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Abstract: Reactive oxygen species (ROS) are generated from diverse cellular processes or external
sources such as chemicals, pollutants, or ultraviolet (UV) irradiation. Accumulation of radicals causes
cell damage that can result in degenerative diseases. Antioxidants remove radicals by eliminating
unpaired electrons from other molecules. In skin health, antioxidants are essential to protect cells from
the environment and prevent skin aging. (−)-Epigallocatechin-3-(3”-O-methyl) gallate (3”Me-EGCG)
has been found in limited oolong teas or green teas with distinctive methylated form, but its
precise activities have not been fully elucidated. In this study, we examined the antioxidant roles
of 3”Me-EGCG in keratinocytes (HaCaT cells). 3”Me-EGCG showed scavenging effects in cell and
cell-free systems. Under H2O2 exposure, 3”Me-EGCG recovered cell viability and increased the
expression of heme oxygenase 1 (HO-1). Under ultraviolet B (UVB) and sodium nitroprusside
(SNP) exposure, 3”Me-EGCG protected keratinocytes and regulated the survival protein AKT1.
By regulating the AKT1/NF-κB pathway, 3”Me-EGCG augmented cell survival and proliferation in
HaCaT cells. These results indicate that 3”Me-EGCG exhibits antioxidant properties, resulting in
cytoprotection against various external stimuli. In conclusion, our findings suggest that 3”Me-EGCG
can be used as an ingredient of cosmetic products or health supplements.

Keywords: (−)-Epigallocatechin-3-(3”-O-methyl) gallate (3”Me-EGCG); antioxidant; cytoprotection;
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1. Introduction

Free radicals are produced from various cellular processes and external sources including pollution,
smoking, and ultraviolet (UV) radiation [1,2]. In cell metabolism, removal of oxygen molecules (reactive
oxygen species, ROS) from respiration, lipid metabolism, or aerobic metabolism is not complete [3,4].
ROS has been described as a double-edged sword: low or moderate concentrations of ROS are helpful
to the body by regulating cellular responses and immune functions, but large amounts of ROS cause
oxidative stress, which can result in aging or chronic and degenerative disorders such as cancer and
inflammatory diseases [3–5]. For these reasons, removal of excess ROS and maintenance of moderate
concentrations of ROS are essential for human health.

Ultraviolet B (UVB) can damage skin cells and triggers generation of ROS [6]. Radicals induce
oxidative stress and can cause cell death [7–9]. H2O2 (a non-radical) is generated by several oxidase
enzymes such as superoxide dismutase (SOD) and xanthine oxidase, and can also induce oxidative
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stress [10–12]. Free radicals are able to be removed by direct scavenging, which results in protection
from radical-mediated damage [13]. Antioxidants derived from natural products and external supply
(from foods) eliminated radicals by reactive chain-breakdown or neutralization [3]. One representative
natural source is green tea (Camellia sinensis, Theaceae), which contains many flavonoids, especially
catechins and quercetin, and phenolic compounds including gallic acid (GC) and (−)-epigallocatechin
gallate (EGCG) [8,14]. The radical scavenging effects of EGCG have been widely studied in various
fields [14,15]. (−)-Epigallocatechin-3-(3”-O-methyl) gallate (3”Me-EGCG) is a unique O-methylated
form of EGCG and exists in oolong teas or green teas [16,17]. 3”Me-EGCG is also reported to be
abundant in Amorepacific varieties of green tea Jangwon No.3 (Figure 1) [18], but its biological
roles are not fully elucidated. We investigated the antioxidant effect of 3”Me-EGGG in various
radical-induced conditions and cell-free systems. We determined the antioxidant roles of 3”Me-EGCG
in keratinocytes under various stimuli (H2O2, UVB, and chemicals). Moreover, the antioxidant
mechanism of 3”Me-EGCG was elucidated.
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Figure 1. Structure of (−)-epigallocatechin-3-(3”-O-methyl) gallate (3”Me-EGCG).

2. Results

2.1. 3”Me-EGCG Is a Potent Antioxidant

A previous study examined the antioxidant effects of tea leaf extract of a 3”Me-EGCG-rich tea
cultivar by 1-diphenyl-2-picryl-hydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic
acid) diammonium salt (ABTS) assay and found that the extract showed higher antioxidant activities
compared with other tea cultivars [9]. We thus examined the antioxidant effects of 3”Me-EGCG.
We found that 3”Me-EGCG cleared DPPH-derived radicals in a dose-dependent manner, with an IC50

value of 36.54 µM (Figure 2a). ABTS assay results showed that 3”Me-EGCG dramatically scavenged
radicals (Figure 2b), and the IC50 value was 2.59 µM.

Next, it was examined whether 3”Me-EGCG could regulate intracellular ROS production in
RAW264.7 cells. We found that 3”Me-EGCG was not cytotoxic to RAW264.7 cells at 0–12.5 µM
(Figure 2d). RAW264.7 cells were co-treated with 3”Me-EGCG and the ROS inducer sodium
nitroprusside (SNP), and production of intracellular ROS was reduced (Figure 2c). Considering
with results observed in DPPH and ABTS assays (Figure 2a,b), these results indicate that 3”Me-EGCG
acts as an antioxidant that scavenges chemical-derived or intracellular ROS.
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Figure 2. Antioxidant effects of 3”Me-EGCG. (a) 1-Diphenyl-2-picryl-hydrazyl (DPPH)
(250 mM) was reacted with 3”Me-EGCG (0–12.5 µM) at 37 ◦C for 30 min. Absorbance at
417 nm was measured by spectrophotometry. Ascorbic acid was used as a positive control.
(b) 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) solution was
mixed with 3”Me-EGCG (0–12.5 µM) at 37 ◦C for 30 min. ABTS scavenging was evaluated
by measuring the absorbance at 730 nm. Ascorbic acid was a positive control. (c) RAW264.7
cells were exposed to DHR123 for 10 min, and 3”Me-EGCG was added. After 30 min, sodium
nitroprusside (SNP) was treated to induce intracellular reactive oxygen species (ROS), which was
measured by flow cytometry. (d) The cytotoxicity of 3”Me-EGCG in RAW264.7 cells was tested
by (3-4-5-Dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT) assay. AA: ascorbic acid.
** p < 0.01 compared to normal (untreated) or positive (induced) group.

2.2. 3”Me-EGCG Increased Heme Oxygenase 1 (HO-1) Expression under H2O2 Treatment

The cytoprotective effect of 3”Me-EGCG against oxidative stress conditions using H2O2 was
investigated [19]. HaCaT cells were treated with 250 µM H2O2 in the absence or presence of
3”Me-EGCG, and cell viability was examined. The results showed that the cell death rate was
decreased by 3”Me-EGCG (Figure 3a). The gene expression level of heme oxygenase 1 (HO-1) was
quantified by semi-quantitative PCR under H2O2 conditions. The results showed that 3”Me-EGCG
augmented H2O2-derived HO-1 gene expression for cytoprotection during H2O2 exposure (Figure 3b).
These results show that 3”Me-EGCG could play a cytoprotective role against H2O2.
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Figure 3. Antioxidant effects of 3”Me-EGCG against H2O2. (a) HaCaT cells were pre-treated with
3”Me-EGCG for 24 h, followed by H2O2. The cell viability of HaCaT cells was determined by MTT assay.
(b) Total mRNA was prepared from 3”Me-EGCG and H2O2-treated HaCaT cells. Semi-quantitative
PCR was conducted. ** p < 0.01 compared to normal (untreated) or positive (induced) group.

2.3. 3”Me-EGCG Protected Keratinocytes from SNP-Induced Radicals

Next, the potential protective role of 3”Me-EGCG under SNP treatment was examined. SNP is an
ROS-inducing compound that provokes nitric oxide (NO) production and cell death [20,21]. The results
showed that 3”Me-EGCG reduced SNP-derived NO production without cytotoxicity (Figure 4a,b).
Simultaneously, 3”Me-EGCG protected cells from SNP-mediated cell death (Figure 4c). To dissect
how 3”Me-EGCG exhibited protective effects, we performed Western blotting for the pro-apoptotic
molecule caspase-3. Total and cleaved forms of caspase-3 were similar (Figure 4d), indicating that
3”Me-EGCG does not regulate the apoptotic pathway. These results implied that the cytoprotective
effect of 3”Me-EGCG was not due to apoptosis regulation but to an antioxidant effect.
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Figure 4. Antioxidant effects of 3”Me-EGCG against SNP-induced radicals. (a) The cell viability of
3”Me-EGCG-treated HaCaT cells was examined by MTT assay. (b) HaCaT cells were pre-treated with
3”Me-EGCG for 30 min, and then cells were exposed to SNP (1.5 mM) for 24 h. The SNP-derived nitric
oxide (NO) production was determined by Griess assay. (c) The cell viability of SNP-treated HaCaT
cells was measured in the absence or presence of 3”Me-EGCG by MTT assay. (d) 3”Me-EGCG- and
SNP-treated HaCaT cells were lysed, and immunoblotting was performed using an antibody against
caspase-3. β-actin was used as a loading control, ## p <0.01 compared to normal group and ** p < 0.01
compared to normal (untreated) or positive (induced) group. −: not treated and +: treated.
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2.4. 3”Me-EGCG Protected Keratinocytes from UVB Irradiation

Several reports have shown that antioxidants protect cells against UV irradiation [22–24].
The cytoprotective effect of 3”Me-EGCG against UVB irradiation was investigated. In HaCaT
cells exposed to UVB (30 mJ/cm2), cell death was induced. However, 3”Me-EGCG protected cells
from UVB, and cell viability was recovered (Figure 5a,b). Immunoblotting was used to determine the
regulatory mechanism of 3”Me-EGCG against UVB-induced cell death. AKT is closely involved in cell
survival [25]; thus, we determined phosphorylation levels of AKT isoforms (AKT1 and AKT2). UVB
inactivated AKT1, and 3”Me-EGCG treatment resulted in restoration of AKT1 activation, while AKT2
was not affected (Figure 5c). Based on the inductive effect of 3”Me-EGCG on AKT1, the cytoprotective
effect of 3”Me-EGCG was tested using an AKT inhibitor (LY294002). When AKT activity was blocked,
cell viability was reduced further compared to that of UVB-irradiated HaCaT cells. However, in cells
co-treated with 3”Me-EGCG and LY294002, the diminished survival rate from UVB was statistically
recovered (Figure 5d). To confirm this phenomenon, a promoter assay was conducted using an
NF-κB-luciferase construct. As shown in Figure 5e, AKT1-mediated NF-κB activity was elevated by
3”Me-EGCG. These data implied that AKT is correlated with the UVB-derived survival pathway,
and 3”Me-EGCG protects cells by regulating AKT1.
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Figure 5. Protective effect of 3”Me-EGCG against ultraviolet B (UVB) irradiation. (a) HaCaT cells
were pre-incubated with 3”Me-EGCG and UVB-irradiated as indicated. After 48 h, cell viability was
examined by MTT assay. (b) Images of HaCaT cells after 3”Me-EGCG treatment and UVB irradiation.
Images were captured using an optical microscope. (c) Whole lysate of UVB-irradiated HaCaT cells
was for immunoblotting using phospho- or total antibodies against AKT1 and AKT2. β-actin was used
as a loading control. (d) The cell viability of 3”Me-EGCG- or LY294002 (20 µM)-treated HaCaT cells in
the presence of UVB was determined by MTT assay. (e) HA-AKT1, NF-κB-Luc, and β-galactosidase
plasmids were transfected into HEK293T cells, and the cells were treated with 3”Me-EGCG (0–12.5 µM).
NF-κB-mediated luciferase activity was measured by a luminometer. A β-galactosidase construct was
used as a control. ## p <0.01 compared to normal group and * p < 0.05 and ** p < 0.01 compared to
normal (untreated) or positive (induced) group. -: not treated and +: treated.
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2.5. 3”Me-EGCG Regulates Cell Proliferation

Whether the cell proliferative rate of 3”Me-EGCG-treated HaCaT cells using MTT assay was
determined next. For this, HaCaT cells were treated with various doses of 3”Me-EGCG for 72 h and
found that 3”Me-EGCG significantly promoted cell growth at concentrations of 0–12.5 µM from 24 h
(Figure 6a). To determine whether this cell proliferation-promoting activity occurs through NF-κB
activation, luciferase assay was performed. Though 3”Me-EGCG was solely treated, NF-κB activities
were increased by this compound (Figure 6b). These results suggest that 3”Me-EGCG triggered cell
proliferation by regulating NF-κB activity.
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Figure 6. Proliferation-promoting activity of 3”Me-EGCG. (a) HaCaT cells (3 × 104 cells/mL) were
treated with 3”Me-EGCG from 0 to 72 h. At each time point, MTT solution was added, and absorbance
at 570 nm was measured by spectrophotometry. (b) NF-κB-Luc plasmid and the control β-galactosidase
construct were transfected to HEK293T cells using polyethylenimine (PEI). After 24 h, 3”Me-EGCG
was added for 24 h. Luciferase activities were determined by a luminometer. ** p < 0.01 compared to
normal (untreated) group.

3. Discussion

The antioxidant effect of 3”Me-EGCG was evaluated through various analysis systems. It was
revealed that 3”Me-EGCG has radical scavenging ability (Figure 2). 3”Me-EGCG protected keratinocyte
cells from various stimuli including chemical substance (SNP), oxidative stress (H2O2), and UVB
irradiation (Figures 3–5). This cytoprotection resulted from regulation of AKT1 (Figure 5, summarized
in Figure 7).

The antioxidant effect of 3”Me-EGCG was demonstrated under various radical-induced
conditions—UVB (Figure 5) and chemical substances (Figures 2c and 4)—and those can cause
damage to skin [7,26]. Generation of radicals can also induce oxidative stress [7], so we also performed
experiments using H2O2 (Figure 3). Moderate concentration of ROS is necessary to activate intracellular
mechanisms, but inadequate amounts of radicals cause cell damage or death [27,28]. Generated ROS
can cause not only skin aging (e.g., wrinkles and coarse texture), but also dermatological disorders
including atopic dermatitis, psoriasis, and skin carcinoma [29–31]. Control of radicals is important
to retain skin health. Our results indicate that 3”Me-EGCG can protect skin from radical-mediated
damage by acting as an antioxidant.

There are two types of antioxidants: endogenous and exogenous types [4,28,32]. Endogenous
antioxidants are comprised of enzymatic antioxidants (e.g., glutathione peroxidase and catalase) and
non-enzymatic antioxidants (e.g., ascorbic acid and flavonoids). One of the exogenous antioxidants
is a water soluble compound found in green tea [29], and 3”Me-EGCG has been found in limited
amounts in green tea. For testing of exogenous antioxidant ability of 3”Me-EGCG, we investigated the
cell viability with 3”Me-EGCG under SNP and UVB exposure conditions since free radicals lead to
apoptosis [8,9]. Interestingly, 3”Me-EGCG protected cells from SNP (Figure 4), but cleaved caspase-3,
the activated apoptotic molecule, was unaffected. These results implied that 3”Me-EGCG directly acts
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as an exogenous antioxidant agent. Whereas, in the case of endogenous antioxidant, HO-1 was notably
affected by 3”Me-EGCG with H2O2 (Figure 3b). HO-1 serves as a cytoprotective mediator against
H2O2-mediated oxidative stress [33–36], and its expression level was tested to evaluate antioxidant
effects. Increase of HO-1 is essential to protect cells from oxidative stress and as an adaptive response to
oxidative stress [37]. In addition, one of cell survival molecules, AKT1, was upregulated by 3”Me-EGCG
in UVB-irradiated HaCaT cells (Figure 5c). Overall, these results indicate that 3”Me-EGCG functions
as an endogenous and exogenous antioxidant against diverse free radical-induced conditions.
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chemicals and UVB. UVB-induced free radicals regulates the AKT survival pathway, and 3”Me-EGCG
regulates cell survival pathway and proliferation by targeting Akt1. 3”Me-EGCG improves cell survival
with antioxidant effects.

AKT (also known as protein kinase B) is a key molecule in the PI3K/AKT pathway that functions in
cell proliferation and survival. Three isoforms have been described in mammalian cells, AKT1/PKBα,
AKT2/PKBβ, and AKT3/PKBγ which all contain conserved domains [25,38]. AKT isoforms are highly
homologous, but their expression patterns and functions are quite distinct. Knockout of AKT1
results in growth defects, whereas AKT2 deficiency leads to issues in glucose homeostasis. AKT3
knockout showed a decrease in brain size [25,39–41]. AKT1 and AKT3 but not AKT2 can interact
with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to regulate cell proliferation [42].
AKT2 inhibited activation of c-Jun N-terminal kinase (JNK) and p38 after UVB irradiation [43].
We thus investigated which AKT isoform is essential for 3”Me-EGCG-regulated cell survival. The
phosphorylated levels of AKT1 and AKT2 were opposite in pattern, and only AKT1 was affected by
3”Me-EGCG (Figure 5c). These results suggest that 3”Me-EGCG regulated cell survival by modulating
AKT1 but not AKT2.

Recently, naturally-occurring antioxidants have attracted attention [26,28,36]. 3”Me-EGCG is from
green tea, and our results indicate that 3”Me-EGCG exhibits antioxidative and cytoprotective effects by
removal of free radicals and regulation of AKT1 and HO-1. In conclusion, our findings suggest that
3”Me-EGCG may be an ingredient applied for skin protective products as an antioxidant supplement.
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4. Materials and Methods

4.1. Reagents

(−)-Epigallocatechin-3-O-(3”-O-methyl)-gallate (3”Me-EGCG) was purchased from Biopurify
Phytocheimcals Ltd. (Chengdu, Sichuan, China) and dissolved in dimethyl sulfoxide
(DMSO) to make 20 mM stock concentration. 1-Diphenyl-2-picryl-hydrazyl (DPPH),
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS), ascorbic acid,
dehydrorhodamine 123 (DHR123), and sodium nitroprusside (SNP) were purchased from Sigma
Chemical Co. (St. Louis, MO, USA). (3-4-5-Dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide
(MTT) was obtained from AMRESCO (Solon, OH, USA). LY294002 was from Calbiochem (La Jolla, CA,
USA). Antibodies against total and phospho-AKT, -AKT1, -AKT2, and β-actin were purchased from
Cell Signaling Technology (Danvers, MA, USA).

4.2. Cell Culture

RAW264.7 cells and HaCaT cells [American Type Culture Collection (ATCC), Manassas, VA, USA]
were cultured in RPMI1640 and DMEM, respectively, with 10% FBS and 1% penicillin-streptomycin.
HEK293T cells were cultured in DMEM with 5% FBS and 1% penicillin-streptomycin. All cells were
incubated at 37 ◦C in a 5% CO2 humidified incubator.

4.3. DPPH Assay

DPPH decolorimetric assay was performed to examine the scavenging effect of 3”Me-EGCG
as previously described [44,45]. 3”Me-EGCG (0–12.5 µM) was mixed with 250 mM DPPH and
incubated at 37 ◦C for 30 min. Ascorbic acid (500 µM) was used as a positive control. After incubation,
the absorbance at 517 nm was measured by spectrophotometry. DPPH scavenging effect was expressed
as percent inhibition as follows:

DPPH scavenging effect (%) = [(A0 − A1)/A0] ∗ 100 (1)

in which A0 indicates the absorbance of DPPH, and A1 is the absorbance of samples.

4.4. ABTS Assay

ABTS scavenging assay was conducted as previously described with little modification [46].
A mixture of 7.4 mM ABTS and 2.4 mM potassium persulfate at a 1:1 ratio was incubated overnight
at room temperature to generate ABTS radical cation (ABTS•+). ABTS solution and 3”Me-EGCG
(0–12.5 µM) were mixed at a 1:1 ratio in a 96-well plate. Ascorbic acid (50 µM) was used as a positive
control. After 30 min of incubation at 37◦C, the absorbance of each fraction was measured at 730 nm.
ABTS scavenging effect was expressed as a percentage as follows:

ABTS scavenging effect (%) = [(A0 − A1)/A0] ∗ 100 (2)

in which A0 indicates the absorbance of ABTS, and A1 is the absorbance of samples.

4.5. ROS Generation

The intracellular ROS level was determined by changes of fluorescence resulting from oxidation
of the DHR123 fluorescent probe. Briefly, 1 × 106 RAW264.7 cells were incubated with 3”Me-EGCG
for 30 min, and then SNP (0.25 mM) was added to induce ROS production. The cells were further
incubated with 20µM of the fluorescent probe DHR123 for 30 min at 37 ◦C, and cells were washed with
PBS. The degree of fluorescence, which corresponds to the level of intracellular ROS, was determined
using a FACScan flow cytometer (Becton-Dickinson, San Jose, CA, USA) as reported previously [47,48].
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4.6. Cell Viability Test

The cytotoxicity of 3”Me-EGCG in RAW264.7 and HaCaT cells was evaluated as previously
reported [6]. RAW264.7 cells (1 × 106 cells/mL) and HaCaT cells (4 × 106 cells/mL) were plated and
cultured overnight, and 3”Me-EGCG (0–12.5 µM) was added for 24 h. Cell culture media (100 µL)
were removed, and 10 µL MTT solution was added to each well. After 3 h of formazan formation,
formazan dissolving solution was added. The absorbance at 570 nm was measured.

4.7. UVB Irradiation

HaCaT cells were seeded at 7 × 105 cells per well in six-well plates and incubated for 24 h under
starvation conditions using serum-free MEM. The media were changed to DMEM with 10% FBS and
1% penicillin-streptomycin, and cells were pre-treated with 3”Me-EGCG (0–12.5 µM) for 30 min. Cells
were washed with DPBS to remove media, and 1 mL media was added to each well. Cells were
irradiated with 30 mJ/cm2 UVB (UVB lamp, Bio-link crosslinker BLX-312; Vilber Lourmat, Collegien,
France). Media was removed, and DMEM media with 3”Me-EGCG (0–12.5 µM) was added to cells;
cells were incubated for 48 h [49].

4.8. mRNA Preparation and Semi-Quantitative Polymerase Chain Reaction (PCR)

mRNA from H2O2-induced HaCaT cells was prepared to measure the expression level of HO-1.
HaCaT cells were pretreated with 3”Me-EGCG for 30 min, and H2O2 (250 µM) was added for 24 h.
Total RNA was isolated with TRIzol reagent following the manufacturer’s instructions. Reverse
transcription PCR was conducted following the manufacturer’s instruction [50].

4.9. Reporter Gene Assays

HEK293T cells were seeded at 1 × 104 cells per well in 24-well plates. Cells were transfected with
NF-κB-Luc and β-galactosidase (control) plasmid constructs using polyethylenimine (PEI). After 24 h,
media was changed, and cells were exposed to 3”Me-EGCG (0–12.5 µM) for 24 h. Luciferase activity
was measured following the Luciferase Assay System (Promega; Madison, WI, USA).

4.10. Immunoblot Assay

Cells were washed with DPBS and then centrifuged at 12,000 rpm for 10 min at 4 ◦C. DPBS
was removed, and the pellet was resuspended in lysis buffer (20 mM Tris-HCl pH 7.4, 2 mM
EDTA, 2 mM ethylenglycoltetraacetic acid, 50 mM β-glycerophosphate, 1 mM sodium orthovanadate,
1 mM dithiotheitol, 1% Triton X-100, 10% glycerol, 10 µg/mL aprotinin, 10 µg/mL pepstatin, 1 mM
benzamidine, and 2 mM PMSF). The lysates were clarified by centrifugation at 12,000 rpm for 10 min
at 4 ◦C and stored at −20 ◦C until use. Protein concentrations were evaluated by Bradford assay and
used for immunoblotting using antibodies against phospho- or total AKT1, AKT2, and caspase-3 by
previously published methods [51]. β-actin was used as an immunoblotting loading control.

4.11. Cell Proliferation Assay

HaCaT cells were seeded at 3 × 103 cells per well in 96-well plates and then treated with
3”Me-EGCG (0–12.5 µM) for 0–72 h. Proliferation was measured using the conventional MTT assay.

4.12. Giress Assay

The supernatants of cells were transferred to 96-well plates and reacted with Griess reagent (1%
sulfanilamide and 0.1% N-[1-naphthyl]-ethylenediamine dihydrochloride in 5% phosphoric acid).
The absorbance at 540 nm was measured by spectrophotometry [52].
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4.13. Statistical Analysis

All data of this study are expressed as means ± standard deviations (SDs) of an experiment
performed with six or two technical replicates per group. For statistical comparison, results were
analyzed by ANOVA with Scheffe’s post hoc test, Kruskal–Wallis, and Mann–Whitney U tests. For all
analyses, p < 0.05 was considered statistically significant. All statistical tests were performed with
SPSS software (SPSS Inc., Chicago, IL, USA). Similar experimental data were also observed using an
additional independent set of experiments that was conducted using the same numbers of samples.
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Abbreviations

3”Me-EGCG (−)-Epigallocatechin-3-(3”-O-methyl) gallate

ABTS
2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium
salt

AA Ascorbic acid
DPPH 1-Diphenyl-2-picryl-hydrazyl
EGCG (−)-Epigallocatechin gallate
HO-1 Heme oxygenase 1
IC50 Half-maximal (50%) inhibitory concentration
JNK c-Jun N-terminal kinase
MTT (3-4-5-Dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide
NF-κB Nuclear factor κB
NO Nitric oxide
PCR Polymerase chain reaction
PKB Protein kinase B
ROS Reactive oxygen species
SNP Sodium nitroprusside
UVB Ultraviolet B
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