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Abstract: The class EC 5.xx, a group of enzymes that interconvert optical, geometric, or positional
isomers are interesting biocatalysts for the synthesis of pharmaceuticals and pharmaceutical
intermediates. This class, named “isomerases,” can transform cheap biomolecules into expensive
isomers with suitable stereochemistry useful in synthetic medicinal chemistry, and interesting cases
of production of l-ribose, d-psicose, lactulose, and d-phenylalanine are known. However, in two
published reports about potential biocatalysts of marine origin, isomerases are hardly mentioned.
Therefore, it is of interest to deepen the knowledge of these biocatalysts from the marine environment
with this specialized in-depth analysis conducted using a literature search without time limit
constraints. In this review, the focus is dedicated mainly to example applications in biocatalysis
that are not numerous confirming the general view previously reported. However, from this overall
literature analysis, curiosity-driven scientific interest for marine isomerases seems to have been
long-standing. However, the major fields in which application examples are framed are placed at the
cutting edge of current biotechnological development. Since these enzymes can offer properties of
industrial interest, this will act as a promoter for future studies of marine-originating isomerases in
applied biocatalysis.
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1. Introduction

In 2010, one of the first comprehensive review articles about enzymes of marine origin especially
suitable for future applications in biocatalysis reported an account of the knowledge in the field.
As stated in the conclusion, the enormous pool of marine biodiversity is an excellent natural reservoir for
acquiring an inventory of enzymes that is one of the focal points of the potential of blue biotechnology.
The importance of the examples reported, picked up from the different classes of enzymes, supported
the view that the marine environment is to be considered as an additional source of new enzymes for
the biocatalysis. Important examples are among oxidoreductases and carbohydrate-active enzymes.
Their novel chemical and stereochemical properties are included in the list of useful habitat-related
characteristics possessed by these enzymes, adding value to the often-observed usual resistance of these
proteins to high salt concentration and/or organic solvent. Other enzymes, characterized by a potent
chemical action on nonactivated carbon atoms are also of extreme interest. Details on the characteristics
of other marine representatives belonging to other classes of enzymes (lipid active hydrolases, novel
esterases, and other hydrolytic activities) further supported the conclusion [1]. Isomerases are included
only with a few cases, in particular, an alanine racemase from the hepatopancreas of the black tiger
prawn, Penaeus mondon [2] and a fatty acid isomerase from marine alga Ptilota filicina [3].
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Moreover, in a subsequent review, dated 2016 [4], on the advances in marine enzymes used in food
and pharmaceutical applications, although the list of enzymes discussed included oxidoreductases,
hydrolases, transferases, ligases, lyases, and explicitly mentioned isomerases, no details on examples
of the latter class were reported.

Among the seven major groups of the international classification of enzymes, the class EC 5.xx and
subclasses include isomerases, a group of biocatalysts that interconvert optical, geometric, or positional
isomers. These enzymes, involved in the central metabolism of most living organisms, also have
trivial names, such as epimerase, racemase, cis-trans isomerases, cycloisomerase, and tautomerase,
according to the specific reaction types they catalyze. One of the illustrative examples is triose
phosphate isomerase (5.3.1.1) that catalyzes the interconversion of dihydroxyacetone phosphate and
d-glyceraldehyde 3-phosphate. In practical examples reported for the applications of isomerase in the
field of biocatalysis, some important molecules are prepared. In a recent review for the biocatalyzed
synthesis of pharmaceuticals and pharmaceutical intermediates [5], the cases reported concern the
transformation of cheap biomolecules into expensive isomers possessing suitable stereochemistry for
applications in synthetic medicinal chemistry, as described for production of l-ribose (l-arabinose
isomerase from Paenibacillus polymyxa), d-psicose (cascade reactions with thermophilic enzymes),
lactulose (cellobiose 2-epimerase from Caldicellulosiruptor saccharolyticus), and d-phenylalanine (cascade
reaction using d-succinylase from Cupriavidus and N-succinylamino acid racemase from Geobacillus
stearothermophilus). In addition, the use of racemases at the industrial level for chiral resolution of
racemates is mentioned. In these processes, the racemases are usually part of a cascade reaction
and other enzymes are responsible for the chiral resolution [6]. In their conclusions, the authors
recognized the widespread distribution of isomerases among species with high biodiversity, indicating
that isomerases suitable for many synthetic problems can be identified in particular habitats.

Economically successful biocatalytic processes depend on robust performance, high selectivity,
increased stability, increased activity, and broader availability of biocatalysts. Marine-originating
enzymes can offer most of these features. Environmental concern is the main factor to drive the growth
of the industrial enzymes market globally (projected to reach USD 8.7 billion by 2026). In this, growing
attention to green technologies for the conversion of biomass and saccharification of carbohydrate
polymers isomerases are included for starch and dairy industries.

The current interest for application-oriented isomerases in scientific literature is demonstrated in
the field of rare sugars applied as sweeteners and building blocks as in the study of ribose-5-phosphate
isomerase of an Ochrobactrum sp. [7] to increase reaction rate in isomerizing l-rhamnose to l-rhamnulose.

Prompted by this importance and by the rare mentions of biocatalysts of marine origin in
specialized reviews, it seems of interest to deepen the knowledge of isomerases from this habitat
dedicating a specialized in-depth analysis to them. Indeed, during this literature search, it became
evident that curiosity-driven scientific interest has been long-standing as in the case of phosphoglucose
isomerases in marine mollusks [8]. This review is dedicated mainly to examples of the applications
of marine isomerases, discussing general scientific interest from a historical perspective and in
tabulated forms.
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2. Literature Search

The search for articles in this review has been preliminarily conducted using the words “isomerase”
and “marine” in titles, abstracts, and keywords without interval time limit in the Science Direct database
with access to 3800 scientific journals in major scientific disciplines. However, the limited range of
articles retrieved (31 hits) prompted us to use the more generic PubMed database with the same words
thus retrieving 172 hits. Besides, trivial names of these enzymes (as epimerase, racemase, cis-trans
isomerases, cycloisomerase, and tautomerase) were also coupled with “marine” in an accessory search
using Web of Science database (Table 1). Science alert mailing lists were used, up to the manuscript
submission to update the analysis with the most recent results. In this review, an analysis of reports
about enzymatic activities already oriented to applications is firstly compiled in the central Section 3.
In Sections 4–6, tabulated lists of the remaining articles according to types of molecules on which these
isomerases can catalyze their reactions are discussed. Isomerases acting on carbohydrate molecules
(Table 2) [9–38] are listed in the first of three tables following with lipids (Table 3) [39–46] and amino
acids and peptides (Table 4) [47–74]. Each chronologically ordered line reports the name of the enzyme,
as indicated in the reference, the reaction catalyzed, and a short description of the intent and scientific
field of the work.

Table 1. Searches in literature.

Databases Search Statement Hits

Science Direct Isomerase * and marine in titles, abstracts and keywords 31
PubMed Isomerase * and marine 172

WoS 1 Marine epimerase * in All fields 53
WoS Marine racemase * in All fields 44
WoS Marine cis–trans isomerase * in All fields 56
WoS Marine cycloisomerase * in All fields 3
WoS Marine tautomerase * in All fields 26
WoS Marine mutase * in All fields 45

1 Web of Science, last date accessed June 2020 with updates up to submission; * indicated the plural.
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Table 2. Marine isomerases acting on sugar molecules.

Reference/Year Organism Enzyme Reaction Note

[9] 1973 Alga Pelvetia canaliculata Polymannuronic-5-epimerase
Conversion of polymannuronic acid

to a mixed polymer containing
guluronic acid

Preparation of ammonium sulfate
fraction of the enzyme

[10] 1977
Marine species of

Alcaligenes, Pseudomonas marina,
and Alteromonas communis

P-hexose isomerase Glycolytic pathway Entner–Doudoroff pathway

[11] 1984 Marine snails Phosphoglucose isomerase Glycolytic enzyme Tolerance to detergents as
monitoring tool

[12] 1985 Bivalve mollusks: Mytilus edulis
and Isognomon alatus Glucose phosphate isomerase Glycolytic enzyme Biochemical-based study of adaptation

of enzyme to temperature

[13] 1995 Psychrophilic marine eubacterium
Vibrio sp. strain ANT-300 Triosephosphate isomerase

Interconversion dihydroxyacetone
phosphate and d-glyceraldehyde-

3-phosphate
Thermolability study

[14] 1995 Marine red alga Gracilaria verrucosa Triosephosphate
isomerase

Interconversion dihydroxyacetone
phosphate and d-glyceraldehyde-

3-phosphate
Genetic study

[15] 2001 Polychaeta Polydora brevipalpa Glucose-6-phosphate isomerase Glycolytic enzyme Study of isozyme pattern

[16] 2001 Marine ammonia-oxidizing bacteria
Nitrosomonas Triosephosphate isomerases

Interconversion dihydroxyacetone
phosphate and d-glyceraldehyde-

3-phosphate
Purification and characterization

[17] 2003 Macroalga Solieria chordalis UDP-glucose- 4-epimerase Catalyzing both the synthesis of
UDP-Gal and UDP-Glc Characterization of the enzyme

[18] 2008 Blue mussel Mytilus edulis Mannose-6-phosphate
isomerase Glycolytic enzyme Genetic study

[19] 2010 Marine Geobacillus
stearothermophilus l-Arabinose Isomerase Converting d-galactose to d-tagatose Clone and sequence araA gene

[20] 2012 Marine copepod Tigriopus
californicus Phosphoglucose isomerase Glycolytic enzyme Genetic variability study

[21] 2012 Thermotoga maritima Tagaturonate-fructuronate
epimerase UxaE

Epimerization of tagaturonate to
fructuronate

Study of metabolism of galacturonate
and glucuronate from pectin and xylan
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Table 2. Cont.

Reference/Year Organism Enzyme Reaction Note

[22] 2012 Pyrococcus horikoshii UDP-glucose 4-epimerase Catalyzing both the synthesis of UDP-Gal
and UDP-Glc

Characterization study of the enzyme that
could be coupled with trehalose synthase

[23] 2013 Marine bacterium Bermanella
marisrubri sp. RED65 d-glucuronyl C5-epimerase Epimerization of d-glucuronic acid to its

C5-epimer l-iduronic acid

Recombinant protein expressed in
Escherichia coli showed epimerization

activity

[24] 2014 Brown algae Alginate-C5-
mannuronan-epimerase

Catalyze the conversion of mannuronate
to guluronate and determine the M/G

ratio of alginate

Genetic study: predicted 94 algG genes
open reading frame (ORF) sequences of

brown algae

[25] 2015 Marine bacterium Vibrio sp. 3,6-Anhydro-l-galactonate
cycloisomerase

Converts 3,6-anhydro-l-galactonate into
2-keto-3-deoxygalactonate

Identification of intermediate products of
3,6-anhydro-l-galactose

[26] 2015 Pyrococcus horikoshii Phosphomannose isomerase Mannosylglycerate biosynthetic pathway
Recombinant protein expressed in E. coli

with double activity (Man-1-P GTase
activity)

[27] 2016 Marine Pacific whiteleg shrimp
Litopenaeus vannamei Triosephosphate isomerase

Interconversion dihydroxyacetone
phosphate and

d-glyceraldehyde-3-phosphate

Structural and mechanistic study and
insights into glycolysis regulation in

crustaceans

[28] 2016 Marine
bacterium Fulvimarina pelagi Xylose isomerase Interconversion of d-xylose and

d-xylulose

Cloning, expression, and characterization
for use in biofuels’

production

[29] 2016 Brown alga Ectocarpus Mannuronan C5-epimerase

Control the distribution pattern of (1-4)
linked β-d-mannuronic acid (M) and
alpha-l-guluronic acid (G) residues

in alginates

Transcript expression

[30] 2016 Alga Saccharina japonica Mannuronan C5-epimerase

Control of the distribution pattern of (1-4)
linked β-d-mannuronic acid (M) and
alpha-l-guluronic acid (G) residues

in alginates

Functional recombinant expression of
protein in insect-cell system revealing

alternate epimerization of
beta-d-mannuronic acid to

alpha-l-guluronic acid

[31] 2017 Vibrio sp. strain EJY3 3,6-Anhydro-l-galactonate
cycloisomerase

Converts 3,6-anhydro-l-galactonate into
2-keto-3-deoxygalactonate

Crystallization and X-ray analysis of
recombinant protein
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Table 2. Cont.

Reference/Year Organism Enzyme Reaction Note

[32] 2017 Octopus fangsiao Triosephosphate isomerase
Interconversion dihydroxyacetone

phosphate and
d-glyceraldehyde-3-phosphate

Study of allergen function

[33] 2017 Freshwater crayfish Procambarus
clarkii Triosephosphate isomerase

Interconversion dihydroxyacetone
phosphate and

d-glyceraldehyde-3-phosphate
Study of allergen function

[34] 2017 Marinactinospora thermotolerans GDP-l-galactose mutase Conversion of pyranose form to
furanose structure

Study of the sugar
biosynthetic pathway

[35] 2018 Marine fungus-like
thraustochytrids Xylose isomerase Interconversion of d-xylose and

d-xylulose
Identification and characterization of

xylose metabolism

[36] 2019 Scylla paramamosain Triosephosphate isomerase
Interconversion dihydroxyacetone

phosphate and
d-glyceraldehyde-3-phosphate

Crystal structure

[37] 2019 Gracilariopsis lemaneiformis
Mannose-6-phosphate

isomerase,
GDP-mannose-3,5-epimerase

Pathways of floridean starch

Transcriptomic study for the study of
the mechanism of substrate

competition of synthesis pathways of
floridean starch

[38] 2020 Marine Streptomyces lividans
RSU26 Glucose isomerase Fructose to glucose conversion Characterization study and

optimization of enzyme production
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Table 3. Marine isomerases acting on lipid molecules.

Reference/Year Organism Enzyme Reaction Note

[39] 1993 Rainbow trout
Oncorhynchus mykiss

3β-hydroxysteroid
dehydrogenase/∆(5-4)-isomerase

Steroidogenic enzymes involved in
the production of

17α-hydroxyprogesterone
Genetic study

[40] 1997 Marine bacterium Agrobacterium
aurantiacum Carotenoid gene cluster β-carotene biosynthesis Metabolic engineering study

[41] 1997 Alga Ptilota filicina Polyenoic fatty acid isomerase Assay by conversion of arachidonic
acid to a conjugated triene

Biochemical study of binding site
characteristics

[42] 1999 Marine bacterium Agrobacterium
aurantiacum

Isopentenyl diphosphate (IPP)
isomerase and gene cluster

(crtBIYZW)
Isoprenoid pathway Study to enhance astaxanthin production

by engineering isoprenoid pathway

[3] 2002 Marine alga Ptilota filicina Polyenoic fatty acid isomerase Assay by conversion of arachidonic
acid to a conjugated triene

Study of protein
characterization and functional

expression

[43] 2008 Marine fungus Schizochytrium
Enzymes involved in

biosynthesis of fatty acid via
polyketide synthases

Confirmation PKS pathway Genetic study of docohexanoic acid
biosynthesis

[44] 2012 Marine alveolate Chromera velia Isopentenyl diphosphate
∆-isomerase Sterol biosynthesis Study of sterol composition of Chromera

velia for chemotaxonomic relationships

[45] 2019 Marine thraustochytrid
Aurantiochytrium

Isopentenyl pyrophosphate
isomerase

Biosynthetic pathways of
docosahexaenoic acid (DHA) and

ketocarotenoid astaxanthin

Analyses of the genome, transcriptome,
key enzymes, and pathway products

[46] 2020 Dunaliella salina 15-cis-Z-carotene isomerase,
prolycopene isomerase β-carotene biosynthesis

Study of
β-carotene biosynthesis: seven full length

cDNA
sequences cloned



Mar. Drugs 2020, 18, 580 8 of 22

Table 4. Marine isomerases acting on amino acids and peptides.

Reference/Year Organism Enzyme Reaction Note

[47] 1985 Bivalve Corbicula japonica Alanine racemase l to d alanine Partial purification and characterization

[48] 1992 Eighteen molluscan species Alanine racemase l to d alanine Comparative study and distribution

[49] 1995 Haloferax volcanii and Haloarcula
species Lactate racemase l to d lactate Study of enzymatic diversity among

species

[50] 1997 Halobacterium cutirubrum Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding
Genetic study and expression in E. coli

[51] 2000 Crayfish Procambarus clarkii Alanine racemase l to d alanine Isolation, kinetic properties, substrate
specificity, structural characteristics

[2] 2001 Black-tiger prawn, Penaeus
monodon Alanine racemase l to d alanine Kinetic properties and substrate

specificity

[52] 2005 Microalga Thalassiosira sp. Alanine racemase l to d alanine Kinetic properties and substrate
specificity

[53] 2006 Marine gastropod Cellana grata Alanine racemase l to d alanine First purification study and kinetic
assessment in gastropod

[54] 2011 Marine cone snails Disulfide isomerase Oxidation, isomerization,
and reduction of S–S bonds

Proteomic study showing presence of
multitude of isoform of the enzyme

[55] 2012 Channel catfish Ictalurus
punctatus Disulfide isomerase Oxidation, isomerization and

reduction of S–S bonds Genetic study

[56] 2013 Marine alga Ulva lactuca Disulfide isomerase Oxidation, Isomerization,
and reduction of S–S bonds Study of cloning and expression

[57] 2013 Crab Eriocheir sinensis Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Purification of recombinant protein and
assessment of antifungal properties

[58] 2014 Marine bacterium Vibrio
anguillarum

Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Changes in protein expression of V.
anguillarum, gene expression in E. coli and

biochemical characterization

[59] 2015 Core snails Disulfide isomerase Oxidation, Isomerization,
and reduction of S–S bonds Proteomic study
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Table 4. Cont.

Reference/Year Organism Enzyme Reaction Note

[60] 2016 Marine Alphaproteobacteria A novel family of
peptidyl-prolyl isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding
Structural and functional characterization

[61] 2016 Marine heterotrophic bacterium
Roseobacter litoralis Serine racemase Racemization and minor dehydration

of serine Genomic analysis

[62] 2016 Thermophilic chlorophycean
microalga, Scenedesmus sp.

Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Cloning and expression of the enzyme in
E. coli and indication of role in
stress-tolerance mechanisms

[63] 2016 Marine thaumarchaeote
Nitrosopumilus maritimus

Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding
A protein structure study

[64] 2016 Superfamily Conoidea Disulfide isomerase Oxidation, Isomerization,
and reduction of S–S bonds

Study of diversification of enzymatic
protein folding correlated with

diversity of conotoxins

[65] 2016 Marine snails belonging to
Conus Disulfide isomerase Oxidation, Isomerization,

and reduction of S–S bonds

Transcriptomic and in silico analysis and
characterization of the group of PDI

protein sequences

[66] 2016 Oyster Crassostrea ariakensis
Gould

Peptidyl-prolyl isomerase
(cyclophilins)

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Enzymatic tissue distribution and role of
the three enzymes identified and
involvement in in oyster immune

response

[67] 2017 Cone snail species Disulfide isomerase Oxidation, Isomerization,
and reduction of S–S bonds

Cloned 12 disulfide isomerase genes and
study of reaction on conopeptides

[68] 2017 Shrimp, Litopenaeus vannamei Peptidyl-prolyl isomerase
(cyclophilins)

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Cloning and tissue distribution of the
enzyme

[69] 2017 Red alga Pyropia seriata Peptidyl-prolyl isomerase
(cyclophilins)

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding
Transcriptomic study
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Table 4. Cont.

Reference/Year Organism Enzyme Reaction Note

[70] 2018 Cyanobacterial genomes
PoyD, a member of the radical

S-adenosylmethionine
superfamily

Introducing d-amino acids into a
ribosomally synthesized peptide

Heterologous expression in E. coli,
detection of epimerase activity,

and localization of epimerization sites

[71] 2019 Cyanobacteria AerE, a cupin superfamily
enzyme

1,3-allylic
isomerization

Study of the biosynthesis of aeruginosins
trapeptides

possessing antithrombotic activity

[72] 2019 Halotolerant Streptomyces sp.
strain GSL-6C Inferring new epimerases Conversion of l- to d-amino acids Genome analysis integrating a study on

salinipeptins

[73] 2019 Hydrothermal vent mussel
Bathymodiolus azoricus

Peptidyl-prolyl cis/trans
isomerase

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Study of proteome changes upon Cd
exposure for bioindicator identification

[74] 2020 Marine red algae
Pyropia yezoensis

Peptidyl-prolyl isomerase
(cyclophilins)

Isomerization of peptide bonds
(trans-cis) at Pro residues; facilitates

protein folding

Analysis of
the biological activity of recombinant

cyclophilin
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3. Application-Oriented Biocatalysts

A few applicative examples of works using marine isomerase are collected in this paragraph.
A gene encoding for d-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, has been

expressed in E. coli, and the production of d-xylulose from β-1,3-xylan was carried out. This paper
concerns the growing attention to green technologies for the conversion of biomass and saccharification
of carbohydrate polymers, in particular, the polysaccharide β-1,3-xylan of the invasive green alga
Caulerpa taxifolia. Marine Vibrio sp. strain can grow on β-1,3-xylan as a sole carbon source; the rationale
for the work is based on the synergistic action of two types of enzymes enabling the complete
degradation of β-1,3-xylan to d-xylose, i.e., 1,3-β- d-xylan xylanohydrolase and a β-1,3-xylosidase.
d-xylulose is then formed by the marine d-xylose isomerase. d-xylulose can be used for ethanol
fermentation thus allowing the use of the algal polymer β-1,3-xylan of C. taxifolia as a base for ethanol
production. The article is a preliminary study for a possible real application of the total saccharification
of the polymer. The work has been conducted by purified enzymes, and 2.62 g/L reducing sugars were
released by the action of the two β-1,3-xylan degrading activities, the subsequent isomerization of
d-xylose thus producing d-xylulose. Time-course experiments analyzing reaction mixtures by HPLC
were reported, and different reaction conditions were analyzed also in presence of sodium tetraborate
for possible complexes with xylulose-borate shifting the equilibrium [75].

Yarrowia lipolytica is a marine microorganism of industrial interest for the physiological ability to
utilize different substrates for growth (polyalcohols, organic acids, and long-chain hydrocarbons). In a
recent short communication [76], the isomaltulose production using an engineered Yarrowia lipolytica
strain is reported. Sucrose isomerase catalyzes the enzymatic rearrangement of the α-1,2 linkage
between glucose and fructose to an α-1,6 linkage (producing isomaltulose) or α-1,4 linkage (producing
trehalulose). Marine origin examples of sucrose isomerase and its use for biological isomaltulose
production were not known up to a review of 2014 [77]. In fact, the sucrose isomerase overexpressed
from Pantoea dispersa but the high and efficient process of isomaltulose production was based on enzyme
production and enzymatic catalysis during fermentation, thus reducing costs and simplifying the
bioprocess. The maximum isomaltulose production was 572.1 g/L, with a yield of 0.96 g/g of sucrose.

A very recent report demonstrates the use of l-arabinose isomerase for production of D-tagatose,
a rare sugar of importance in the food industry that has been approved as GRAS drug by the US Food
and Drug Administration and used as a substitute for sucrose in low-calorie sweeteners. As in the
above case, although the enzyme is from Lactobacillus sakei 23K and converts d-galactose from agar
into d-tagatose, it is worth to mention this research effort here to show the interest for the profitable
application of red algae carbohydrate polymers as a substrate for d-tagatose production (Figure 1) [78].Mar. Drugs 2020, 18, 580 10 of 21 
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Figure 1. Reaction scheme of l-arabinose isomerase. The enzyme can also convert d-galactose to
d-tagatose with lower efficiency. The enzyme is also present in the marine Geobacillus stearothermophilus
(see Table 2).
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Ribose-5-phosphate isomerase is another enzyme of interest in the field of rare sugars that are
used as sweeteners and for production of interesting building blocks for fine chemistry as reported
in the study of ribose-5-phosphate isomerase from an Ochrobactrum sp. [7] to increase reaction rate
in isomerizing l-rhamnose to l-rhamnulose already mentioned. Although the microorganism was
isolated from soil samples, marine examples are also known and could be potential alternatives.
Substrate specificity and reaction properties were explored, the results encouraged for the application
of ribose-5-phosphate isomerase as a biocatalyst in preparation of rare sugars.

A report already present in literature in 1994 was the first describing a novel isomerase for the
biosynthesis of conjugated triene-containing fatty acids in the red alga Ptilota filicina [79]. At the time,
in fact, many hypotheses and studies on the biosynthetic pathway of conjugated polyenes in marine
organisms were already present in literature, coming from studies centered on natural products of
marine origin. The main interest is focused on pharmacological studies indicating a role for these
bioactive molecules in the treatment of tumors, against weight gain, and as enhancers of the immune
system. In particular, the biosynthesis of a conjugated triene (4,5Z,7E,9E,14Z,17Z)-eicosapentaenoic
acid from eicosapentaenoic acid was indicated. The product is present among natural products of the
red alga Ptilota filicina. The enzyme was isolated from alga tissues and assayed with arachidonic acid
forming a triene structure, evidenced by UV absorption. The product of arachidonate incubation was
also identified as the corresponding conjugated triene metabolite. A substrate specificity investigation
revealed that the eicosapentaenoic structure was the best substrate for the enzyme. Incorporation of
deuterium at C11 position of arachidonate was demonstrated by 1H NMR spectroscopy and mass
spectrometry for the reaction conducted in the deuterated buffer. Intramolecular and intermolecular
hydrogen transfers using stereospecifically deuterated substrates and oxygen sensibility of reaction
were also studied. These authors were able to show that unlike the well-characterized aerobic reaction
of lipoxygenases, molecular oxygen was not required by their isomerase with no net desaturation
occurring during the reaction, thus providing useful insights for the use of these biocatalysts as tools for
the synthesis of novel compounds. Later in time, the P. filicina enzyme was purified to electrophoretic
homogeneity, and the cloning and functional expression including the study of other important
characteristics such as molecular weight, subunit structure, and glycosylation were reported [3].
The ability of this enzyme in the isomerization of methylene interrupted olefins led the authors to
try the reaction with anandamide, the well-known N-ethanolamide of arachidonic acid, the first
endogenous ligand of cannabinoid receptor. The conjugated triene anandamide product was shown to
possess high-affinity binding for the receptor [80] (Figure 2). A 33% yield was obtained in preparative
experiments for the full spectroscopic chemical characterization of the reaction product. As the
same authors speculated, they were able to show the use of these marine enzymes in the synthetic
production of novel compounds for pharmacological probes. The same group already studied,
in 1991, the oxylipin metabolism. In this work, the conversion of arachidonic acid into the vicinal
diol fatty acid 12R,13S-dihydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid by an acetone powder of the
marine red alga, Gracilariopsis lemaneiformis, occurred via intermediate formation of hydroperoxide
12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid, postulating the existence of a hydroperoxide
isomerase in this red alga. The broad substrate specificity and the high stereospecificity of the product
formed in the step of oxygen insertion were of interest in the application in biocatalysis [81].

By studying how cultured fish cells derived from turbot (Scophthalmus maximus), gilthead seabream
(Sparus aurata), and Atlantic salmon (Salmo salar) metabolize all-cis octadecapentaenoic acid, some
authors discovered the action of an isomerase acting on all-cis 18:5n-3 acids producing 2-trans 18:5n-3
acids thought to be common intermediates in the β-oxidation of these acids by marine animals [82].
Similar isomerases acting on double bonds of different compounds have been hypothesized in a study
on biodegradation of alkenones and related compounds of the marine microalgae Emiliania huxleyi by
microbial mats collected in large ponds. Among products, authors found cis/trans or trans/cis alkene
and alkenone isomers and suggested that the formation of these isomeric compounds is likely due to
extracellular bacterial cis/trans isomerases [83].
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In a study centered on searching for marine microorganisms capable of carbazole remediation
schematically represented in Figure 3, the marine bacterium Neptuniibacter sp. strain CAR-SF has been
found utilizing carbazole as its sole carbon and nitrogen sources [84]. Among the enzymes involved
in the degradation pathway, 4-oxalocrotonate tautomerase (and others) is indicated, and Escherichia
coli cells transformed in this work required ferredoxin and ferredoxin reductase for necessary initial
dioxygenation of carbazole. The authors indicated that this was the first report of genes involved in
carbazole degradation isolated from a marine bacterium, however, only the conversion product of
carbazole through dioxygenation by dioxygenase was found (2′-aminobiphenyl-2,3-diol).
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Figure 3. Carbazole degradation to 2′-aminobiphenyl-2,3-diol. Remediation study is present for this
compound by the marine bacterium Neptuniibacter sp. A tautomerase could be involved in the lower
degradation pathway as in total cleavage pathway for the degradation of phenols, modified phenols,
and catechols.

Various enzymes have been analyzed in an interesting report [85] on strategies for the
deracemization of a racemate into a single stereoisomeric product; these include mandelate racemase,
lactate racemase, or alkyl sulfatases from the actinomycete Rhodococcus ruber DSM 44541, the marine
planctomycete Rhodopirellula baltica DSM 10,527, and others, known to possess a rich inorganic sulfur
metabolism. Although not belonging to isomerases, it is worth mentioning that alkyl sulfatases display
not only enantioselectivity but also stereoselectivity for retention or inversion of the configuration of the
formed product during sulfate hydrolysis and these authors report about a scheme devised to produce
single stereoisomer from racemate. The (±)-sec-alkyl sulfate ester is subjected to inverting alkyl sulfatase
producing a mixture of hydrolyzed ester with the same configuration of the remaining unreacted ester.
The latter is then hydrolyzed in a chemical step with retention of configuration producing the alcohol
in this enantioconvergent process (Figure 4). The importance of marine-originating biocatalysts is
clearly assessed by this example.
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Figure 4. The reaction scheme for the enantioconvergent chemoenzymatic hydrolysis of sulfate esters
by inverting marine Rhodococcus sulfatase. Big arrow indicated the preferred substrate.

Cytochromes P450 are important biocatalysts performing hydroxylation reactions in regio-
and stereospecific manners operating on inactive carbon atoms; they are useful for the bioassisted
synthesis of organic molecules. In an interesting paper [86], authors constructed a fusion protein of
a peptidyl-prolyl cis-trans isomerase isolated from the hyperthermophilic archaeon Thermococcus sp.
with the cytochrome P450 BM3 derived from Bacillus megaterium and evaluate its stability in E. coli
cells in a series of bioconversion experiments with various substituted naphthalenes. It is known
that peptidyl-prolyl cis-trans isomerases catalyze the cis-trans isomerization of the proline imide
bond in polypeptides, which may affect the folding rate of proteins. This fusion protein exists
as the predominant soluble protein and more stable than the unfused P450. Various substituted
naphthalenes were converted to their monohydroxylated derivatives, and the reaction was also tested
on a sesquiterpene (Figure 5) that has physiological functions such as β-eudesmol that was found to be
hydroxylated in a regio- and stereo-specific manner.Mar. Drugs 2020, 18, 580 13 of 21 
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4. Marine Isomerases Acting on Sugar Molecules

In Table 2, the articles [9–38] found on isomerases acting on carbohydrate pathways are briefly
listed. As cited in the first entry about Pelvetia canaliculata in 1973 [9], the scientific interest was early
generally present in literature since 1956 in investigations conducted on different organisms. For an
algal polymannuronic-5-epimerase, converting polymannuronic acid to a mixed polymer containing
guluronic acid, the preparation of ammonium sulfate precipitation was reported [9]. Scientific interests
for the articles listed in Table 2 and experimental methodologies used reflected the successes in
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biochemistry, molecular biology, and genetics achieved during the last century. All these listed articles
did not contain applicative results that are detailed above in the paragraph on application-oriented
biocatalysts. Very often, a basic study of the marine biocatalyst is reported as in the case [28] of xylose
isomerase from Fulvimarina pelagi. It was identified by sequence analysis of the F. pelagi genome,
i.e., PCR amplified, cloned, and expressed in E. coli, while the aim of the work is framed into the field
of biofuel production (Figure 6).
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Figure 6. Xylose isomerase reaction; the enzyme catalyzes the interconversion of aldose and ketose
sugars with broad substrate specificity; in the case of glucose, fructose is formed, and xylose isomerases
are used extensively in the high-fructose corn syrup industry. The hemicellulose fraction of cellulosic
biomass can be converted to xylose by xylanases, the need of xylose isomerase is based on the possibility
of fermenting d-xylulose by Saccharomyces cerevisiae completing biomass utilization, being xylose
not fermented.

In some cases, the interest of the article is focused on biomedical field as for the two reports [32,33]
for the study of allergen function of triosephosphate isomerases from Octopus fangsiao and freshwater
crayfish Procambarus clarkii. The consumption of seafood products, in fact, can be related to the
high frequency of food-induced immune responses, and these studies are important to develop
therapeutic and diagnostic approaches to these issues. In the case of freshwater crayfish Procambarus
clarkii, the increased production and consumption can result, in fact, in allergic reactions, including
life-threatening anaphylaxis. Another interesting article showing modern scientific interest is the one
related to GDP-l-galactose mutase in Marinactinospora thermotolerans [34], an article dealing with a rare
and interesting molecule, l-Galf, hardly found in the environment; the biosynthetic action and roles
and relevant enzymes acting on l-Galf are of interest as this moiety is inserted in an aminonucleoside
antibiotic possessing medicinal potential.

5. Marine Isomerases Acting on Lipid Molecules

Table 3 contains a few listed articles concerning isomerases acting on lipid molecules. The scientific
interest was present as early as the beginning of the 1990s as indicated by the genetic study [39]
related to the steroidogenic enzyme involved in the production of 17α-hydroxyprogesterone in the
trout Oncorhynchus mykiss. The enzyme, produced after expression of cDNA in COS-1 cells, was
capable of converting dehydroepiandrosterone to androstenedione. The article, aimed at the finding
of necessary probes for identification of steroidogenic enzyme genes in fish species, is in the frame
of investigations on the molecular evolution of vertebrate steroidogenic enzymes. As for industrial
production of carotenoid pigments such as β-carotene and astaxanthin utilized as food or feed
supplements, the interest for the marine bacterium Agrobacterium aurantiacum is well documented [40]
in the reported review discussing the advances achieved in the field of metabolic engineering for the
microbial production of these compounds at the end of 1990s’. In 1999 [42], from the same bacterium,
a gene cluster was introduced into E. coli to produce astaxanthin at a value 50 times higher than
previously achieved. All the aspects about the enzymes of interest from the marine alga Ptilota filicina
were already discussed in the previous paragraph, and recent interest for Dunaliella salina [46] in this
field is also present; the latter study provides an insight for induction of β-carotene production in
optimized cultivation systems. The case of Schizochytrium, the marine fungus producing significant
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amounts of docosahexaenoic acid (DHA) is of very interest due to positive effects on atherosclerosis,
hypertriglyceridemia, hypertension, and cancers of the compound. The paper listed reports of the
mechanisms of DHA biosynthesis in Schizochytrium constructing and analyzing cDNA library with
the possible interesting prospect for new tools to engineer the production of PUFAs [43]. The sterol
composition and the related biosynthetic genes were also studied in Chromera velia [44], a marine
alveolate although the work is framed in the field of basic studies about sterol composition for deriving
chemotaxonomic relationships.

6. Marine Isomerases Acting on Amino Acids and Peptides

In Table 4, many articles reported concern alanine racemase found in marine organisms.
This enzyme, previously discovered in 1951 in other sources was found [47] in the bivalve Corbicula
japonica in 1985. The authors partially purified the protein evaluating biochemical properties in relation
to those of bacterial origin and linked enzyme role to the osmoregulation in these marine organisms.
Many other works related to this enzyme are present [2,48,51–53] always concerning the osmoregulation
action, as in the crayfish Procambarus clarkii and in the hepatopancreas of black-tiger prawn, Penaeus
monodon, up to recent interest for salinipeptins, a group of natural peptides in halotolerant Streptomyces
isolated from the Great Salt Lake. Salinipeptins, natural products containing D-amino acids, are
subjected to extensive enzymatic post-translational modifications during biogenesis [72]. They are
substrates of potentially new epimerases of interest during these bioprocesses. A study related to
genomic analysis of serine racemase is also found [61]; d-serine, besides frequently found in the bacterial
cell walls, lipopeptides and siderophores, also exists as a free molecule in the marine environment with
Roseobacter litoralis being a special producer. The cases related to disulfide isomerase are also numerous
in this Table. They are mostly related to the studies on conotoxins or conopeptides, disulfide-rich
peptides found in cone snails that found application in research and possible therapy. The studies
mainly based on genetics focus the attention on post-translational reactions catalyzed by these enzymes
for diversification of conopeptides structures and folding. Other interests are related to mechanisms
of the immune response. Another topic of great interest among these isomerases is related to the
cyclophilins (peptidyl-prolyl cis-trans isomerase, PPIase activity) that catalyze the isomerization of
peptide bonds from trans to cis at proline residues and facilitate protein folding. Their expression is
usually enhanced in response to inflammation or malignancy and are involved in functions related
to cell metabolism and energy homeostasis and are of therapeutic importance for these and other
actions (antifungal, antiviral, and antioxidant activities); they are also of economic importance in
oysters cultivation for their involvement in the oyster immune response against infections of Crassostrea
ariakensis by pathogen rickettsia-like organisms [66].

7. Other Enzymes

There are other reports on different enzymatic activities belonging to isomerases that do not fit
well into the sections above and are mentioned in this paragraph. The first is an interesting review on
chitin metabolism in the marine environment [87]. Authors hypothesized the presence of a mutase in
the chitin catabolic cascade, in a more complex system with respect to the usually simplistic accepted
hydrolytic pathway based on a chitinase producing the disaccharide N,N′-diacetylchitobiose, and on
a beta-N-acetylglucosaminidase producing the final product GlcNAc. The mutase, as described
in this review, could represent the activity that converts GlcNAc-1-P, generated from small chitin
oligosaccharides and chitobiose for entering the cell membrane, into the 6-P.

Various other articles are present dealing with dopachrome tautomerases involved in the
final step of the enzymically regulated melanin biogenesis for the conversion of dopachrome
into dihydroxyindoles. In marine organisms, especially in bivalves, the enzymes involved in the
biogenesis of melanin are recognized as the general class of phenoloxidases while less is known
about the existence and functional role of dopachrome tautomerase genes [88] in mollusk or other
organisms [89,90]. However, this field of investigation is quite active due to the role of D-dopachrome
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tautomerase as cytokine, member of the macrophage migration inhibitory factor protein superfamily.
They are associated to important physiological processes such as cell recruitment and migration,
tumorigenesis and cancer progress, and inflammatory and autoimmune diseases. Many of these studies
on immune system of marine fish may contribute to develop better disease management strategies
for fish aquaculture as for Japanese sea bass (Lateolabrax japonicus) [91] or for the clam Ruditapes
philippinarum [92].

8. Conclusions

The study of biocatalysts on a global scale from marine environment is just starting and possesses
huge potential for the development of applications with industrial benefits due to marine biological
diversity and to the specificity of biological marine metabolisms. This knowledge constitutes the core
of marine biotechnology and only a deep understanding of the complexity of this ecosystem will
enable human beings to protect the oceans and organisms populating them and pave the way for the
sustainable exploitation of marine resources. Among the many fields covered that are highly relevant
to societal challenges the biorefinery value-chain, food industries and fine chemicals are included
among others. However, many challenges remain, generally speaking a deep comprehension of the
“marine biotechnology landscape” and a multidisciplinary approach, in education and training [93].

In two comprehensive reports on examples of the application of marine-originating biocatalysts in
2010 and 2016 abovementioned [1,4], marine isomerases were hardly discussed although other classes
of enzymes cited are used in food and pharmaceutical applications. After the analysis of literature
articles, a first undoubted conclusion of this in-depth review is that curiosity-driven scientific interest
for these enzymes seems to be present for a long time. Most of the literature found, tabulated according
to the type of molecules on which these enzymes act, indicated a general scientific interest in historical
perspective in different fields. As more recent examples, the biomedical field for allergen function of
triosephosphate isomerases for seafood consumption, or efforts for the elucidation of the biosynthetic
action of GDP-L-galactose mutase acting on interesting and rare L-Galf, must be mentioned. As for
isomerases acting on lipid molecules, both basic interest for investigations on the molecular evolution
of vertebrate steroidogenic enzymes or more oriented studies for carotenoid pigments production,
are present. Similar situation for isomerases acting on protein molecules was noted, e.g., of alanine
racemases, in the studies related to the role of the osmoregulation in marine organisms and for new
epimerases catalyzing interesting bioprocesses during post-translational modifications of natural
peptides known as salinipeptins.

On the other hand, application-oriented examples of marine isomerases already applied in
biocatalysis are a few confirming the general result reported in previously published reviews [1,4].
However, major fields in which these few papers are framed are depicted in a better manner in this
review. Works are placed at the cutting edge of biotechnological development such as the conversion
of biomasses and saccharification of carbohydrate polymers (d-xylose isomerase), in biomedicine
and nutraceuticals (isomaltulose production, l-arabinose isomerase for production of d-tagatose and
ribose-5-phosphate isomerase), and in bioremediation field (cytochromes P450, carbazole remediation,
etc.). Therefore, despite the scarcity of direct applicative examples found, novel stability features
and chemical/stereochemical properties found in general examples of marine biocatalysts will be
present in the numerous studied isomerases as well. These enzymes in fact can offer properties related
to the habitat, which are greatly appreciated under a general biotechnological perspective. As last
conclusion, it can be said that these properties will surely act as a promoter for future studies of these
marine-originating isomerases in applied biocatalysis.
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