroptosis modulated by
activated caspase-1 of immunocyte
and specific histocytes.

Transporter 4 (58); Oxazolone
(59); Protein tyrosine
phosphatase non-receptor 22
(60).

Fasting-mimicking diet (61); Nutrient deprivation
(62); CircRNA HECTD1 (63); Naringin (64);
Carboxyamidotriazole (65); Growth differentiation
factor 11 (66); Phloretin (67); Nuclear factor E2-
related factor-2 (68); Cardamonin (69); sDR5-Fc
fusion protein (70); Hydrogen sulfide (71);
Cinnamaldehyde (72); BBG (a P2X7R blocker) and
OLT1177 (73).

Psoriasis IL-1 participates in
pathogenesis partially (74).

CD100/PlxnB2 (75);
Tristetraprolin (TTP)
downregulation (76); Tumor
necrosis factor (TNF)-a (77);
Acute-phase protein serum
amyloid A (78).

Bay11-7082 (79); Datura Metel L (80).;
Cycloastragenol (81); Cas9 RNP nanocomplexes
(82).

RA NLRP3 inflammasome
activation contributes to Th1
differentiation in CD4+ T cells
(83); Induce Th2 differentiation
and antibodies production (84).

TNF-a and calreticulin (85);
Calcium-sensing receptor (86);
Tofacitinib (87).

MCC950 (88); Protectin DX (89); Taraxasterol (90);
Celastrol (91); Punicalagin (92); Hsa_circ_0044235
(93); hUCB-MSCs (94); A20 (44); tristetraprolin
(95).

SSC Downstream factors including
IL-1, IL-18, and miR15 promote
collagen synthesis and fibrosis
(96, 97).

MiR-155 (97); Parvovirus B19
(98).

T1DM IL-1b induces the migration of
proinflammatory cells into
pancreatic islets (99, 100); IL-
1b has direct cytotoxic effects
on beta-cells (99, 100);
Autoreactive T cells infiltrate
pancreatic islets and cause
beta-cell death (101).

LPS+ATP (102); Nitric oxide
(103); Metabolic stress (104);
Mitochondrial DNA (mDNA)
(105).

Verapamil (106); Scutellarin (107); Ginsenoside
Rg1 (108); Low-methoxyl pectin (109); fingolimod
(110).

SLE Autoantibodies induce NLRP3
inflammasome activation (82,
111); accumulation of NETs
contributes to the pathogenesis
(112, 113).

U1-small nuclear
ribonucleoprotein (114);
Glycogen synthase kinase 3b
(115); Cyclic GMP-AMP
synthase (116); Neutrophil
extracellular traps (NETs) (117);
Surface CXCR2 expression
(118); Reactive oxygen species
(119).

Xenon (120); Honokiol (121); Tris
(dibenzylideneacetone) dipalladium (122); Cf-02
(123); Let-7f-5p (124); Magnolol Bay11-7082
(125); Curcumin (126); Melatonin (127); Lcariin
(128); Piperine (129); Citral (130).

AITDs Excessive iodine (131). Yanghe decoction (132).
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NLRP3(−/−) mice compared to wild-type mice, which indicates
that IL-1b and IL-18 derived from NLRP3 inflammasome can
protect against inflammation in gastrointestinal mucosa (59). In
addition, IL-1b contributes to enhanced host defense against
Clostridium difficile and Citrobacter rodentium during acute
affection (137, 138). It induces ASC-dependent CXCL1
production to recruit neutrophils to the intestine, protects
epithelial integrity, and reduces colonization (137, 138). There
are several explanations for the protective effect. Marianne et al.
presented that protein tyrosine phosphatase non-receptor 22
mediates dephosphorylation of NLRP3 inflammasome, resulting
in its activation and release of mature IL-1b in mouse models
(60). Under a physiological condition, this process contributes to
effective host defense against harmful pathogens leading to
gastrointestinal disorder and subsequent reconstitution (60).
Meanwhile , another study had shown that NLRP3
inflammasome could promote neutrophil chemotaxis and
antimicrobial secretions of the colon to sustain intestinal
homeostasis (57). When epithelial barrier was destroyed,
microbiota recruited immune cells to the lamina propria, and
NLRP3 inflammasome activated in these immune cells played
destructive effect (57). Therefore, NLRP3 inflammasome may
have different effects in specific conditions, including
physiological condition, infection by invading pathogenic
bacteria and involving in innate immune disorder.

NLRP3 inflammasome inhibitors have been demonstrated to
be effective in experimental models of IBD. Most inhibitors have
a commonly downregulated effect on NLRP3, caspase-1, and
pro-inflammatory cytokines. So far, therapeutic targets of NF-
kB, Nuclear factor E2-related factor-2 (Nrf2), and ROS have
been widely studied. Naringin, an activating ligand of
peroxisome proliferator-activated receptor g (PPARg), can
significantly decrease disease activity indexes (DAI),
pathological damage of colon, and inflammation severity (64).
Naringin alleviated UC via pressing NLRP3 inflammasome by
activating PPARg and degrading subsequent NF-kB activation
(64 ) . In a mur ine TNBS- induced co l i t i s mode l ,
carboxyamidotriazolez downregulated NF-kB pathway by
reduction of NF-kB p65 expression and phosphorylation of
IkBa (65). Phloretin and Growth differentiation factor 11 play
an anti-inflammatory effect targeting on the same pathway (66,
67). Nrf2 is a negative regulator for NLRP3 inflammasome by
inhibiting priming of NLRP3 inflammasome (68). Cardamonin
is a natural herbal extract of Alpinia katsumadai Hayata. Nrf2
and its target genes NQO1, Trx1, SOD2 and HO-1, especially
NQO1, was elevated by cardamonin, which has the effect to
depress NLRP3 inflammasome activation in a mouse model (69).
And upregulation of Nrf2 has been detected after treatment of
Resveratrol and Hydrogen sulfide (H2S) (70, 71). ROS is
considered as a second messenger in pro-inflammatory
responses. H2S can also reduce ROS production to prevent
inflammation (71). Moreover, therapeutic strategies focused on
miRNA has attracted more attention, Cinnamaldehyde can
decrease MicroRNA-21 and miR-155 levels in colons and
macrophages to ameliorate DSS-induced colitis (72). Recent
studies showed that new mode of administration can also
Frontiers in Immunology | www.frontiersin.org 7
promote the efficacy of NLRP3 inflammasome inhibitors. The
combined administration of BBG (a P2X7R blocker) and
OLT1177 (a selective NLRP3 inhibitor) effectively alleviates
UC by complementary effects (73). The effect of NLRP3
inflammasome inhibitors in IBD has not been comprehensively
understood, which deserves further study.

Psoriasis
Psoriasis is a chronic inflammatory skin disease mediated by
immune responses. In psoriasis biopsy, the expression of NLRP3,
caspase-1, and IL-1b was significantly upregulated compared to
non-lesional psoriatic skin (139). The single nucleotide
polymorphisms (SNPs) studies show that the genetic
mutations in NLRP3 are associated with psoriasis susceptibility
in Chinese Han population (140). And the genetic mutations in
CARD8-C10X (rs2043211) are associated with Psoriatic arthritis
(PsA) in northern Swedish population (141). All these findings
indicate that NLRP3 inflammasome may be involved in the
occurrence and development of psoriasis.

PlxnB2 and its ligand (such as CD100) participate in neuronal
development and immune responses (75). The bound of soluble
CD100 to PlxnB2 can upregulate NF-kB pathway, which induces
NLRP3 inflammasome activation in keratinocytes of psoriasis
patients (75). In fibroblasts deriving from patients with psoriasis,
abnormal inflammasome activity can be induced by
downregulation of tristetraprolin TTP (76). TTP can directly
target the degradation of NLRP3 mRNA; therefore, TTP
downregulation may contribute to pathogenesis of psoriasis via
NLRP3 inflammasome activation (76). Verma et al. found that
TNF-a could activate NLRP3 inflammasome, which is
independent of priming signals, and caspase-1 reactivity,
plasma IL-1b and IL-18 are reduced in psoriasis patients
treated with anti-TNF therapy (77). In mouse model of
psoriasis, NLRP3 inflammasome keratinocytes can be activated
by TNF-a to induce inflammation, which was induced by
inhibiting autophagy via PI3K/AKT/mTOR signaling pathway
(142). Overexpression of lncRNA MEG3 could alleviate
inflammation by promoting autophagy (142). Serum amyloid
A (SAA) serves as an important trigger to promote expression of
IL-1b by activating NF-kB pathway in psoriatic keratinocytes
(78). And IL-1b plays a key role in the skin diseases mediated by
T helper type 17 cells (78). In vitro, miR-155 silencing can
depress NLRP3/caspase-1 signal pathway to alleviate
inflammatory responses (79). In summary, these findings
indicate that CD100/PlxnB2, TTP, TNF, miR-155, and SAA
might be potential therapeutic targets for psoriasis.

Herbal extracts have been demonstrated to be effective
treatment for psoriasis. In psoriasis mouse models induced by
imiquimod, the expression of TLR7, TLR8, p-NF-kB, and
NLRP3 were obviously suppressed by administration of Datura
metel L (80). The production of key inflammatory cytokines
including IL-1b, IL-17, and IL-23 was also inhibited, which
implied that Datura metel L. plays a protective role by
depressing the pathway of TLR7/8-MyD88-NF-kb-NLRP3
(80). Paeonia lactiflora Pallas extract and BAY11-7082 have an
inhibitory effect against immune responses in keratinocytes
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probably by the similar pathway (79, 81). In addition,
cycloastragenol specifically inhibits macrophages infiltration in
dermis and pyroptosis mediated by NLRP3 inflammasome in
mouse models (81). IL-1 inhibition might be another promising
therapeutic strategy. Wan et al. reported a dissolvable
microneedle, which consists of Cas9 RNP nanocomplexes and
dexamethasone nanoparticles (82). The microneedle can be
internalized by keratinocytes and immune cells, and disrupted
NLRP3 inflammasome selectively to alleviate skin inflammations
in a mouse model of psoriasis (82). Of note, new-onset plaque
psoriasis has been shown to be a side effect in the RA patients
treated with anti-IL-1 therapy (74). The role of NLRP3
inflammasome in psoriasis pathogenic mechanism is
complicated, and the researches are comparatively limited,
which deserves further studies.

Rheumatoid Arthritis
Rheumatoid arthritis (RA) is a common chronic autoimmune
disease characterized by persistent synovial inflammation, pannus
formation, destruction of cartilage and small diarthrodial joints,
which is mainly caused by autoantibody secretion and aberrant
immune responses (143). Various NLRP3-releated SNPs have
been shown to be associated with susceptibility of RA. NLRP3
SNPs are associated with susceptibility of RA and anti-TNF
responses in Caucasian population (144). In addition, genetic
mutations of NLRP3 inflammasome may increase the risk of
stroke and TIA in Swedish population, but not of myocardial
infarction and angina pectoris (145).

Several studies have shown the hyperactivity of NLRP3
Inflammasome and downstream factors in RA. The
intracellular levels of NLRP3, active caspase-1, pro-IL-1b, and
active IL-1b in whole blood cells are increased in active RA
patients (146). This increased level can also be detected with the
treatment of TLR4 or TLR3 agonist (146). Guo et al. found that
MCC950, a selective NLRP3 inhibitor, is able to depress NLRP3
inflammasome activation in monocyte and macrophages to
infiltrate into the synovia, resulting in lesser joint inflammation
and bone destruction (88). It indicates that NLRP3
Inflammasome is involved in the pathogenesis of RA. NLRP3
inflammasome activation has not been detected in fibroblast-like
synoviocytes (FLS), which suggests that FLS may not produce IL-
1b mediated by NLRP3 inflammation (147). TLR1-9 have been
demonstrated to play a modulatory role in joint inflammation in
the pathogenesis of RA (148). Downregulation of NOD2 gene
expression can decrease NF-kB and pro-inflammatory cytokines
in FLS of RA patients, which indicates that NOD2 may promote
NLRP3 Inflammasome activation by effecting the priming stage
(149). Both in FLS and human umbilical vein endothelial cells of
RA patients, TNF-a/CRT dual signaling promotes NLRP3
Inflammasome activation via enhancing the effect of caspase-1
(85). TNF-a may serve as an initiator for HuR translocating to
mediate NLRP3 Inflammasome activation (85). The typical
activated models of Ca2+ and P2X7 are also detected to initiate
activation of NLRP3 Inflammasome in RA patients (86).

Zhao et al. demonstrated that NLRP3 Inflammasome
promotes Th17 cell differentiation to enhance the adaptive
immune dysfunction of RA (150). Th17 has been proven to
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have a vital role in the downstream cascade reactions of NLRP3
inflammasome in RA. Jin et al. firstly found that protectin DX
downregulates Th17 cells and pro-inflammatory cytokines and
upregulates Tregs and anti-inflammatory cytokines by inhibiting
NLRP3 inflammasome activation via miR-20a (89). Tofacitinib
effectively ameliorates the severity of RA by restoring Treg/Th17
cell balance via reducing NLRP3 inflammasome activation in
arthritic joints and draining lymph nodes (87). NLRP3
inflammasome can also mediate secretion of Fas-associated
death domain, which is a pivotal adaptor molecule in innate
immunity and inflammation (151). However, the expression of
NLRP3 and pro-caspase-1 was decreased in the peripheral
neutrophils (152). The active caspase-1 expression was
increased, which was positively correlated with serum level of
IL-18, which suggested that IL-18 mediated by active caspase-1
plays a pro-inflammatory role in neutrophils of RA,
independently of NLRP3 inflammasome (152). Thus, different
cell types should be noted in the pathogenesis of RA.

Taraxasterol exerts anti-inflammatory effects by depressing
NLRP3 inflammasome pathway via downregulating the
expression of NF-kB in RA patients (90). Celastrol, a quinone-
methylated triterpenoid extracted from Tripterygium wilfordii,
alleviates RA inflammation by suppressing the ROS/NF-kB/
NLRP3 pathway (91). In collagen-induced arthritis mouse
models, Punicalagin (an active substance extracted from
pomegranate peel) inhibits phenotype polarization and
pyroptosis of M1 macrophages by downregulating NF-kB
signaling (92). Hsa_circ_0044235 has been found to inhibit
NLRP3-mediated pyroptosis in FLSs (93). Other potential
therapeutic strategies focus on negative regulation of NLRP3
inflammasome. Human umbilical cord blood-derived MSCs
suppress the expression of NLRP3 Inflammasome via a
paracrine loop of IL-1b signaling in CIA mouse models and
mononuclear cells from RA patients (94). The deficiency of A20
in macrophages can enhance the effect of NLRP3 inflammasome
by promoting the biological activity of caspase-1, IL-1b secretion,
and pyroptosis in mouse models (44). Activation of NLRP3
Inflammasome and secretion of IL-1b can be inhibited by TTP
expression and activation of TTP in both in vivo and in vitro
models (95). TTP can be activated by dephosphorylation
mediated by protein phosphatase 2A (PP2A), and Arctigenin
(PP2A agonist) reduces monosodium urate (MSU) crystal-
induced inflammation (95). It is indicated that TTP might be a
potential target for inflammation induced by MSU crystals (95).
These studies indicate that treatments aiming to inhibit NLRP3
inflammasome and IL-1b might be potential therapy for RA.

Systemic Sclerosis
Systemic sclerosis (SSc) is an idiopathic autoimmune disease
targeting on connective tissue, characterized by autoimmune
dysfunction, microvascular vessel alterations, and skin fibrosis.
The fibrosis is triggered by inflammatory response, in which
innate immunity serves as a key factor. However, the precise
pathogenesis hasn’t been clarified, and few effective treatments
have been available until now.

In skin of patients with SSc, NLRP3 is upregulated and
correlates positively with skin thickness (153). A resistant
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feature to skin fibrosis can be detected in NLRP3(−/−) mice and
ASC (−/−) mice, which implies that there is a correlativity between
SNPs of NLRP3 and SSc (96). MiR-155 participates in innate
immunity and adaptive immunity (154, 155). MiR-155 is
involved in pulmonary fibrosis, hepatic fibrosis, as well as
wound site fibrosis (156–158), and IL-1b can induce the
expression of miR-155 (159). The expression of miR-155 was
significantly increased in SSc lung fibroblasts, and fibrosis could
be driven by inflammasome-dependent expression of miR-155
(97). Furthermore, there are positive feedbacks between NLRP3
inflammasome and miR-155, which explains sustaining fibrosis
in SSc (97). MiR-155 might be a potential target for SSc,
deserving future study.

Artlett et al. detected that caspase-1 inhibitor decreased
secretion of IL-1b, IL-18, and collagens in dermal and lung
fibroblasts of SSc, and reduced expression of a-smooth muscle
actin in dermal fibroblasts (96). Shinohara presented that host
receptors can identify pathogens to induce autoimmunity, which
implies that infections and autoimmunity are closely connected
(160). B19V infection induces caspase-1 mediated by NLRP3
inflammasome in monocytes of SSc patients (98). The expression
of IL-1b and TNF-a can be induced by stimulus such as
lipopolysaccharides (98). It indicates that viral components can
enhance the sensitivity of NLRP3 inflammasome activation in
monocytes (98). These findings may provide potential
prevention strategy for SSc.

Type 1 Diabetes
Type 1 diabetes (T1D) is an autoimmune disease targeting
insulin-producing pancreatic b-cells specifically mediated by T
lymphocyte (161). Both innate immunity and adaptive immunity
participate in the development of T1D, and NLRP3
inflammasome acts as an important component of innate
immunity to induce insulitis and b-cell death (162, 163).
Polymorphisms of NLRP3 inflammasome-related gene
correlate with T1D. Pontillo et al. found that SNPs in NLRP3
had a correlation specifically with T1D in Brazilian population
(164). In Norwegian population and Chinese Han population,
NLRP1 was associated strongly with T1DM (165). Wu et al.
found that SNPs in NLRP3 correlated specifically with T1D,
especially in Latin American population (166). In Slovenian
population, the association of NLRP3 polymorphisms with
T1D has not been observed (167). It is needed to confirm the
specific gene polymorphisms of NLRP3 in different populations.

The important role of IL-1b in the pathogenesis of T1D has
been determined in previous studies. IL-1b modulates pro-
inflammatory cells to migrate into pancreatic islet, inducing
direct cytotoxicity and b-cell apoptosis, which depends on the
dose of IL-1b in T1D rat models (99, 100). Interestingly, NLRP3
inflammasome played a protective role in early stage of T1D in
IRAK-M (−/−) NOD mice (168). In human islets, NLRP3
inflammasome can be activated, and secretion of IL-1b
increases by the presence of LPS and ATP (102). As an
upstream factor activating IL-1b, NLRP3 inflammasome may
have a potential function in T1D. Resident peritoneal
macrophages promote inflammation by inducing inflammatory
cytokine/chemokine secretion such as IL-1b and upregulating
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the receptor expression of these proinflammatory cytokine/
chemokine (103). Nitric oxide production is mediated by
upregulated NLRP3/iNOS (nitric oxide synthase) pathway,
which contributes to the proinflammatory state of resident
PMs (103).

NLRP3 inflammasome has been shown to initiate and
participate chronic complications of diabetes. Hyperglycemia
can activate NLRP3 inflammasome, promote secretion of
inflammatory cytokines, and trigger cascade of inflammatory
response, finally inducing diabetic nephropathy, diabetic
retinopathy, and so on (104, 169). Mitochondrial DNA
activates NLRP3 inflammasome in endothelial cells via Ca2+

influx and mitochondrial ROS generation, which mediates
endothelial dysfunction and vascular inflammation in diabetes
complications (105). NLRP3 inflammasome activation can be
detected in urothelial cells (170). It induces loss of in nerve
density and Ad-fibers, and leading to insensitivity of bladder
fullness, which is a specific diabetic bladder dysfunction
symptom (170). Verapamil, a calcium channel blocker, can
diminish the release of IL-1b and TNF-a into the vitreous
fluid and decrease retinal ganglion cell loss in diabetic
retinopathy via inhibiting NLRP3 inflammasome mediated by
TLR4 (106). Verapamil can also reduce pancreatic islets
shrinkage and enhanced CD34 expression by interfering
NLRP3 inflammasome assembly (106). In streptozotocin-
induced mice with diabetic cardiomyopathy, the expression of
NLRP3 inflammasome, IL-1b, and IL-18 in cardiac tissues was
induced by nuclear NF-kB translocation, which can be inhibited
by Scutellarin treatment (107). These researches imply that
NLRP3 inhibitors could serve as a potential target for patients
with diabetes.

MCC950, as an inhibitor of NLRP3 inflammasome, has been
demonstrated to be a compelling treatment for diabetes in mouse
models (171). Gao et al. found that Ginsenoside Rg1, a major
active ingredient in ginseng, a traditional herb for diabetes in
China, had a function to weaken NLRP3 activity in the liver and
pancreas (108). In addition, low-methoxyl pectin can mediate
decrease of NLRP3 inflammasome activation. And it can
enhance cecal barrier function and shape intestinal
homeostasis to ameliorate gut-pancreatic immune environment
(109, 172). Low-methoxyl pectin may serve as a promising
prevention drug of T1D. The TLR2/4, NF-kB, and NLRP3
inflammasome pathways are upregulated in intestinal tissues of
NOD mice, which promotes the secretion of downstream
signaling proteins such as IL-1b and IFN-g (110). These
downstream signaling proteins can induce activation and
differentiation of T cells and the migration of these
diabetogenic T cells to the pancreas (110). We propose that
immunotherapy targeting on NLRP3 inflammasome is a
promising approach to treat T1D.

Systemic Lupus Erythematosus
Systemic lupus erythematosus (SLE) is a systemic autoimmune
disease characterized by production of autoantibodies against
nuclear components, deposition of immune complex, and
multiorgan damage resulting from aberrations of immune
response. Gene polymorphisms of NLRP3 were significantly
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associated with susceptibility of SLE in Latin American
individuals (173). However, in Chinese Han population,
association between NLRP3 SNPs and SLE susceptibility has
not been observed (174). It is warranted to study the relationship
of gene polymorphisms of NLRP3 with SLE susceptibility in
different populations. The expression of NLRP3 inflammasome,
AIM2, and caspase-1 was increased in renal tissues, especially
there was a positive relationship between the expression level of
NLRP3 inflammasome and the activity index score in patients
with SLE (175). Furthermore, the expression of NLRP3 mRNA
was upregulated in macrophages, and the expression of AIM2
mRNA was decreased in female SLE patients (176). Meanwhile,
in male SLE patients, the expression of AIM2 mRNA was
increased, and SNP of CARD8 resulted in susceptibility of
patients (176). It implied that there is a gender-dependent
difference in mechanism of inflammasome activation in
SLE patients.

Both innate and adaptive immunity are involved in the
pathogenesis of SLE. Double-strand DNA and immune
complex could activate NLRP3 inflammasome in histiocytes to
promote inflammatory response mediated by IL-1b and IL-18
(49). Nucleic acid components including microbial nucleic acids,
endogenous DNA, and endogenous RNA-containing U1-small
nuclear ribonucleoprotein (U1-snRNP) can activate NLRP3
inflammasome in human monocytes in vitro (114). Shin MS
et al. discovered that immune complexes could activate NLRP3
inflammasome by upregulating NF-kB pathway in animal
models and patients with SLE (111). The caspase-1 activation
and IL-1b production of bone marrow-derived macrophages was
decreased after it was transfected with Glycogen synthase kinase
3b (GSK-3b) siRNA (115). The administration of GSK-3b
inhibitor could alleviate severe proteinuria and nephritis, and
anti-dsDNA antibody production, deposition of immune
complex, and circulating cytokines were depressed (115). Zhao
et al. suggested that GSK-3 promotes renal inflammation by
activating NLRP3 inflammasome and mediating IL-1b release
(115). Caspase-1 was activated especially in CD14-positive and
CD16-positive monocytes from SLE patients, which were
positively correlated with serum titers of anti-double-stranded
DNA antibodies and negatively correlated with serum levels of
complement component 3 and platelet count (116). NLRP3
inflammasome could be activated by cyclic GMP-AMP
synthase stimulator of interferon genes pathway to promote
caspase-1 activation and IL-1b secretion (116). Neutrophil
extracellular traps (NETs) were also found to participate in the
pathogenesis of SLE. NETs are a network consisting of
chromatin fibers and granule-derived antimicrobial peptides
(177). The impaired clearance of NETs and increased release
of NETs are promoted by low-density granulocytes (LDGs),
which contribute to accumulation of NETs in human
monocytes in vitro (112, 113). NETs can activate caspase-1
with releasing of proinflammatory cytokines IL-1b and IL-18,
and promote the formation of immune complex and type I
interferon (117). Interestingly, IL-18 in turn induces perpetual
NETosis in human neutrophils, which results in a feed-forward
inflammatory loop (117). A recent study found that milk fat
Frontiers in Immunology | www.frontiersin.org 10
globule-EGF factor 8 (MFG-E8) could reduce neutrophil
migration, accumulation, phagocytosis, and NETosis via
reducing surface CXCR2 expression in pristane-induced lupus
and patients with SLE (118).

NLRP3 inflammasome plays an important role in the
development of SLE. Podocytes are highly differentiated
epithelial cells and a critical component of glomerular
basement membrane (GBM), which play a core role in
maintaining the function of glomerular filtration (178). In the
later stage of SLE, the expression of NLRP3 inflammasome and
caspase-1 could be detected in podocytes in murine lupus models
(115). The production of ROS promotes NLRP3 inflammasome
activation in the podocytes line (119). Importantly, TLRs (such
as TLR4) is expressed in glomerular podocytes of normal mice,
which implies that podocytes also possess immune function in
physiological condition (179). In addition, IL-18 release
mediated by NLRP3 inflammasome is a potential pathogenic
factor in cutaneous lupus lesions. Type I IFN is reported to be a
main risk factor of cardiovascular disease (180). The feed-
forward inflammatory loop mentioned above can also be
detected in endothelial progenitor cells (181). Xenon can
reduce NF-kB/NLRP3 inflammasome act ivat ion to
ameliorating renal function in mouse models with spontaneous
LN (120). Honokiol and dibenzylideneacetone (Tris)
dipalladium both have potential therapeutic effect against
accelerated and severe type of lupus nephritis by suppressing
NLRP3 inflammasome activation (121, 122). The former
interferes NLRP3 inflammasome via reducing NF-kB
activation, suppressing reactive oxygen production and
mitochondrial damage, and inducing sirtuin 1/autophagy axis
activation (121). And the latter can reduce p38 MAPK signaling
pathways and regulate the autophagy/NLRP3 inflammasome
axis (122). Cf-02 can treat acute onset of severe lupus nephritis
in mice by inhibiting the NF-kB/NLRP3 inflammasome axis and
regulating T cell functions differentially (123).

Interest ingly , NLRP3 inflammasome might have
immunosuppressive effect on SLE (182–184). The expression
of TGF-b target genes was depressed by deficiency of NLRP3 and
ASC in mice models of spontaneous lupus-like autoimmunity
(182). NLRP3 and ASC are demonstrated to downregulate TGF-
b receptor signaling through SMAD2/3 phosphorylation, which
contributes to the immunosuppressive effect (182). There are
more and more new drugs targeting the NLRP3 inflammasome
in the treatment for SLE, and some show to be effective (Table 2).

Autoimmune Thyroid Diseases
Autoimmune thyroid diseases (AITDs) are a series of thyroid
diseases characterized by thyroid tissue damage and
autoimmune disorders, including mainly Hashimoto’s
thyroiditis (HT) and Graves’ disease (GD).

Guo et al. proposed firstly that multiple inflammasomes
including NLRP3, NLRP1, NLRC4, and AIM2 participated in
the development of AITDs (185). Excessive iodine promoted
pyroptosis activity in thyroid follicular cells via the ROS-NF-kB-
NLRP3 pathway which might be involved in the development of
HT (186). However, Nagayama, Y., raised questions that Nthy-
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ori 3-1 cells aren’t capable of iodine uptake and the
concentration of iodine (131). The role of NLRP3
inflammasome in Graves’ disease (GD) has not been reported
so far.

It is reported that Yanghe decoction (a traditional Chinese
herbal formulation) can alleviate autoimmune thyroiditis in rat
models via downregulating NLRP3 inflammasome and adjusting
the imbalance Th17/Treg (132). There are very few studies
concerning the effect of NLRP3 inflammasome in the
pathogenesis of AITDs, deserving further study.
THE POSSIBLE PATHOGENESIS OF
NLRP3 INFLAMMASOME IN
AUTOIMMUNE DISEASES

NLRP3 inflammasome exists in various immune cells, including
macrophages, granulocytes, antigen-presenting cells, B cells, and
T cells. It has been found in tissues and cells such as platelet,
podocyte, and keratinizing squamous epithelium of skin (187).
As a vital component of innate immune system, NLRP3
inflammasome recognizes DAMPs and PAMPs, and initiates
innate inflammatory responses via promoting proinflammatory
cytokines secretion, which may also trigger adaptive immunity
dysfunction (161). Besides its elementary physiological functions
in immune responses, NLRP3 inflammasome also participates in
pathogenesis process such as multiple autoimmune diseases. The
common character of autoimmune diseases is histocyte and
organ damage resulting from autoantibody overproduction,
which leads to loss of immunological tolerance and aberrant
autoreactive immune responses. The accurate role of NLRP3
inflammasome in autoimmune disease pathogenesis is complex
and has not yet been completely illuminated.

Collectively, the effect of NLRP3 inflammasome in
autoimmune diseases involves the following two aspects
(Table 2 and Figure 2): due to caspase-1 being the effector of
inflammasome structure, IL-1b, IL-18, and pyroptosis
modulated by activated caspase-1 play a major role in
autoimmune diseases. Firstly, inflammation promoted by
cytokines, especially IL-1, participates in the onset and
development of most autoimmune diseases, such as RA and
IBD (88, 188). Secondly, there is an emerging appreciation that
NLRP3 inflammasome participates in adaptive immunity.
Logically, NLRP3 inflammasome is involved in autoimmune
diseases with adaptive immune dysfunction. For instance, IL-1
is a co-stimulatory factor and lymphocyte activating factor,
which can provide signals of pro-survival and proliferation for
T cells. It promotes autoreactive T cells to cause b-cell death
(101). IL-1b induces migration of T cells into pancreatic islets by
regulating chemotaxis (189). In RA, NLRP3 inflammasome of
CD4+ T cells promote Th1 differentiation, which is induced by
IL-1b in a caspase-1-dependent manner (83). In other
autoimmune diseases, NLRP3 inflammasome can also induce
differentiation and polarization of Th2, Th17, and dendritic cells
(84). Thirdly, pyroptosis mediated by activated caspase-1
promotes development of autoimmune diseases. In IBD,
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NLRP3 inflammasome triggers pyroptosis in a caspace-1-
dependent manner to cause death of histocytes such as
macrophages and dendritic cells (190). The release of cellular
debris reacts with immune cells, resulting in an enhanced circle
of inflammation (190). Generally, IL-1b, IL-18, and pyroptosis
play a function by inflammation, activating adaptive immunity
and immunological regulation. Interestingly, the pathogenesis of
IBD and psoriasis is mainly inflammation, and the pathogenesis
of T1DM, SLE, and AITDs mainly involves adaptive immune
response. Meanwhile, the pathogenesis of RA and SSC involves
both above factors. So distinguishing emphasis of different
autoimmune disease pathogenesis, which might involve a
spectrum from auto-inflammatory to adaptive immune
response, may contribute to understand the specific and
accurate role of NLRP3 inflammasome.

On the other hand, besides effect of NLRP3 inflammasome
pathway, NLRP3 inflammasome can promote autoimmune
diseases in some other manners . In SSC, NLRP3
inflammasome activation upregulates miR-155, which
participates in collagen synthesis of keratinocytes (156, 157). In
summary, NLRP3 inflammasome participates in the initiation of
autoimmune diseases, which serves as a checkpoint in innate
immunity and adaptive immune dysfunction (Figure 1).
Compared with clinical application focusing on downstream
adaptive immune response, chemical inhibitor targeting on
NLRP3 inflammasome pathway might be a more potential
therapeutic strategy.

NLRP3 inflammasome is significantly increased in
autoimmune diseases such as T1D, IBD, SLE, RA, SSC,
psoriasis, and AITDs. However, the protective role and
decrease of NLRP3 inflammasome have also been detected in
T1D, IBD, SLE, and psoriasis. The controversial results may be
explained by hypothesis as follows: (a) In different stages of the
disease, NLRP3 inflammasome may conduct completely inverse
function. For example, an experiment conducted with IRAK-
M(−/−) NOD mice, which is characterized by early onset and
rapid progression of T1D, shows that NLRP3 inflammasome is a
protective factor in the initial stage of T1D (168). (b) Despite the
effect of NLRP3 inflammasome signaling pathway, NLRP3
inflammasome may also affect other bioactive substances and
signaling pathways, by which it plays an opposite role. In SLE,
NLRP3 inflammasome modulates TGF-b and IFN-I to conduct
immunosuppressive effect (182, 191). (c) In some special
pathways, NLRP3 inflammasome plays a protective role.
Gastrointestinal tract is characterized by communication with
external environment indirectly and existence of intestinal
microflora. NLRP3 inflammasome strengthens anti-
inflammatory effect to maintain intestine homeostasis but
promotes modulation of T cell in a physiological condition.
Therefore, deficiency and overt activation of NLRP3
inflammasome can both promote the development of IBD. In
summary, future researches to identify specific mechanism of
NLRP3 inflammasome in different histiocytes, disease stages and
conditions are warranted.

There are several common pathways in different autoimmune
diseases, such as autophagy, mitochondrial DNA, TLR4, Nrf2
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pathway, Bay11-7082, P2X7 receptor, microRNA, and so on
(Table 2). Moreover, there are specific and subtle differences
between these similarly pathogenic mechanisms. For instance,
the main function of miR-155 is to promote inflammation in
keratinocyte of psoriasis and in macrophage of IBD; however, it
drives fibrosis in fibroblasts of SSC. All these contrasts and
connect in various mechanism indicate the complexity of
NLRP3 inflammasome in the pathogenesis of autoimmune
diseases. So, further studies are needed to focus on the
comparison of mechanisms in different active sites, such as
intestine and pancreatic b cell. In addition, previous studies
have shown that NLRP3 inflammasome plays a protective role in
physiological condition, and both the upregulation and
downregulation of NLRP3 inflammasome pathway stimulated
by specific factor will initiate pathogenic progress. As the
mechanism of NLRP3 inflammasome assembly and
downstream cytokines effect are more studied, the initiating
mechanism of regulation dysfunction is of great importance in
future researches. Just as avoidance of al lergen to
hypersensitivity, therapy focusing on initiating mechanism of
regulation dysfunction will be a simple but effective therapeutic
application. The inhibition of NLRP3 inflammasome pathway,
such as Ginsenoside Rg1, low methoxyl pectin, and Bay11-7082,
may be a potential therapeutic strategy for autoimmune diseases
(Table 2). The inhibition involves three levels: structural proteins
of NLRP3 inflammasome, cytokines, and the signaling pathway.
However, the effect of some inhibitions is limited and scant.
Some inhibitions cause serious side effects, and some inhibitions
even show paradoxical pro-inflammatory effect. Newly plaque
psoriasis could be detected in RA patients with anti-IL-1
treatment (74). It indicates that the role of NLRP3
inflammasome inhibition is complicated and associates with
multiple mechanisms. Consequently, further researches are
needed to focus on the following points: inhibitions that target
on junction point of pathway may show precise efficacy; in
addition, focusing on upstream mechanism and finding
inhibition that blocks the switch of the whole pathogenic
Frontiers in Immunology | www.frontiersin.org 12
prog re s s may br ing break th rough to the rapy o f
autoimmune diseases.
CONCLUSION

In conclusion, as a platform sensing dangerous stimuli from
endogenous or exogenous environment, NLRP3 inflammasome
participates in both innate and adaptive immunity via
modulating secretion of cytokines and pyroptosis. Increasing
experiments show that NLRP3 inflammasome may play different
pathogenic roles in autoimmune diseases, which provides a
promising therapeutic option for autoimmune diseases.
Therefore, delineating a comprehensive molecular mechanism
of the complex role of NLRP3 inflammasome in autoimmune
diseases deserves further study.
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20. Pétrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of
the NALP3 Inflammasome Is Triggered by Low Intracellular Potassium
Concentration. Cell Death Differ (2007) 14:1583–9. doi: 10.1038/
sj.cdd.4402195

21. Franchi L, Kanneganti TD, Dubyak GR, Núñez G. Differential Requirement
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