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Postmortem interval (PMI) estimation has always been a major challenge 

in forensic science. Conventional methods for predicting PMI are based on 

postmortem phenomena, metabolite or biochemical changes, and insect 

succession. Because postmortem microbial succession follows a certain 

temporal regularity, the microbiome has been shown to be  a potentially 

effective tool for PMI estimation in the last decade. Recently, artificial 

intelligence (AI) technologies shed new lights on forensic medicine through 

analyzing big data, establishing prediction models, assisting in decision-

making, etc. With the application of next-generation sequencing (NGS) and 

AI techniques, it is possible for forensic practitioners to improve the dataset 

of microbial communities and obtain detailed information on the inventory 

of specific ecosystems, quantifications of community diversity, descriptions 

of their ecological function, and even their application in legal medicine. This 

review describes the postmortem succession of the microbiome in cadavers 

and their surroundings, and summarizes the application, advantages, problems, 

and future strategies of AI-based microbiome analysis for PMI estimation.
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Introduction

Postmortem interval (PMI) is the time between the discovery and examination of the 
body and the occurrence of death. Relatively accurate estimation of PMI has always been an 
important issue in the field of forensic medicine. PMI estimation based on postmortem 
phenomena is still the common and feasible way in forensic practice. Owing to the inference 
of PMI being highly susceptible to the individual’s physical condition, cause of death, and 
environmental conditions, the predicted accuracy of PMI cannot meet the requirements of 
the actual work. Microbial communities are involved in the decomposition of deceased 
bodies and present a certain regular succession on the host, making it possible to predict 
PMI based on the microbial communities (Diez Lopez et al., 2022). In the last decade, 
postmortem microbiome has been applied to predict PMI, and technologies for 
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microorganisms cover the shortfall of traditional morphological 
methods. Traditional methods using microbial cultivation of 
target-specific strains are highly dependent on culture conditions 
and have limitations for the analysis of the component and 
function of microbial communities (Cecchini et al., 2012; Zhou 
and Bian, 2018). Next-generation sequencing (NGS) has brought 
revolutionary progress to the study of microorganisms in forensic 
medicine. NGS can quickly and accurately analyze the entire 
microbial community, including many species that cannot 
be cultured in the laboratory (Kuiper, 2016). Meanwhile, the use of 
NGS brings a huge amount of microbial data, which requires an 
efficient data analysis method to process. Recently, artificial 
intelligence (AI) technologies shed new lights on forensic medicine 
through analyzing big data, establishing prediction models, 
assisting in decision-making, etc. (Geradts, 2018). Importantly, the 
development of AI techniques has facilitated forensic practitioners 
to improve understanding of microbial communities through 
analysis of the postmortem changes of microorganisms in different 
organs/tissues at various taxonomic levels (Speruda et al., 2021).

This review summarizes the succession patterns of 
postmortem microbial communities both on cadavers and their 
surrounding environment, and analyzes the advances of AI 
techniques on PMI estimation and their potential application on 
PMI prediction in the future.

Postmortem microbial succession 
in cadavers

Microorganisms predominantly colonize five parts of 
cadavers: the gastrointestinal tract, the oral cavity, skin, the 
respiratory tract, and the genitourinary tract. Due to the 
convenience of sampling from living individuals, most studies 
have focused on the gastrointestinal tract, the oral cavity, and skin 
(Dash and Das, 2022). In recent years, numerous studies have 
been conducted on the succession pattern of microbial 
communities and PMI prediction based on different organs in 
both human remains and animal models. There are dramatic 
postmortem changes of microbial community succession in 
different organs (Pechal et al., 2014; DeBruyn and Hauther, 2017; 
Dash and Das, 2022) The diversity of most microorganisms shows 
similar decreasing trends with PMI, presenting a significant 
negative linear correlation (Pechal et  al., 2014; DeBruyn and 
Hauther, 2017; Li et al., 2020). At the phylum level, Proteobacteria 
and Firmicutes dominate the microbial communities in different 
postmortem organs in both terrestrial and water environments, 
making them potential markers for PMI or postmortem 
submersion interval (PMSI) prediction (Benbow et al., 2015; He 
et al., 2019; Javan et al., 2019; Yuan et al., 2020; Dash and Das, 
2022). The detailed taxonomy on families or genus levels of 
Proteobacteria and Firmicutes would undoubtedly enhance 
understanding of postmortem microbial community succession 
in different samples. For instance, in terrestrial conditions, 
Tuomisto et al. (2013) found that the pericardial fluid and liver 

remain sterile within 5 days postmortem, while the highest 
abundances of Bifidobacteria, Bacteroides, Enterobacter, and 
Clostridia are detected in the liver, mesenteric lymph node, 
pericardial fluid of cadavers within 7 days, providing a short-term 
PMI fetch reference. Some studies revealed changes of dominant 
microorganisms in different human organs and blood specimens 
after death. Bacillus and Lactobacillus predominated in the short-
term after death followed by an exponential decrease with the 
extension of PMI, while parthenogenic anaerobic bacteria, such 
as Clostridium, were predominant in the late phase of PMI (Can 
et al., 2014; Hauther et al., 2015; Javan et al., 2016; DeBruyn and 
Hauther, 2017). This accounted for the phenomenon of 
Postmortem Clostridium Effect (PCE) at decomposition stage 
(Javan et al., 2017). In addition, the alterations in several species 
of Clostridium may provide more information on different stages 
of PMI, for example, C. novyi was relatively more abundant in late 
PMI; however, an unknown member of the genus Clostridium was 
found to be more abundant in early PMI (Javan et al., 2016). In 
consistent with the data in terrestrial conditions, some studies 
demonstrated that Enterococcus and Clostridium were 
predominated on the skin and bones of water-dead pigs in the late 
stage of PMI (Benbow et al., 2015; Cartozzo et al., 2021). Our 
recent studies also showed that Clostridium in the lung and cecum 
were associated with PMSI in the fresh water environment (Wang 
et al., 2020; Zhang et al., 2022).

Numerous studies revealed the influence of different factors 
on PMI estimation, such as sample type (Javan et al., 2019; Lutz 
et al., 2020) and environmental factors (Iancu et al., 2018; Diez 
Lopez et  al., 2022). Furthermore, the effects of gender on the 
analysis of microbial communities cannot be  ignored, with 
evidence that the genera Rothia and Streptococcus were only 
present in the visceral organs of men, while an abundance of the 
genera Clostridium and Pseudomonas were found in a higher 
proportion of heart tissues from women compared with those 
from men (Javan et  al., 2016; Bell et  al., 2018). The study of 
sex-specific microbial communities could help to improve the 
precise of PMI estimation. Considering so many factors that affect 
postmortem microbial community succession and PMI 
estimation, exploration of an effective detection method and 
sufficient microbial datasets should be undertaken in future work.

Postmortem microorganisms 
changes in the surrounding 
environment

Microbial communities of cadavers interact with the 
surrounding environment. Although microbial community 
succession in carcasses placed on different soil types tends to 
be consistent postmortem (Metcalf et al., 2016), the microbial 
community in the environment does affect the process of 
decomposition. For example, mice that interact with normal soil 
decompose faster than the cadavers placed on sterile soil (Lauber 
et al., 2014). In addition, decomposed cadavers release various 
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adipose tissues, volatile fatty acids, organic acids, organic nitrogen, 
and bacterial flora—such as obligately anaerobic Bacteroides—into 
the soil (Vass et  al., 1992). This is followed by changes in the 
microbial community in the soil after death, which make it 
possible to predict PMI based on soil microbes (Cobaugh 
et al., 2015).

Terrestrial soil microbes related to forensic research can 
be broadly divided into surface soil and buried soil (Carter et al., 
2007). Surface soil microbial communities exhibit decreased 
trends in abundance, diversity, and evenness during 
decomposition, with a sharp increase in the abundance of 
Firmicutes and Proteobacteria and a decrease in the abundance of 
Acidobacteria in soils around cadavers (Cobaugh et  al., 2015; 
Adserias-Garriga et al., 2017a,b; Procopio et al., 2019). In contrast, 
a study found that buried soil microbial communities showed the 
trends of increasing abundance, decreasing evenness, and 
consistent diversity, and the microbial composition remained 
unchanged throughout the decomposition process, with 
Proteobacteria being the most abundant phylum (Finley et al., 
2016). According to the microbial community succession of soils 
surrounding cadavers, Procopio et  al. (2019) revealed that 
Bacteroides spp., specific mammal-derived taxa, could be detected 
in the buried soil 6 months after PMI. However, soil microbial 
communities are easily influenced by environmental factors 
(Chernov and Zhelezova, 2020), such as temperature, moisture, 
vegetation cover, and insect activity. Habtom et al. (2019) analyzed 
different soils in five different rainfall zones and found significant 
differences in bacterial population structure among soil types in 
the same geographic location. Yang et  al. (2021) studied the 
variation of microbial community composition in 529 soil samples 
from 61 urban districts of 10 cities in China at a large spatial scale 
and showed that the similarity of urban soil bacterial communities 
decreased significantly with increasing geographical distance. 
Although the population structure of soil bacteria within the same 
city was relatively similar, the identification accuracy of random 
soil samples was 90.0% at the city level and 66.7% at the district 
level within the city. However, the use of distinguished soil 
microorganisms in forensic science needs to be  confirmed in 
further studies. Owing to the inherent microbial communities in 
different soils, it is difficult to compare the microbial databases 
from numerous studies using different soils for PMI prediction. 
Hence, predicting PMI according to the soil microbial community 
succession alone is inadequate; a better option would be  to 
combine the soil microbial community with that in cadavers and 
consider the influence of entomology and ecology.

Application of artificial intelligence 
for PMI prediction based on 
microbial data

Improvements in sequencing technology, especially NGS 
technology, provide sufficient genomic information for analyzing 
entire microbial communities (Kuiper, 2016). However, owing to 

the massive amount of data generated and statistical validity, an 
effective analysis method aligned to digging deeper is needed. AI 
has the advantages of effective assessment models by 
comprehensively examining and mining multidimensional big 
data, evaluating weights, and identifying patterns of data changes 
to establish an effective “time fingerprint” mathematical model 
(Zou et  al., 2020). Hereafter, the presented studies on PMI 
prediction using NGS technology are predominantly based on AI.

Postmortem microbiome analysis for PMI estimation has 
been improved to a relatively accurate stage using AI. At present, 
Machine Learning (ML) is the main AI technology used in 
forensic studies, ML is one type of artificial intelligence that 
develops algorithms to enable computers to learn from existing 
data without explicit programming (Zaharchuk et al., 2018). Such 
ML methods include k-nearest neighbor (KNN), Partial Least 
Squares (PLS), random forest (RF), support vector machine 
(SVM), and artificial neural network (ANN; Table 1). For instance, 
Johnson et al. (2016) and colleagues constructed a KNN model 
(k = 4) for PMI estimation using microbial communities from skin 
in the nasal cavity and ear canal, which developed an error of only 
55 accumulated degree hours (ADD) over a time period of 800 
ADD. Cao et  al. (2021) used segmented cecum microbial 
community data from rats to construct PLS models and found 
that the PLS model was effective in the first 9 days after death. RF 
is the most common ML algorithm in microbial community 
studies for PMI prediction and has the advantages of strong 
learning ability, robustness, and feasibility of the hypothesis space 
(Ao et al., 2019). In the terrestrial environment, Metcalf et al. 
(2013) established a RF regression model for the first time based 
on the microbial community in mouse cadaver skin and 
abdominal cavity samples, and this model predicted PMI with a 
mean absolute error (MAE) of 3.30 ± 2.52 days within the first 
34 days and further provided the concept of “microbial clock.” 
Subsequently, RF regression models were constructed using 
microbial communities from dead pig skin and oral swabs for PMI 
predictions, and the accuracy was up to 94.4% within 5 days 
postmortem (Pechal et al., 2014). Zhang et al. (2021) compared 
the separate RF regression models using microbial communities 
from different organs and buried soils and found that the lowest 
MAE value was for buried soils within 60 days after death. Zhao 
et  al. (2022) and colleagues used rat oral microorganisms to 
construct a RF model, and the R2 of the model within 59 days was 
93.94%. In the aquatic environment, our recent studies provide 
evidence that RF regression models were effective for predicting 
PMSI based on the microbiota succession of the mouse cecum, 
with a MAE of 0.818 days within the 14 days postmortem (Zhang 
et al., 2022). For long-term aquatic environmental decomposition 
(>1 year), different researchers constructed RF regression models 
to predict PMSI using microbial communities of porcine ribs and 
scapula. The model using rib microbiota performed best within 
353 days, with a root mean square error (RMSE) of ±27 days, while 
the model using scapula microbiota performed best within 
579 days with a RMSE of ±63 days (Cartozzo et al., 2021; Randall 
et al., 2021). Kaszubinski et al. (2022) constructed a RF regression 
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model using microbial communities from pig bone within 
547 days, and the model exhibited high accuracy, explaining more 
than 80% of the variation in PMSI. Recently, Liu et al. (2020, 2021) 
compared the performance of RF, SVM, and ANN models using 
microbial communities in cecum and concluded that the ANN 
model performed best, with a MAE of 1.5 ± 0.8 h within 24 h and 
14.5 ± 4.4 h within 15 days after death for PMI prediction. These 
findings suggested the combination of multiple AI methods might 
improve the accuracy of PMI estimation.

Although many exciting results have been achieved to date to 
prove that microbial communities combined with AI are potentially 
effective tools for predicting PMI, there are still many problems with 
using AI analysis of microbiological data to study PMI (Figure 1). 
First, there is lack of unified standardization in experimental models, 
collected samples, and data analysis, which means the predicted 
results of PMI are not credible for the courtroom (Diez Lopez et al., 
2022). Many complex environmental and artificial factors can 
potentially affect the succession of microorganisms. Second, NGS 
has the limitation of short reads and low accuracy of species 
identification (Yakun et al., 2019); consequently, most studies have 
predominantly targeted amplification of the V3 and V4 regions of 
the 16S rRNA gene, and these fragments only provide an 
approximate picture of the bacterial phyla (Verma et  al., 2018). 
Accurate detailed taxonomy annotation of microorganisms requires 
full-length amplification of DNA. In addition, more advanced 
methods to disclose all microbial community species are needed. A 
recent study started to use third-generation sequencing technology 
for microbial research (Wang et al., 2021). Third, the main microbial 

datasets (Silva, Greengenes) for forensic PMI studies were mainly 
established based on clinical or environmental studies (Quast et al., 
2013; Balvočiūtė and Huson, 2017). These datasets contain different 
numbers and types of microbial species, which could result in 
differences in annotation even when using the same sequencing data. 
Finally, the black box and uncertainty are central challenges in 
designing AI tools (Saffiotti, 1987). Although AI techniques are 
widely used for PMI estimation, the different predicted models for 
PMI present difference in estimated effectiveness, especially using 
detailed taxonomic levels, such as species and genera. Consequently, 
it is necessary to explore a well-recognized AI method for its 
application in forensic medicine (Metcalf, 2019).

Future outlook

The widespread use of AI provides new insights into 
forensic PMI estimation. However, current advances in AI 
techniques using the microbiome for PMI prediction highlight 
three key points to improve the accuracy of PMI studies in 
the future.

 1. The establishment and development of microbiome 
biobanks for forensic purposes are necessary. Considering 
the complex influences of models, samples, locations, 
environmental factors, and postmortem intervals, forensic 
researchers should collaborate to pool raw data and 
construct a microbiome biobank for forensic purposes.

TABLE 1 Application of AI on microbiome for predicting PMI.

Animal model Experimental 
environment

PMI/PMSI AI model Model performance Sampling 
location

References

Human Temperate forest 800ADD KNN MAE ±55ADD Nasal cavity, Ear canal Johnson et al. (2016)

Rat Artificial climate chamber 30d PLS RMSE within 9d: 1.96d Cecum Cao et al. (2021)

RMSE 12d later: 5.37d

RMSE within 30d: 6.57d

Mice Laboratory 48d RF MAE 3.30+/−2.52d Skin Metcalf et al. (2013)

Pig Temperate forest 5d RF 94.4% accuracy rate Skin, Oral cavity Pechal et al. (2014)

Rat Gravesoil 60d RF MAE 1.82d Gravesoil Zhang et al. (2021)

MAE 2.06d Rectum

MAE 2.13d Skin

Rat Sterile anti-scavenging cages 59d RF R2 93.94% Oral cavity Zhao et al. (2022)

Porcine bones Natural fresh river 353d RF RMSE±27d Rib Cartozzo et al. (2021)

RMSE±29d Scapulae

Porcine bones Freshwater lake 579d RF RMSE±104d Rib Randall et al. (2021)

RMSE±63d Scapulae

Sus scrofa Freshwater pond 547d RF >80% variation explained Bone Kaszubinski et al. 

(2022)

Mice Artificial climate chamber 15d RF MAE 20.01 h Cecum Liu et al. (2021)

ANN MAE Within 24 h: 

1.5 ± 0.8 h， Within 15d: 

14.5 ± 4.4 h

Liu et al. (2020)
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 2. Deep learning (DL) may shed new light on accurate predicted 
models for PMI. DL are considered one of the cutting-edge 
areas of development and study in almost all scientific and 
technological fields and has allowed for resolving many 
challenges faced by standard ML algorithms. The basis of DL 
is often implicated in neural network systems, where they are 
used to create systems that have the capability to complete 
complex data recognition, interpretation, and generation 
(Rahaman et al., 2020). AI techniques for analyzing microbiota 
data are still in their infancy because the amount of data used 
in most studies is still too low to meet the demands of 
DL. Deep learning—which allows neural networks to learn 
how to capture features by themselves (Cheng et al., 2018)—
will enhance the accuracy of AI models for PMI prediction.

 3. AI technologies for multi-omics provide a future direction 
for PMI estimation. Although microbiome analysis with AI 
has been shown to be  effective for predicting PMI, 
integrated omics—including microbiomes, metabonomics, 

transcriptomics, and proteomics—will further improve the 
accuracy of PMI inference with the development of 
AI techniques.
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