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Abstract: Previous studies on CKD patients have mostly been retrospective, cross-sectional studies.
Few studies have assessed the longitudinal assessment of patients over an extended period. In
consideration of the heterogeneity of CKD progression. It’s critical to develop a longitudinal diagnosis
and prognosis for CKD patients. We proposed an auto Machine Learning (ML) scheme in this study.
It consists of four main parts: classification pipeline, cross-validation (CV), Taguchi method and
improve strategies. This study includes datasets from 50,174 patients, data were collected from
32 chain clinics and three special physical examination centers, between 2015 and 2019. The proposed
auto-ML scheme can auto-select the level of each strategy to associate with a classifier which finally
shows an acceptable testing accuracy of 86.17%, balanced accuracy of 84.08%, sensitivity of 90.90%
and specificity of 77.26%, precision of 88.27%, and F1 score of 89.57%. In addition, the experimental
results showed that age, creatinine, high blood pressure, smoking are important risk factors, and has
been proven in previous studies. Our auto-ML scheme light on the possibility of evaluation for the
effectiveness of one or a combination of those risk factors. This methodology may provide essential
information and longitudinal change for personalized treatment in the future.

Keywords: chronic kidney disease; machine learning; risk prediction; clinical decision-making

1. Introduction

The progression of chronic kidney disease (CKD) is multifactorial and complex, proper
management of CKD to slow the progression of this condition is of considerable significance.
According to the Global Burden of Disease (GBD) study 2017, CKD resulted in 1.2 million
deaths and was the 12th leading cause of death worldwide [1]. Based on the Taiwanese
Ministry of Health and Welfare’s annual report, CKD accounts for the largest number of
health insurance claims in 2018 [2]. In the 2019 annual report of the US Renal Registry
System (USRDS) [3], Taiwan has the highest prevalence and incidence of end-stage renal
disease in the world [4].

In consideration of patterns of CKD progression, it is critical to conduct risk diagnosis
and prognosis for CKD patients. Moreover, CKD risk factors, such as hypertension,
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age, eGFR, UPCR, Smoking, obesity [5–8]. Addressing longitudinal risk factors for the
progression of CKD is needed to reduce its associated morbidity and mortality. It’s not
easy to detect chronic renal failure before losing 25% of renal function. Early prediction
can possibly prevention, or dampen the progression of CKD to end-stage. According to
the 2017 medical expenses of National Health Insurance Administration [4], the national
health insurance expenditure with end-stage kidney disease increased year by year. The
national health insurance expenditure increased from NTD. 295 billion in 2000 to NTD.
573.93 billion in 2016, with an average of nearly NTD. 500,000 in health insurance per year
for each dialysis patient.

The most measure of kidney function, the eGFR, plays a critical role in CKD progres-
sion [2]. However, no obvious symptoms were found in an early stage of kidney disease.
Thus, the clinical condition is usually asymptomatic until in advanced stages. Evidence
on the convincing evidence of CKD screening is inadequate. Remembering “eGFR” as
an estimate and not the measured GFR is important. Risk factors of CKD diagnosis and
prognosis were extensively examined in recent years, but they are still controversial [9–12].
Many epidemiological studies showed a close relationship between hypertension and
renal diseases. Early studies believed that effective hyperlipidemia treatment reduced
proteinuria in patients with CKD, thus delaying renal function deterioration. However,
research evidence has yet to prove the clear effect of hyperlipidemia on renal diseases.
Hypercholesterolemia and hypertriglyceridemia are common in patients with nephrotic
syndrome. Significantly elevated apolipoprotein B’s lipoprotein level, including very-low-
density lipoprotein, intermediate-density lipoproteins, and low-density lipoproteins, as
well as normal or slightly lower high-density lipoprotein levels, are usually detected in
the blood of patients with nephrotic syndrome [13]. Recent studies found that catabolism
reduction, decomposition, and lipoprotein removal not only play an important role but
are partly associated with lipoprotein synthesis promotion. Some recent studies pointed
out that severity reduction of proteinuria also reduces renal failure. Patients with renal
insufficiency or severe proteinuria should be given with angiotensin-converting enzyme
inhibitor or angiotensin receptor blocker [14].

Until now, few studies assessed the longitudinal assessment of multiple comorbidities
of patients over an extended period, considering the CKD progression heterogeneity.
Conducting a longitudinal diagnosis and prognosis in patients with CKD is crucial. Thus,
an auto-Machine Learning (ML) scheme was proposed in this study, including classification
pipeline, cross-validation (CV), Taguchi method, and improved strategies to predict early
CKD. Especially, this auto-ML scheme illuminates the possibility of effectiveness evaluation
of one or a combination of those risk factors.

2. Materials and Methods

In this study, the basic components are summarized in Figure 1, consisting of four main
parts: classification pipeline, CV, Taguchi method, and improved strategies. The association
of classification pipeline and CV is described in Section 2.1, and nine strategies of model
performance improvement are separately discussed in Section 2.2. Finally, integration of
all components using the Taguchi method is introduced in Section 2.3.

2.1. The Classification Pipeline with CV

The discrimination of a patient with CKD progression into the third stage or not is a
typical classification task. The classification and regression tree (CART) is chosen as the
classifier due to the flooded categorical and ordered variables in our dataset, unnecessary
prior data distribution assumption, and the ability of the tree-based method to deal with
missing data and perform a little bit well on imbalanced datasets compared to other
methods.
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the abbreviations of classification and regression tree, eXtreme gradient boosting extreme, area under
curve, least absolute shrinkage and selection operator, and correspondence analysis respectively.

The basic flowchart of the CV classification task is shown in Figure 2. The original
dataset comes from different sources, such as basic information, basic examination data,
blood test, and daily medication preference of patients, which are finally wrangled in a tidy
form where columns mean different features, as well as the class labels, while rows mean
cases. Then the original dataset is divided into training and testing datasets with a specific
separation rate, typically 6:4, 7:3, or 8:2. During the training period, the training dataset
is preprocessed resulting in either increasing or decreasing the number of columns or
extracting embedding or group features. Search for hyper-parameters of a classifier during
the training process is the next concern. The different base classifier has a different number
of hyper-parameters, thus manual selection of a good hyper-parameter combination is very
difficult. The process of combing the skills of deciding a hyper-parameter search strategy,
conducting the k-fold CV, and selecting an evaluation metric is the most commonly used
method to tackle the problem in the practice.

The training dataset is randomly divided into k equal-sized folds. Of the k folds,
the k − 1 folds are the real training dataset, whereas the remaining single fold takes the
validation dataset role in turn. For each set of hyper-parameters, which was generated by a
search strategy, classifier weights via the training dataset were repeatedly learned and a
metric validation dataset for k times, which are finally averaged to produce an average
metric value, were evaluated. The higher the average value of a metric is, the better the
hyper-parameters will be. Feature importance is listed with the best model in mind. The
tidy format of the testing dataset is the same as that of the training dataset. The features
and labels of a testing dataset are separated in advance. The dataset of features is fed into
the best model to get responses and compare with the answer correspondences to yield
a testing confusion matrix. The testing balanced accuracy is finally calculated for model
evaluation, which is the average of sensitivity and specificity from the confusion matrix.
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2.2. Using Different Strategies to Improve the Training Balanced Accuracy

Different strategies are used to improve data analysis as shown in Figure 2. After
careful consideration, nine strategies were summarized as shown below.

Strategy 1: missing values imputation. Missing values is a common problem in
practice. Sometimes without a great modeling impact, but sometimes causing modeling
difficulties or failure, even with the mechanism of the tree-based model to combat the
problem to some extent. Therefore, should these missing values be filled or be ignored
before modeling becomes a strategic option. This study used the bootstrap aggregation
imputation [15], which fits a bagged tree alternately based on regression dependencies [16].

Strategy 2: the inclusion of the cross-product term of original features. The effect of a
certain feature on dependent variables, affected by other features, suggests an interaction
between them. All paired cross-product terms between features are applied with this
strategy application [17,18].

Cross-product terms of features have more predictive power than the original ones,
which potentially increase the model nonlinearity and grasp the interaction relationship
between features. A large number of cross-product terms lead to an overfitting model;
however, the interference is alleviated by conducting a feature selection algorithm. Employ-
ing cross-product terms as additional CKD deterioration features is unobvious to clinical
diagnosticians, but contributes to finding a powerful model with unobvious terms that
serve as novel deterioration status features of a lesion [19–21].

Strategy 3: the clustering feature addition. The clustering technique groups similar
training cases and assigns new columns for clustering labels in the form of dummy variables
to the original training dataset. During the testing period, a clustering label is allocated to
each testing case by finding the minimum distance between the case and cluster centers.
Clustering before classification is beneficial [22,23]. In this study, the k-means algorithm is
used for the clustering training dataset and the corresponding optimal number of clusters
is determined by the rank aggregation algorithm [24].

Strategy 4: the prominent feature selection. The course of dimensionality is the most
challenging problem. Maintaining less but significant features increase the convergence
speed and improve prediction quality. This study introduces the least absolute shrinkage
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and selection operator (Lasso) to select features with stronger explanatory power from
existing features and remove features with multicollinearity [25,26].

Strategy 5: the original feature transformation. A transformation technique converts
the original feature space into other lower-dimensional spaces. The new feature space
regarded the combination of original features in each dimension as a base. Instead of using
principal component analysis, this study adopts correspondence analysis (CA) to extract
significant base vector sets from our categorical or ordered dataset, which better express
the variability of original features. The trained feature reduction procedure was empirically
proven useful as a classifier [27].

Strategy 6: the resampling of cases in the minority class. The class imbalance problem
often occurs in clinical datasets that comprise a higher number of normal cases relative to a
number of patients. The classifiers need to identify rare but important cases; however, they
are biased toward the majority class and struggle for yielding a fair accuracy [28–30]. In
this study, the prediction was improved through a resampling by oversampling technique
application. The oversampling technique tries to balance the number of cases in each class
throughout minority class cases replication.

Strategy 7: the boosting capability enhancement for the classifier. Boosting is a type
of ensemble learning for primarily converting weak learners to strong ones [31]. In this
study, the boosting classifier was considered using eXtreme Gradient Boosting (XGBoost)
because of its effectiveness as a tree-based ensemble learning algorithm [32]. XGBoost is
a flexible classifier, which provides lots of fine-tuned hyper-parameters, such that made
better predictions. In recent years, many Kaggle champion teams used XGBoost to win the
titles, which is also successfully used for various medical issues [33,34].

Strategy 8: searching hyper-parameters randomization. Grid search is a typical
technique to search better hyper-parameters using a CV procedure for a given classifier.
The term grid originates from the combination of all possible trial values in a grid manner.
An interesting alternative is a random search, which implements uniform randomness over
the hyper-parameters. The performance of random search in cases of several algorithms on
different datasets [35].

Strategy 9: the comprehensiveness of evaluation metrics. The evaluation metric
used in k-fold CV affects the hyper-parameter selection results. The accuracy is the most
commonly used metric that measures the number of correctly classified cases, both positive
and negative. However, the accuracy says nothing about the classification performance for
each class and it works with a fixed classification threshold on the class probability. An
interesting alternative is an area under the curve (AUC) in which the curve is the receiver
operating characteristic. The AUC evaluates the overall performance of a classifier that
simultaneously takes the performance of each class and a series of classification thresholds
into consideration.

2.3. Choosing the Strategy Combination Automatically

Multiple strategies above are used in the training process to improve predictive model
performance. However, no specified strategy combination is proven as the best, it depends
on the available dataset. Thus a sensitivity analysis needs to be conducted while users are
training a model. In this study, a known Taguchi method was established for choosing a
recommended strategy combination, in which the strategies are regarded as the factors and
each strategy only has two levels of use or not, whereas the CV balanced accuracy from
the training dataset is used to measure each treatment. The Taguchi method rather than
the traditional 2k design of experiment (DOE) is used because the number of treatments
required for 2k DOE surges with the number of factors k, for example, 29 non-repeated
treatments in our study will have 512 performed trials. In this light, such full factor
treatments consider all interactions and need too many experiments, causing waste of
computation and time. The Taguchi method uses the orthogonal arrays (OA) to reduce the
number of treatments that are originally required while avoiding a decreasing experiment
power that comes with adopting fractional factorial designs [36,37].
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Considering the above-mentioned conditions, the effects of different types of strategies
on the training balanced accuracy of our CKD training data are studied. The stages for
executing a Taguchi method for nine factors at two levels are shown in Figure 3 and are
described as the following:
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Step 1: OA design matrix preparation. The Taguchi method with factors number and
levels number designed based on this study will obtain an OA design matrix. In this design
matrix, each column stands for strategies, each row stands for each treatment, number 1
in the matrix means the corresponding strategy is used, and number 0 means not used.
In addition, another column in the design matrix record the training balanced accuracy
obtained for each strategy combination.

Step 2: Training model evaluation of each treatment. With the given training dataset
and strategy combination for better training balanced accuracy, the classifier endeavors to
optimize its hyper-parameters to obtain the optimal training balanced accuracy. Repeating
the above experiment on different strategy combinations with random order thoroughly
collects experimental data of the Taguchi method.

Step 3: Recommended strategy combination selection. This study uses a larger-the-
better signal-to-noise ratio (S/N) to maximize the training balanced accuracy. The S/N of
each treatment was calculated based on Equation (1), average the S/N of each level for each
factor, and then output the main effects plots. The final decision for strategy combination
selection is made by observing the positive or negative slope of the main effects plot of
each factor. Only the strategies with a positive slope of the main effects plot are adopted.

S/N = −10· log
(
∑

(
1/training balanced accuracy2

)
/N

)
(1)

Step 4: Evaluate and test prediction accuracy. With given testing data, mostly recom-
mended strategy combination and optimal hyper-parameters, the classifier performs class
prediction for unseen testing cases. Finally, the predictive accuracy is evaluated through
testing balanced accuracy, additionally, information about feature importance is provided
as an identification maneuver of CKD risk factors.

3. Results

In this section, our data were first manipulated into the tidy form and a series of
data analysis procedures was conducted using a self-programming toolkit under the R
environment with the main package of “caret,” “optCluster,” “quality tools,” “MLmetrics,”
and “MLeval,” as well as their dependencies.
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Data were collected from individual CKD case administration and care systems of 32
chain clinics and three special physical examination centers. The data collecting period is
from 1 January 2015, to 31 December 2019, total 50,174 effective records. Referring to the
CKD third-stage progression rate of 34.69%, the total number of the class of third-stage
CKD progression that is less than the total number of another class of non-progression is
easily observed, thus a class imbalance problem arises. Classifiers that are commonly used
always have a bias toward the majority class.

Basic information: admission date, sex, and date of birth.
Examination data: date of examination, height, weight, systolic pressure, diastolic

pressure, urine polymerase chain reaction (mg/gm), urine albumin-to-creatinine ratio
(mg/gm), uric acid (mg/dL), serum creatinine (mg/dL), eGFR (Modification of Diet in
Renal Disease), cholesterol (mg/dL), low-density lipoproteins (mg/dL), HbA1C (%), sugar
AC (mg/dL), hemoglobin A1c, CKD stage, comorbidity, and smoking.

As observed in Section 2.2, many techniques provided by researchers improved the
prediction. However, most of those researches select appropriate strategies by trial-and-
error methods, thus a systemic procedure is rarely seen. This study has nine possible
strategies, without idea whether each strategy needs to be adopted to associate with the
model in this dataset. Thus, a sensitivity analysis is conducted throughout the Taguchi
method.

During the training stage, 30,106 cases are used to train the model in which the rate
of third-stage CKD deterioration in training data is approximately 34.69%. The Taguchi
OA L12(29) design matrix is selected to evaluate the effect of multiple strategies in training
balanced accuracy. In the first to ninth columns of Table 1, ones or zeros represented the use
or un-use of the corresponding strategy, respectively, whereas the last column in Table 1
represents the values of training balanced accuracy for each treatment. Possible savings
are apparent, the same number of factors and levels examined with DOE required 512
treatments, whereas only 16 in the Taguchi method. The value of training accuracy for
each treatment is also recorded in the last column of Table 1. Fluctuating training balanced
accuracy is found among the treatments results from whether each strategy will be adopted
or not.

Table 1. The resulting design matrix for third-stage CKD deterioration classification.

Factors (Our Strategies) Training
Balanced
AccuracyClustering Cross

Term
Feature

Reduction
Feature

Selection Imputation Ensemble Evaluation
Metric Randomized Resampling

0 0 0 0 0 0 0 0 0 0.8451
0 0 0 0 0 1 1 1 1 0.8726
0 0 1 1 1 0 0 0 1 0.5589
0 1 0 1 1 0 1 1 0 0.8538
0 1 1 0 1 1 0 1 0 0.6565
0 1 1 1 0 1 1 0 1 0.8642
1 0 1 1 0 0 1 1 0 0.8503
1 0 1 0 1 1 1 0 0 0.6546
1 0 0 1 1 1 0 1 1 0.8845
1 1 1 0 0 0 0 1 1 0.8646
1 1 0 1 0 1 0 0 0 0.8570
1 1 0 0 1 0 1 0 1 0.6531

The regression equation of the fitted model is described in Equation (2). A positive or
negative effect on the task of maximizing the training balanced accuracy as a coefficient of
factor is also positive or negative, respectively. The R squared score is at a good level of
84.16%, which means that we are above 84% from the proportion of variance explained by
the fitted regression model.

S/N = −2.8383 +0.0791 × Clustering + 0.0771 × CrossTerm + 0.6546 × FeatureReduction
−0.8004 × FeatureSelection + 1.3982 × Imputation − 0.0429 × Ensemble
+0.1033 × EvaluationMetric − 0.7432 × Randomized − 0.1957 × Resampling

(2)
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Recommended level of each factor was finally determined based on the nine main
effect plots as shown in Figure 4. The main effect plots show how each strategy affects
the S/N ratio of training balanced accuracy. A pink line connects the points across all
strategy levels. The slopes of those pink lines indicate the relative magnitude of the strategy
effects. As shown in Figure 4, the imputation strategy has the largest effect on the S/N
ratio, followed by the feature reduction strategy, and followed by the randomization
strategy. In addition, the training balanced accuracy is maximized when the strategies of
clustering, cross term, feature selection, ensemble, AUC, and randomization are at their
highest setting and those of feature reduction, imputation, and resampling are at their
lowest setting. Based on this analysis of the Taguchi method, the manual selection of
strategy combinations for improving the accuracy was alleviated.
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Figure 4. The main effect plot for each strategy.

4. Discussion

Based on the optimal model selected throughout the training process described above,
approximately 20,068 cases were further fed for testing the model’s performance of the
proposed method. The rate of third-stage CKD progression in testing data is also approx-
imately 34.69%. In Table 2, the proposed auto-ML scheme auto-selects the level of each
strategy to associate with a classifier, which finally shows an acceptable testing accuracy of
86.17%, balanced accuracy of 84.08%, a sensitivity of 90.90%, and specificity of 77.26%, pre-
cision of 88.27%, and F1 score of 89.57%. Further, comparing the performance of two naive
situations, i.e., only CART or XGBoost classifier is used and none strategy is adopted, the
CART yields a lower testing accuracy of 84.14%, balanced accuracy of 82.02%, sensitivity
of 88.97%, and specificity of 75.06%, precision of 87.04%, and F1 score of 87.99%, whereas
the XGBoost also yields a lower testing accuracy of 83.82%, balanced accuracy of 79.39%,
sensitivity of 93.86%, and specificity of 64.92%, precision of 83.44%, and F1 score of 88.34%.
From this model comparison experiment, it can be seen that the classification accu-racy of
CART has reached the level of about 84%. Compared with CART, the classification accuracy
of XGBoost has decreased, and the level of specificity has also been sacrificed. In this study,
XGBoost was selected as the basic classifier, and with the help of other strate-gies, it can



Int. J. Environ. Res. Public Health 2021, 18, 12807 9 of 13

further improve the classification accuracy rate by about 2% and the predic-tions will not
be biased towards the majority class. A graphical comparison via a receiver operating
characteristic (ROC) curve is also shown in Figure 5, confirming that the proposed method
provides an easy way to auto-find out a suitable model for a given dataset.

Table 2. Performance comparison of three methods in the experiment (in percentage).

Method Accuracy Balanced
Accuracy Sensitivity Specificity Precision F1

Score

CART 84.14 82.02 88.97 75.06 87.04 87.99
XGBoost 83.82 79.39 93.86 64.92 83.44 88.34

Proposed auto-ML scheme 86.17 84.08 90.90 77.26 88.27 89.57
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In addition, the variable importance is also assessed in Table 3 that is to show which
features are more influential on rate of CKD patients with progression to third stage.

Creatinine is made from creatine, which comes from the diet and biosynthesis of
the human body [38]. The kidney and the liver are the major organs involved in the
biosynthesis of creatine in the human body [39]. In the kidney, the L-arginine: glycin
amidinotransferase transfer the amino group of arginine to glycine to yield ornithine and
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guanidinoacetate acid (GAA) [40], which will be transported to the liver by circulation. The
S-adenosyl-1-methionine: N-guanidinoacetate methyltransferase in the liver methylated
the amidino group of GAA to produce creatine [41]. Finally, the creatine form biosynthesis
and diet are brought to the muscle and catalyzed into creatinine [42,43], which will be
excreted by the kidney via urine [5].

Table 3. The top 10 ranked feature importance for CKD third stage progression.

Rank The Combination of Risk Features Feature Importance

1 Age × Creatinine 0.3001
2 Creatinine 0.2236
3 Hypertension × Creatinine 0.0921
4 Smoking × Creatinine 0.0723
5 Creatinine × Comorbidity 0.0542
6 Diastolic Pressure × Creatinine 0.0354
7 BMI × Creatinine 0.0337
8 Age 0.0188
9 Systolic Pressure × Creatinine 0.0181

10 Age × Smoking 0.0132

In the normal condition, the creatinine is produced at a steady rate. The kidney is the
major organ excreting the creatinine. Creatinine is not reabsorbed and the tubular secretion
of creatinine is negligible, thus the eGFR is calculated from the excretion of creatinine
and represents the GFR. CKD is a renal disease with declined renal function especially
filtration in the kidney. Therefore, the creatinine accumulates in the body of a patient with
CKD, thus a higher creatinine level. The staging of CKD depends on the level of serum
creatinine, so the patient with CKD must have a high serum creatinine [44]. This result is
also corresponding to our study in Table 3. The creatinine level is the most influential factor
among all the other factors in third-stage CKD. The creatinine level alone is the second
most important risk factor, and creatinine level with other risk factors is an important risk
factor in our study.

Age is another risk factor for CKD. After the age of 30 years, the glomerulus is replaced
by fibrous tissue, and this process is called glomerulosclerosis. The mesangium increases
to approximately 12% at the age of 70 years [45]. Meanwhile, the vessel formed between
afferent and efferent arterioles causes a shunt, especially at the juxtamedullary nephrons.
The other arterioles of the kidney thicken and lost autonomic vascular reflex. Renal tubules
have fatty degeneration and thicken their basal membrane. As a consequence, the renal
tubule and glomerulus become atrophy and fibrosis [7]. These factors impair the renal
function of the elderly. In Table 3, age plays an important role in third-stage CKD. Age
with creatinine level becomes the most influential risk factor among the others. Age alone
and age with smoking also account as the eighth and tenth most influential risk factors in
our study.

Hypertension is another risk factor. Glomerular hypertension causes endothelial
damage and glomerular vascular stretching. Eventually, cause elevated leakage protein
from the glomerulus, glomerular collapse, glomerulonecrosis, and necrosis [8] Renin-
angiotensin-aldosterone system (RAAS) in hypertension also sabotage renal function.
According to previous studies, angiotensin II along with other RAAS components triggers
inflammation and fibrosis [46,47]. The damage of the arteriole, glomerulus, renal tubule and
kidney tissue ultimately increases inflammation and oxidative stress. The final results are
arteriosclerosis, glomerular injury, and tubule-interstitial fibrosis. All in all, hypertension
exacerbates renal function, congruent in our study. In Table 3, hypertension with creatinine
level, elevated diastolic blood pressure with creatinine level, and elevated systolic blood
pressure with creatinine level was third, sixth, and ninth most influential risk feature in
third-stage CKD, respectively.

Smoking is notorious for vascular injury and damages renal function. Smoking can
compromise the renal function by elevating blood pressure or producing nephrotoxic
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substances, such as reactive oxygen species and nitric oxide. These factors eventually cause
glomerulosclerosis and tubular necrosis [48]. Our study results support the relationship
between smoking and decreasing renal function in third-stage CKD. In Table 2, smoking
with creatinine level and age with smoking account as the fourth and tenth most important
risk factor, respectively.

Obesity, another risk factor of CKD, elevates blood pressure via three mechanisms:
(1) activation of RAAS; (2) increasing sympathetic tone; (3) significant visceral fat com-
pressing the kidney, and elevated blood pressure decreasing the renal function. Metabolic
abnormalities like high blood sugar and abnormal lipid profile in obesity also contribute
to renal impairment [48,49]. This relationship was also noted in our study. Body Mass
Index with creatinine level is the seventh most important risk factor in third-stage CKD
as presented in Table 3. Timely risk assessment of CKD and the increase of potential risk
factors are important for preventing further kidney injury in early CKD patients.

5. Conclusions

The proposed auto-ML scheme auto-selects the level of each strategy to associate with
a classifier, which shows an acceptable testing accuracy of 86.17%, balanced accuracy of
84.08%, the sensitivity of 90.90%, and specificity of 77.26%, precision of 88.27%, and F1 score
of 89.57%. In addition, the experimental results showed that age, creatinine, hypertension,
and smoking are important risk factors, which were proven in previous studies. Our
automated machine learning model illustrates the possibility of assessing the combination
of these risk factors under various clinical conditions. For different clinical datasets, the
appropriate data preprocessing strategy, feature selection strategy, cross-validation strategy
or model learning strategy can be adapted automatically. As long as the user prepares
his own custom dataset with appropriate annotation. The data type of the feature can be
either class or continuous, and the response should be binary. The proposed method can
determine the corresponding strategy combinations and risk factors in a small number of
training sessions without any manual intervention. This methodology provides essential
information and longitudinal change for personalized treatment in the future.
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K.; Zielińska, J.; et al. Progression of Chronic Kidney Disease Affects HDL Impact on Lipoprotein Lipase (LPL)-Mediated VLDL
Lipolysis Efficiency. Kidney Blood Press. Res. 2018, 43, 970–978. [CrossRef]

14. Saudan, P.; Ponte, B.; Marangon, N.; Martinez, C.; Berchtold, L.; Jaques, D.; Ernandez, T.; de Seigneux, S.; Carballo, S.; Perneger,
T.; et al. Impact of superimposed nephrological care to guidelines-directed management by primary care physicians of patients
with stable chronic kidney disease: A randomized controlled trial. BMC Nephrol. 2020, 21, 128. [CrossRef] [PubMed]

15. Kuhn, M.; Wing, J.; Weston, S.; Williams, A.; Keefer, C.; Engelhardt, A.; Cooper, T.; Mayer, Z.; Team, R.C.; Benesty, M.; et al. Caret:
Classification and Regression Training. R Package Version 6.0-41. Available online: http://CRAN.R-project.org/package=caret
(accessed on 28 September 2021).

16. Bax, V.; Francesconi, W. Environmental predictors of forest change: An analysis of natural predisposition to deforestation in the
tropical Andes region. Appl. Geogr. 2018, 91, 99–110. [CrossRef]

17. Lemon, S.C.; Roy, J.; Clark, M.A.; Friedmann, P.D.; Rakowski, W. Classification and regression tree analysis in public health:
Methodological review and comparison with logistic regression. Ann. Behav. Med. 2003, 26, 172–181. [CrossRef]

18. Turgeon, K.; Rodriguez, M.A. Predicting microhabitat selection in juvenile Atlantic salmon Salmo salar by the use of logistic
regression and classification trees. Freshw. Biol. 2005, 50, 539–551. [CrossRef]

19. Rakoczy, M.; McGaughey, D.; Korenberg, M.J.; Levman, J.; Martel, A.L. Feature selection in computer-aided breast cancer
diagnosis via dynamic contrast-enhanced magnetic resonance images. J. Digit. Imaging 2013, 26, 198–208. [CrossRef]

20. Panov, V.G.; Varaksin, A.N. Identification of combined action types in experiments with two toxicants: A response surface linear
model with a cross term. Toxicol. Mech. Methods 2016, 26, 139–150. [CrossRef]

21. Amaral, J.L.; Lopes, A.J.; Veiga, J.; Faria, A.C.; Melo, P.L. High-accuracy detection of airway obstruction in asthma using machine
learning algorithms and forced oscillation measurements. Comput. Methods Programs Biomed. 2017, 144, 113–125. [CrossRef]

22. Alapati, Y.K.; Sindhu, K. Combining clustering with classification: A technique to improve classification accuracy. Lung Cancer
2016, 32, 3.

23. Sekula, M.; Datta, S.; Datta, S. optCluster: An R package for determining the optimal clustering algorithm. Bioinformation 2017, 13,
101–103. [CrossRef] [PubMed]

24. Pihur, V.; Datta, S.; Datta, S. RankAggreg, an R package for weighted rank aggregation. BMC Bioinform. 2009, 10, 62. [CrossRef]
[PubMed]

25. Kamkar, I.; Gupta, S.K.; Phung, D.; Venkatesh, S. Stable feature selection for clinical prediction: Exploiting ICD tree structure
using Tree-Lasso. J. Biomed. Inform. 2015, 53, 277–290. [CrossRef] [PubMed]

26. Fonti, V.; Belitser, E. Feature selection using lasso. VU Amst. Res. Pap. Bus. Anal. 2017, 30, 1–25.
27. Yu, Y.; Liu, Y.; Xu, B.; He, X. Foundations and Applications of Intelligent Systems; Experimental Comparisons of Instances Set

Reduction Algorithms; Springer: Berlin/Heidelberg, Germany, 2014; pp. 621–629.
28. Barandela, R.; Sánchez, J.S.; Garca, V.; Rangel, E. Strategies for learning in class imbalance problems. Pattern Recognit. 2003, 36,

849–851. [CrossRef]
29. Wang, S.; Yao, X. Multiclass imbalance problems: Analysis and potential solutions. IEEE Trans. Syst. Man Cybern. Part B Cybern.

2012, 42, 1119–1130. [CrossRef] [PubMed]
30. Wang, S.; Yao, X. Using class imbalance learning for software defect prediction. IEEE Trans. Reliab. 2013, 62, 434–443. [CrossRef]
31. Zhou, Z.H. Ensemble Methods: Foundations and Algorithms; CRC Press: Boca Raton, FL, USA, 2012.
32. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
33. Schmidhuber, J.; Sur, P.; Fay, K.; Huntley, B.; Salama, J.; Lee, A.; Cornaby, L.; Horino, M.; Murray, C.; Afshin, A. The Global

Nutrient Database: Availability of macronutrients and micronutrients in 195 countries from 1980 to 2013. Lancet Planet. Health
2018, 2, e353–e368. [CrossRef]

http://doi.org/10.1007/s11255-008-9508-7
http://www.ncbi.nlm.nih.gov/pubmed/19115077
http://doi.org/10.1016/j.pcad.2018.07.005
http://doi.org/10.1159/000328010
http://www.ncbi.nlm.nih.gov/pubmed/21832859
http://doi.org/10.1681/ASN.V115835
http://doi.org/10.2215/CJN.04200511
http://www.ncbi.nlm.nih.gov/pubmed/21700818
http://doi.org/10.1136/heartjnl-2011-301247
http://www.ncbi.nlm.nih.gov/pubmed/22397946
http://doi.org/10.1097/MD.0000000000004203
http://www.ncbi.nlm.nih.gov/pubmed/27472690
http://doi.org/10.1159/000490686
http://doi.org/10.1186/s12882-020-01747-3
http://www.ncbi.nlm.nih.gov/pubmed/32272886
http://CRAN.R-project.org/package=caret
http://doi.org/10.1016/j.apgeog.2018.01.002
http://doi.org/10.1207/S15324796ABM2603_02
http://doi.org/10.1111/j.1365-2427.2005.01340.x
http://doi.org/10.1007/s10278-012-9506-2
http://doi.org/10.3109/15376516.2016.1139023
http://doi.org/10.1016/j.cmpb.2017.03.023
http://doi.org/10.6026/97320630013101
http://www.ncbi.nlm.nih.gov/pubmed/28584451
http://doi.org/10.1186/1471-2105-10-62
http://www.ncbi.nlm.nih.gov/pubmed/19228411
http://doi.org/10.1016/j.jbi.2014.11.013
http://www.ncbi.nlm.nih.gov/pubmed/25500636
http://doi.org/10.1016/S0031-3203(02)00257-1
http://doi.org/10.1109/TSMCB.2012.2187280
http://www.ncbi.nlm.nih.gov/pubmed/22438514
http://doi.org/10.1109/TR.2013.2259203
http://doi.org/10.1016/S2542-5196(18)30170-0


Int. J. Environ. Res. Public Health 2021, 18, 12807 13 of 13

34. Sun, B.; Lam, D.; Yang, D.; Grantham, K.; Zhang, T.; Mutic, S.; Zhao, T. A machine learning approach to the accurate prediction of
monitor units for a compact proton machine. Med. Phys. 2018, 45, 2243–2251. [CrossRef] [PubMed]

35. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
36. Ballantyne, K.N.; Van Oorschot, R.A.; Mitchell, R.J. Reduce optimisation time and effort: Taguchi experimental design methods.

Forensic Sci. Int. Genet. Suppl. Ser. 2008, 1, 7–8. [CrossRef]
37. Koschan, A.; Antony, J. Taguchi or classical design of experiments: A perspective from a practitioner. Sens. Rev. 2006, 26, 227–230.
38. Wyss, M.; Kaddurah-Daouk, R. Creatine and creatinine metabolism. Physiol. Rev. 2000, 80, 1107–1213. [CrossRef] [PubMed]
39. Brosnan, J.T.; da Silva, R.P.; Brosnan, M.E. The metabolic burden of creatine synthesis. Amino Acids 2011, 40, 1325–1331. [CrossRef]

[PubMed]
40. Brosnan, M.E.; Brosnan, J.T. Renal arginine metabolism. J. Nutr. 2004, 134, 2791S–2795S. [CrossRef]
41. da Silva, R.P.; Nissim, I.; Brosnan, M.E.; Brosnan, J.T. Creatine synthesis: Hepatic metabolism of guanidinoacetate and creatine in

the rat in vitro and in vivo. Am. J. Physiol. Endocrinol. Metab. 2009, 296, E256–E261. [CrossRef]
42. Brosnan, M.E.; Brosnan, J.T. The role of dietary creatine. Amino Acids 2016, 48, 1785–1791. [CrossRef] [PubMed]
43. Hosten, A.O. BUN and Creatinine. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K.,

Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990; Chapter 193.
44. Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From physiology to clinical application. Eur. J. Intern. Med. 2020, 72, 9–14.

[CrossRef] [PubMed]
45. Denic, A.; Glassock, R.J.; Rule, A.D. Structural and Functional Changes with the Aging Kidney. Adv. Chronic Kidney Dis. 2016, 23,

19–28. [CrossRef]
46. Karalliedde, J.; Viberti, G. Evidence for renoprotection by blockade of the renin-angiotensin-aldosterone system in hypertension

and diabetes. J. Hum. Hypertens. 2006, 20, 239–253. [CrossRef]
47. Ofstad, J.; Iversen, B.M. Glomerular and tubular damage in normotensive and hypertensive rats. Am. J. Physiol. Renal. Physiol.

2005, 288, 665–672. [CrossRef]
48. Orth, S.R. Smoking—A renal risk factor. Nephron 2000, 86, 12–26. [CrossRef] [PubMed]
49. Hall, J.E.; Henegar, J.R.; Dwyer, T.M.; Liu, J.; da Silva, A.A.; Kuo, J.J.; Lakshmi, T. Is Obesity a Major Cause of Chronic Kidney

disease? Adv. Ren. Replace. Ther. 2004, 11, 41–54. [CrossRef] [PubMed]

http://doi.org/10.1002/mp.12842
http://www.ncbi.nlm.nih.gov/pubmed/29500818
http://doi.org/10.1016/j.fsigss.2007.10.050
http://doi.org/10.1152/physrev.2000.80.3.1107
http://www.ncbi.nlm.nih.gov/pubmed/10893433
http://doi.org/10.1007/s00726-011-0853-y
http://www.ncbi.nlm.nih.gov/pubmed/21387089
http://doi.org/10.1093/jn/134.10.2791S
http://doi.org/10.1152/ajpendo.90547.2008
http://doi.org/10.1007/s00726-016-2188-1
http://www.ncbi.nlm.nih.gov/pubmed/26874700
http://doi.org/10.1016/j.ejim.2019.10.025
http://www.ncbi.nlm.nih.gov/pubmed/31708357
http://doi.org/10.1053/j.ackd.2015.08.004
http://doi.org/10.1038/sj.jhh.1001982
http://doi.org/10.1152/ajprenal.00226.2004
http://doi.org/10.1159/000045708
http://www.ncbi.nlm.nih.gov/pubmed/10971149
http://doi.org/10.1053/j.arrt.2003.10.007
http://www.ncbi.nlm.nih.gov/pubmed/14730537

	Introduction 
	Materials and Methods 
	The Classification Pipeline with CV 
	Using Different Strategies to Improve the Training Balanced Accuracy 
	Choosing the Strategy Combination Automatically 

	Results 
	Discussion 
	Conclusions 
	References

