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Abstract

ChemProt is a publicly available compilation of chemical-protein-disease annotation re-

sources that enables the study of systems pharmacology for a small molecule across

multiple layers of complexity from molecular to clinical levels. In this third version,

ChemProt has been updated to more than 1.7 million compounds with 7.8 million bio-

activity measurements for 19 504 proteins. Here, we report the implementation of global

pharmacological heatmap, supporting a user-friendly navigation of chemogenomics

space. This facilitates the visualization and selection of chemicals that share similar struc-

tural properties. In addition, the user has the possibility to search by compound, target,

pathway, disease and clinical effect. Genetic variations associated to target proteins

were integrated, making it possible to plan pharmacogenetic studies and to suggest

human response variability to drug. Finally, Quantitative Structure–Activity Relationship

models for 850 proteins having sufficient data were implemented, enabling secondary

pharmacological profiling predictions from molecular structure.

Database URL: http://potentia.cbs.dtu.dk/ChemProt/

Introduction

Many chemical biology initiatives in Europe and the USA

aim to screen large compound collections with dedicated

bioassays i.e. EU Lead Factory (1), EU-Openscreen (2) or

BARD in the USA (3). Such large initiatives generate large

amounts of data that support academic and industrial
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research in the discovery of safer chemicals, with better ef-

ficacy. To make chemical biology information accessible to

scientists, several repositories of bioactive small molecules

have been developed: ChEMBL (4), PubChem (5),

ChemSpider (6) and OpenPhacts (7) are the largest, more

general databases available to the public. The National

Institutes of Health’s Molecular Libraries Program (MLP)

funding developed the BioAssay Research Database

(BARD), focusing on assay ontologies for PubChem bio-

assays (3).

Advances in chemical biology and systems biology

have shown that most drugs interact with multiple targets

and that the pharmacological profile of a drug is not as re-

ductionist as once believed (8). Moreover, proteins rarely

operate in isolation within and outside cells but function

in interconnected pathways instead. Given the integration

afforded by systems biology, it is now possible to consider

a more general physiological environment for protein tar-

gets and biological processes. As massive amounts of data

are generated and accumulated via new experimental

technologies such as transcriptomic, proteomics and gen-

omics (through next-generation sequencing), drug action

can be explored across multiple scale of complexity, from

molecular and cellular to tissue and organism levels (9–

11).

Multi-target pharmacology exploration increases when

information linking the relationship between chemical and

target spaces is readily available. As archived data are pro-

cessed and homogenized, our total knowledge on pro-

tein�ligand interactions is increasing at an amazing pace

(12, 13). Scientists having access to these data, approaches

such as chemogenomics, proteochemometrics and poly-

pharmacology have started to emerge (14, 15). These help

to mine evaluate and ultimately distil this vast amount of

protein–ligand interactions data, enabling the predictions

of single ligands against a set of heterogeneous targets

(16).

This third version of ChemProt is not a simple update

for disease chemical biology data. Rather, we provide a

friendly platform to navigate through the various data

sources, from global evaluations to a focused analysis.

Several computational approaches are included: ligand-

based similarity, target-based promiscuity, QSAR

(Quantitative Structure–Activity Relationship) method-

ology and network biology-based enrichment analyses.

These approaches support novel hypotheses generation for

bioactivity of novel and already-annotated compounds,

and the ability to identify additional genes that may play

major roles in modulating chemical perturbations in man.

The updates and new methods introduced in ChemProt-

3.0 are presented below.

Data sources

We updated all the chemical protein interactions data from

the open source databases ChEMBL (version 19) (4),

BindingDB (17), PDSP Ki database (18), DrugBank (ver-

sion 4) (19), PharmGKB (20), IUPHAR-DB database (21)

and STITCH (version 4) (22). Clinical information from

the Anatomical Therapeutic Chemical Classification

System (23) developed by the World Health Organization,

as well as side effect data from Sider 2 were also integrated

(24).

From a biological perspective, we updated our internal

human interactome platform to reach 14 421 genes inter-

acting through 507 142 unique PPIs (25). OMIM (26), the

human disease network (27) GeneCards (28), KEGG (29),

Reactome (30), UniPathway (31) and Gene Ontology (32)

databases were also downloaded, curated and included in

our system. Overall, the integrated data sources were

increased by over 60% compared to the earlier version.

As many different data types were aggregated in

ChemProt, a ‘zChemProt’ value for each compound-

bioactivity interactions was computed for visualization in

the several heatmaps developed. Basically, for each of the

11 most prevalent data types (IC50, EC50, Potency, AC50,

pIC50, Log Ki, pKi, pEC50, Kd, Ki), a zChemProt value was

computed using the mean and standard deviation calcu-

lated from the distribution of the associated data types for

each target in a similar way described in CARLSBAD data-

base (33). IC50, EC50, Potency, AC50, Kd and Ki were log

transformed before computing the zChemProt values.

Large values indicate strong chemical–protein interactions

and are represented in orange. Low value (weak inter-

actions) is depicted in blue.

Predictions methods

Daylight-like 1024 bit fingerprints was computed with

RDkit (www.rdkit.org) and the chemical similarity be-

tween two compounds was quantitatively assessed using

the Tanimoto coefficient (34). The Similarity Ensemble

Approach (SEA) (35) has been re-compiled on the

ChemProt server and updated according to the novel

zChemProt data and integrated into ChemProt 3.0. Only

proteins with >10 chemicals were included for SEA predic-

tion, using the same protocol as described in the previous

version (36). For sequence analyses, protein sequences

were obtained from Uniprot (37). Sequences comparisons

were computed using BLASTP and estimated to be similar

when their E value was lower than 10�10 (38). All com-

pounds were decomposed into ring scaffolds based on an

internal implementation of the ‘Scaffold Hunter’
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hierarchical classification algorithm (39–40) with the add-

ition of decomposition of non-ring molecule based on rules

7–10, as described by Schuffenhauer et al. (41). This hier-

archical decomposition allows the generation of scaffold

trees enabling an easy and interactive navigation of the

chemical biology space in large datasets and the identifica-

tion of potential new compound classes with desired

bioactivity.

For this release, QSAR models were trained for each

protein with >20 chemicals (in total 850 proteins). A

Naı̈ve Bayes classifier was trained using 5-fold cross-valid-

ation for performance assessment. Features selection, five

different computational fingerprints (Daylight and

Morgan fingerprints) and three different cutoffs (�log 10

value: 4, 5 and 6) for classifying active and non-active

compounds, were used to produce overall 15 classification

models for each target. To predict new compound, each

model was weighted by the cross-validated performance

measure resulting in a prediction value between 0 and 1

(where 1 is high predicted binding). To avoid bias toward

negative or positive data, each of the three datasets used

for training were balanced by including as many negative

compounds as positive including random compounds from

the ChemProt database. The performance of the developed

QSAR ensemble approach was tested on a dataset of

hERG binders and showed an improved performance

compared to a previous reported study (42) (Aroc¼ 0.827,

Matthews Correlation Coefficient (MCC)¼ 0.488 using 5-

fold cross-validation). Furthermore, the method was

benchmarked against the SEA implementation on a dataset

consisting of 143 proteins with associated activity values

from the ChemProt-3.0 dataset. In a 5-fold cross-valid-

ation scheme on each of the 143 proteins, the QSAR mod-

els outperform SEA (Pval¼2.2e� 16, paired t-test of

Spearman correlation coefficients for each protein predic-

tions). However, models developed from limited amounts

of data might not provide reliable predictions. The user

can consult the ‘prediction info’ tab (by clicking on the

protein of interest on the heatmap) to obtain the number

of molecules used for training the QSAR models. Details

about the procedure are described in Supplementary

Information.

Visual interface

In ChemProt 3.0, the front page was modified to have all

the functionality available on the page. The user has the

possibility to search information about a compound, a pro-

tein and a clinical outcome, or he can choose to perform a

QSAR prediction for a specific compound. A molecule can

be imported as a SMILES code, or alternatively it can be

drawn or uploaded from a compound structure file via the

SD file format. A new function called ‘Heatmap’ was inte-

grated, which allows the user to have a global view of

chemical-protein interactions (Figure 1). In this graphical

interface, the user has the possibility to localize the bio-

activity associated to a requested compound, a set of

defined compounds or a set of similar compounds based

on the chemical structure. Several layers of granularity

have been implemented on the heatmap. The proteins have

been categorizes by families, using the protein classifica-

tion tree implemented in ChEMBL and the compounds

have been decomposed in scaffold and chemical groups

based on the scaffold tree implementation similar to

CARLSBAD. This gives the user the opportunity to visual-

ize scaffold-protein activity relationships. A color spectrum

from blue (low activity) to orange (strong activity) is used

to indicate the activity. All compounds structures and pro-

tein IDs (based on Uniprot) are clickable, which gives ac-

cess to more detailed information about physicochemical

properties and protein function respectively.

An interesting feature with this graphical interface is the

possibility to match other biological to chemical data.

Instead of choosing ‘for drugs’, the user can select targets,

pathways, diseases or side effects and see the association

between chemicals and these endpoints.

From the protein ID, the user has access to the proteins

complex (represented as a protein’s network from protein–

protein interaction data). The complex of proteins is then

mapped to biological terms such as diseases, GO terms and

pathways with a corrected P value to evaluate the signifi-

cance of these associations.

Finally, the user has the possibility to download the

results in flat-file format to perform others analyses.

Methodology: Daylight-like fingerprints, defined by

1024 fragments were computed using RDkit (www.rdkit.

org). The QSAR models were trained using scikit-learn

software (http://scikit-learn.org/stable/). The visual inter-

face was implemented using HTML 5 and JavaScript. The

webserver is limited for an input file of 50 molecules (in

SMILES or sdf file) per query to limit the time necessary to

get the output. For larger queries, the user is advised to

contact us.

Applications

Caffeine, a well-known natural product extracted from

coffee beans or tea leaves, is often used as a central nervous

system stimulant (43). Several outputs can be displayed

like those shown in Figure 2. Typing the compound name

in the ‘Compound’ field and clicking on the Submit button,

the user is redirected to the global chemical-protein heat-

map with the query compound showing up in the com-

pound list as default. Any compound can be added to the
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list by writing a new compound name in the ‘search’ box.

Clicking on the ‘flag’ next to a compound name in the

compound list prompts the heatmap to zoom in or out

from that specific compound, enabling a fast way to visual-

ize the proteins signature for the queried compound, as

well as for compounds sharing scaffold similarities.

Clicking on the ‘fingerprint’ logo in the vicinity of the

compound name, a chemical structure similarity profiling

can be performed, enabling the user to visualize and to

navigate within that pharmacological heatmap. For the

Caffeine example, 105 similar compounds (with a

Tanimoto coefficient> 0.85) were found, with bioactivities

associated to 449 proteins (from weak in blue to strong in

orange). The user is able to zoom in the heatmap and to

narrow the information from the classification proteins

tree to specific proteins (defined by uniprot ID). The user

has also the possibility to navigate inside the heatmap. One

option is to fill out missing values by choosing ‘SEA’ or

‘QSAR’ under prediction in the top of the page.

By clicking on the compound structure, physicochemi-

cal features [such as the Lipinski rules (44)], number of

proteins with bioactivities and the databases from which

the information was gathered, are shown. Similarly, the

user can click on a specific protein name and get more in-

formation on the function of the protein, diseases associ-

ated to this protein and predictions based on SEA and

QSAR. For example, under ‘family A GPCR’, caffeine is

shown to be potent (35.5 nM) on the rat muscarinic M1

acetylcholine receptor (P08482). It also shows a strong as-

sociation with the dopamine D2 receptor (P14416) based

on the STITCH system. By clicking on this protein, the

user is presented with information on this dopamine recep-

tor. Notably, disease associations are queried through the

TCRD (Target Central Ressource Database Application:

Figure 1. Global view of the chemical-protein interactions heatmap in ChemProt.
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http://juniper.health.unm.edu/tcrd/) database and the gen-

etic variation through the Ensembl database (45). A com-

plex disease network is also associated to this protein.

Clicking on this link, diseases (such as schizophrenia and

epilepsy) and GO terms (plasma membrane, ligand-gated

ion channel activity, etc.) are shown.

Instead of looking for ‘functional’ protein annotation, it

is further possible to select ‘pathway’ or ‘diseases’ for

caffeine (also for the set of 105 similar compounds). The

heatmap will be depicted according to the query. Each

protein annotation (functional, pathway, disease) is pre-

sented in a tree format. Proteins have been categorized

from families to proteins using the protein target tree im-

plemented in ChEMBL. It has been done similarly for the

pathway using the unipathway (31) implementation tree

and disease using the human disease network (27). For ex-

ample, using the disease heatmap, strong associations are

found between caffeine and ventricular tachycardia, slow

acetylation, glycogen storage disease, dystonia and thyroid

carcinoma.

Finally, from the ChemProt-3 front page, the user can

write the caffeine’s SMILES in the QSAR prediction box,

click on ‘Submit QSAR’ and then get a prediction of posi-

tive and negative bioactivities for the ensemble of proteins

in ChemProt where reliable QSAR models can be pro-

duced. This option allows the user to have a direct QSAR

prediction for a new compound not present in the

ChemProt database.

Conclusion

Given that access to many chemogenomics databases is

possible, linking them to biological resources and using

a number of machine learning tools, scientists can now

estimate the bioactivity profile of molecules across a

large number of targets, pathways, diseases and other

clinical outcomes using ligand-based, target-based and

network-based models. Such multi-target, multi-layer

strategies are becoming more and more accepted by the

scientific community. Within ChemProt, it is possible to

Figure 2. Information that can be collected from a search on caffeine. Top left, functional information on bioactive proteins for the query compound is

depicted. Bottom left, chemical and physicochemical information is gathered. Top right, protein’s complex associated to the chemical is shown and

the bottom right is depicted the protein’s annotation and prediction (through QSAR) for caffeine.
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navigate the chemogenomics space and to link chem-

ically induced target perturbations to diseases and other

biological outcomes. Such tools might be of interest for

drug discovery, drug safety and also chemical risk assess-

ment. ChemProt 3.0 supports predicting bioactivities on

targets and off-targets for new compounds and can assist

in the associations to phenotypes and side effects

relationships.

Supplementary Data

Supplementary data are available at Database Online.
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