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FANCD2 and DNA Damage

Manoj Nepal 12 ¢, Raymond Che 12, Chi Ma !, Jun Zhang 3 and Peiwen Fei 1-2*

1 Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA;

Mnepal@cc.hawaii.edu (M.N.); rche@hawaii.edu (R.C.); cma@cc.hawaii.edu (C.M.)

Graduate Program of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu,

HI 96813, USA

3 Department of Laboratory Medicine and Pathology, Mayo Clinic Foundation, Rochester, MN 55905, USA;
zhang jun@mayo.edu

*  Correspondence: pfei@cc.hawaii.edu; Tel.: +1-808-356-5786

Received: 31 July 2017; Accepted: 12 August 2017; Published: 19 August 2017

Abstract: Investigators have dedicated considerable effort to understanding the molecular basis
underlying Fanconi Anemia (FA), a rare human genetic disease featuring an extremely high incidence
of cancer and many congenital defects. Among those studies, FA group D2 protein (FANCD?2) has
emerged as the focal point of FA signaling and plays crucial roles in multiple aspects of cellular life,
especially in the cellular responses to DNA damage. Here, we discuss the recent and relevant studies
to provide an updated review on the roles of FANCD?2 in the DNA damage response.
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1. Introduction of the Fanconi Anemia Pathway

Fanconi anemia (FA) is a rare human genetic disease displaying various clinical symptoms such as
severe bone marrow failure, an extremely high incidence of cancer, and many other congenital defects.
The incidence of FA is relatively low, manifesting in less than 1 per 136,000 live births. However, the
frequency of normal individuals carrying mutations in any of the FA genes is considerably higher,
which is estimated at about 1 in 300. Whereby, the incidence of cancer in FA patients is thought
to occur at a rate approximately fifty fold higher than the general population and even several
hundred-fold higher for particular malignancies [1]. At the cellular level, FA is characterized by
chromosomal abnormalities and hypersensitivity to DNA crosslinking agents, such as mitomycin C
(MMCQ), diepoxybutane (DEB), and Cisplatin [2—4]. These common features are displayed in at least
22 known complementation groups FANC-A, B, C,D1,D2,E,EG,L,],L, M,N,O,P,Q,R,S, T, U, V and
W [5-17], which suggests that the FA proteins all function in a shared signaling transduction pathway,
namely, the FA pathway. This pathway is activated either during DNA replication or upon DNA
damage [18,19]. Upon activation, Fanconi anemia group D2 protein (FANCD?2) is monoubiquitinated
at K561 and works in cooperation with other FA and non-FA proteins [9,11,20-24] to repair DNA
damage [5]. In regards to the FA pathway, monoubiquitinated or activated FANCD?2 is often portrayed
as the functional representative for the functions of activated FA signaling. Within FA signaling or any
signaling networks, protein complex formation is essential in regulating signal transduction and FA
function. This includes the FA core complex, which is comprised of eight FA proteins and contains the
E3 function [6,9,11,21], of which FANCL is the catalytic subunit [25]. Silencing FANCL or any other
component of the FA E3 complex is a routine tool used in the laboratory to study the functions of
activated versus inactivated FANCD2.

In the past decade, we have been greatly interested in studying the role of the FA signaling
pathway in human cancer [26,27]. This pathway appears to be an essential part of the
DNA-damage repair-signaling network. Interestingly, four FA-gene products (FANCD1/J/N/S)
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are previously-known DNA-damage repair proteins (BRCA1/2, BRIP1, and PALB2), which are
mainly related to breast cancer susceptibility; and many others (FANCG/O/Q/R/U/V /W) are
also previously known proteins involved in DNA damage repair (Rad51, Rad51C, XRCC2/4/9, REV?7,
and RFWD3) [17,28]. With a considerable number of these functionally-significant players in the FA
signaling pathway, it is clear that the FA pathway is greatly important in maintaining genome stability
in response to a variety of genotoxic stresses in the general population. Therefore, we believe it is
crucial to first investigate the characteristics of FANCD2, the representative of the FA pathway, in order
to advance our understanding of how the FA signaling pathway protects human cells from genome
instability and thus neoplastic transformation.

2. The Importance of Fanconi Anemia Group D2 Protein (FANCD?2)

Amongst the FA genes, FANCD?2 is the most evolutionarily conserved gene, demonstrating a
high sequence similarity from lower eukaryotes to humans [29]. This differs from the other FA genes
(with the exception of FANCM [7]), as most of the FA homologs only exist in mammals, acting in
concert to respond to DNA damage [30]. DNA crosslinks are one of the few major forms of DNA
damage, which presents a major challenge to genomic stability. In eukaryotes, DNA crosslink repair is
a complex process; yeast cells require a combination of nucleotide excision repair (NER), homologous
recombination (HR) repair, and post replication repair/translesion DNA synthesis (TLS) to remove
DNA crosslinks. However, in mammalian cells, the cellular response to DNA crosslinks requires the
coordination of complex signaling networks, which includes the FA proteins/pathway [29]. Typically
in FA cells, the inability of FANCD2 to be monoubiquitinated appears to be a common molecular
defect in response to a variety of genotoxic stresses [12,15,27,31]. Many studies indicate that FANCD2
acts in coordination with many known repair proteins and those yet to be identified, and in nearly
all phases of the DNA damage response, damage-sensing, signal transduction, and execution of
repair. As such, FANCD2 can perform the signaling transduction role in ATM signaling; specifically,
the phosphorylation of FANCD?2 at Ser222, initiated by ATM, contributes to arresting cells in the S
phase of the cell cycle [32]. Considering checkpoint mechanisms centering on the coordinated events
[33], the DNA damage repair function of FANCD?2 is equally crucial in arresting or resuming cell
proliferation, or in helping eliminate over-damaged cells via apoptosis; however, the latter demands
additional studies.

To date, 22 corresponding FA genes have been identified, and their biallelic germline
mutations account for the occurrence of FA with the exception of FANCB and FANCR [34,35].
In addition, about 80% of the biallelic germline mutations are attributed to compromised FANCD2
monoubiquitination [36]. As monoubiquitination occurs on the evolutionarily conserved lysine
residues, mutations affecting either FANCD2 at K561 or its paralog FANCI at K523 appear to be
responsible for major molecular defects, as displayed by the hypersensitivity to DNA damage agents
in the FA cells [37,38]. Following monoubiquitination, FANCD2/1I is required to work in concert
with FANCD1/breast cancer type 2 susceptibility protein (BRCA2), FANCR/RAD51, FANCS/BRCA1,
FANCN, FANCJ, FANCO, FANCP, and FANCQ for DNA damage repair [39] in nearly all known repair
mechanisms, such as HR, TLS, or postreplication repair, and others [40,41]. To date, accumulated FA
studies have indicated that many of the FA and FA-associated proteins not only perform their common
role in the FA pathway, but also conduct tasks in an FA pathway-independent manner [42-45]. Among
them, FANCD2 is highly prominent and associated with numerous functions performed independent
of the FA pathway. This is further supported by its conservation in regards to its homologous presence
in the species, wherein many FA gene-related homologs are absent [27].

3. FANCD2 under Stressed Conditions

The cellular stress response is comprised of a network of signaling transduction pathways; when
DNA damage occurs, the signaling transduction pathways in this network are well coordinated and
divided into phases of sensing, signal transduction, and DNA-lesion repair. Specifically, surveillance
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proteins can sense DNA damage, initiate cell growth arrest, perform DNA-damage repair, and/or
execute cell death programs. These responses inhibit the generation of potentially deleterious cancerous
mutations to guard genome stability [46].

3.1. Cross Talking with Human Homologs of Yeast Rad6 (HHR6) Signaling

A similar sensitivity to crosslinking agents is displayed in FA cells as well as in the Rad6~/~
yeast-prompted study on the potential link between FANCD2 monoubiquitination and human
homologs of yeast Rad6 (HHR6) [47]. Subsequently, HHR6 was found to be capable of regulating
FANCD2 monoubiquitination in a distinct manner from FANCT (the ubiquitin conjugating enzyme
E2-UBEZ2T) [47], which cooperates with the FA complex E3 to monoubiquitinate FANCD?2 [12]. This
observation questioned whether or not hRad18, a functional partner of HHR®, also participated in the
regulation of FANCD2 monoubiquitination. To answer this, several studies showed that hRad18 could
also regulate FANCD2 monoubiquitination [48-50]. Moreover, monoubiquitinated FANCD2 was found
to modulate the activity of translesion DNA synthesis [26], at least partly through interacting with
pol eta at known regions previously characterized to interact with proliferating cell nuclear antigen
(PCNA) [51,52]. Importantly, upon DNA damage, the interaction between pol eta and FANCD2 occurs
earlier than that with PCNA [26]. Furthermore, it has been indicated that FANCD2 monoubiquitination
performs an anchoring role, similar to the histone proteins to bind DNA in general, but more specific
in regards to FANCD2 regulation of pol eta relocation at the site of damaged DNA [26]. Additionally,
FANCD2 monoubiquitination can also occur in vitro in the absence of the FA core complex E3 [53],
evidently showing it can act in an FA pathway-independent manner. Together, these studies indicate
that in the early phases of the DNA damage response, FANCD2 plays a crucial role as a sensor as well
as a messenger for the timely repair of damaged DNA (Figure 1).

3.2. Coupling with Ataxia Telangiectasia and Rad3-Related Protein (ATR)/Ataxia Telangiectasia Mutated
(ATM) Signaling

In response to genotoxic stresses, the FA pathway activates the FA core complex harboring the
activity of E3 ubiquitin ligase, which in turn leads to the monoubiquitination of FANCI and FANCD2
(Figure 1). The monoubiquitinated FANCI-FANCD2 complex is recruited to DNA damage sites and
promotes TLS, NER, and Rad51-medated HR [54,55]. Ataxia telangiectasia mutated (ATM) along
with its regulator, the MRN (Mrel 1-Rad50-NBS1) complex, sense double strand breaks (DSBs) [56].
Whereas, ATR with its regulator ATRIP (ATR-interacting protein) sense single strand DNA (ssDNA)
that was generated by processing DSBs, as well as the ssDNA present at the stalled replication forks.
Both kinases then phosphorylate proteins to initiate signaling cascades, which includes checkpoint
kinases (CHK1) and (CHK2), both of which can initiate a secondary wave of phosphorylation events
to extend signaling and promote DNA-damage repair signaling [57]. Typically, ionizing radiation can
lead to ATM phosphorylation of FANCD2 and Nijmegen breakage syndrome protein 1 (NBS1), and an
S-phase arrest [58]. Thus, FANCD2 not only performs a critical role in orchestrating the FA proteins in
the FA signaling pathway but also closely cooperates with ATM to issue an S phase arrest to modulate
cell proliferation and eventually prevent cells from genome instability.

In the FA pathway, the FANCD2/I complex has been known for its close partnership between
FANCD?2 and its paralog FANCI as early as 2007 when FANCI was identified [59]. Studies have
shown that many functions of FANCD?2 in the FA signaling pathway are largely dependent on the
phosphorylation of FANCI that is performed by ATR [60]. This is consistent with the non-ubiquitinated
state of the FANCD2-FANCI complex when recruited to DNA interstrand crosslinks [61]. BLM was
also found to be involved in the activation of FANCD?2 in stressed cells [62]. Certainly, this discovery
promotes its function in maintaining genome stability, which includes a newly identified role in
governing the stability of replication forks [63]. FANCD2 was also found to be required for proper
phosphorylation of H2AX (a variant of the H2A protein family) and hence activation of ATM in
rhabdomyosarcoma Rh30 cells, but not essential for ATR-Chk1 activation. This observation spans
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beyond the roles that FANCD2 plays in response to ICL damage [54,55] (as the focal point in the FA
signaling pathway). Here, FANCD2 acts more like a sensor, similar to those sensors passing signaling
in the early phase of the DNA damage response (DDR). This substantially contributes to ATM functions
in maintaining genome integrity in response to DNA DSB [64]. Furthermore, FANCD2 was also found
to be capable of modulating the enzymatic activities of FAN1 and pol eta [26,65-68], needed in the
later phase of the DDR for DNA damage repair. However, whether FANCD2 directly plays some
enzymatic roles in the DNA damage responses waits to be further investigated, although its nuclease
activity was proposed [69].

\ =\

FANCI

, Others

Figure 1. Outline of FA group D2 protein (FANCD2) functions under stressed conditions. In stressed
cells, ataxia telangiectasia and Rad3-related protein (ATR) or ataxia telangiectasia mutated (ATM)
is activated upon the generation of DNA single or double strand breaks (SSB or DSB), respectively.
FANCD2 activation/monoubiquitination issued from the Fanconi anemia (FA) core complex E3 and
an E2 (FANCT) can be promoted by the phosphorylation of FANCI triggered by activated ATR, thus
conducting important roles that have originated from the activation of ATR. FANCD2 can also play roles
not only in aiding ATM signaling for S phase arrest through ATM-dependent phosphorylation at 5222
but also possibly in facilitating the initiation of ATM signaling far more upstream via its involvement in
the phosphorylation of H2AX. Furthermore, human homologs of yeast Rad6 (HHR6) & hRad18 are also
capable of regulating the functions of FANCD2, together influencing the functions of the downstream
partners of FANCD?2, including Fanconi-associated nuclease 1 (FAN1), DNA polymerase eta (Pol eta),
and many others known or yet to be identified.
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3.3. Cooperating with Other Signaling Pathways

Previously, studies have suggested that signaling pathways such as PI3K and Ras are deregulated
during the progression of human malignancy. Additionally, the defective FA pathway function is
also a likely contributor during the course of the neoplastic transformation, which originates from
these defective signaling pathways. Moreover, in yeast, mechanistic target of rapamycin (mTOR)
promotes cell survival but at the cost of an increase in the alkylation agent melphalan, accompanied
with significant down-regulation of FANCD?2 [70]. Experiments have demonstrated that mTOR
signaling controls FANCD2 gene transcription via cyclin-dependent kinase 4 (CDK4), supporting
the observation that FANCD2 is regulated by Rb-E2F1(retinoblastoma protein-E2 transcription
factor 1) [71]. Furthermore, Ras, p53, and Rb signaling was also found to be able to circuit the
signaling control of FANCD2 by CDK4 [72]. This suggests that cancer cells with self-sufficiency in
growth signaling and resistance to anti-proliferation signaling may depend on the functional status of
FANCD?2 for survival and the activation of the DNA damage checkpoint mechanisms discussed above.
However, this field of studies regarding the FA proteins is relatively under-investigated, requiring
more studies to continue.

4. FANCD?2 in Non-Stressed Condition

As viewed above, huge attention has been given to the stress condition of cells where
monoubiquitination/activation of FANCD2 takes place to eventually repair damaged DNA. In contrast,
little attention has been given to FANCD2 under normal (non-stressed) conditions. In non-stressed cells,
the FA pathway is not constitutively active; rather, it is activated in the S phase of the cell cycle [31]. This
basal level of FANCD2 monoubiquitination occurring in normally growing cells has been demonstrated
to be essential for replication origins to fire at a normal rate [73]. Conversely, the loss of the basal level
of FANCD2 monoubiquitination leads to a slow rate of replication origin firing. For the first time, this
observation was able to give a rational explanation of the aging phenotype displayed in many FA
patients. With the studies focused on the FA proteins for their roles in resolving stalled replication
forks [62,74], whether FANCD?2 also plays roles in replication elongation and/or termination appears
to be another important aspect for future research on FANCD2 under non-stressed conditions. Recently,
with the progress of many modern research technologies, metabolomics has attracted many cancer
researchers to study the cancer mechanism at the metabolic level. Accordingly, the first metabolomics
study for the tumor promotion role played by a compromised FA signaling pathway filled the bank for
this related field of studies in metabolism, consistent with the well-accepted concept that cancer is one
of four major metabolic disorders, which also include aging, diabetes, and stroke [75]. These recent
studies on the involvement of FANCD?2 in metabolism via the mitochondria [36,76] further indicate
the importance of FANCD?2 functions in non-stressed cells, which unveil crucial biological functions
that were not previously considered.

5. Conclusive Remarks

FANCD2 critically governs the FA signaling pathway by interacting with FA and non-FA protein
partners for DNA damage repair to guard genome stability. On the other hand, FANCD2 can also
function as a veteran checkpoint-player (Figure 1), coupling with a variety of cellular processes outside
the FA signaling pathway. As DNA damage causes cancer, it is also acknowledged that, conversely,
DNA damage is also beneficial to the efficacy of cancer treatments. Recently, the development of
molecular inhibitors has become a promising therapeutic strategy to target DNA-damage repair by
inhibiting the DNA repair process. From viewing functions focused on FANCD2, the inhibition
of a DNA-damage repair player or even a whole process is harder to achieve than expected,
because the redundancy, overlapping, and multifaceted natures are rooted in the human DNA repair
signaling network, for which we shall need to have more in-depth studies to get into the bottom of
these properties.
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