

OPEN ACCESS

Citation: Müller OA, Grau J, Thieme S, Prochaska H, Adlung N, Sorgatz A, et al. (2015) Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses. PLoS ONE 10(8): e0136499. doi:10.1371/ journal.pone.0136499

Editor: Ya-Wen He, Shanghai Jiao Tong University, CHINA

Received: July 14, 2015

Accepted: August 4, 2015

Published: August 27, 2015

Copyright: © 2015 Müller et al. This is an open access article distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability Statement: All relevant data are within the paper and its Supporting Information files.

Funding: This work was supported by a grant from the Deutsche Forschungsgemeinschaft (SFB 648) to UB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

RESEARCH ARTICLE

Genome-Wide Identification and Validation of Reference Genes in Infected Tomato Leaves for Quantitative RT-PCR Analyses

Oliver A. Müller¹, Jan Grau², Sabine Thieme¹, Heike Prochaska¹, Norman Adlung¹, Anika Sorgatz¹, Ulla Bonas¹*

1 Institute for Biology, Department of Genetics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany, 2 Institute for Informatics, Department of Bioinformatics, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany

* ulla.bonas@genetik.uni-halle.de

Abstract

The Gram-negative bacterium Xanthomonas campestris pv. vesicatoria (Xcv) causes bacterial spot disease of pepper and tomato by direct translocation of type III effector proteins into the plant cell cytosol. Once in the plant cell the effectors interfere with host cell processes and manipulate the plant transcriptome. Quantitative RT-PCR (qRT-PCR) is usually the method of choice to analyze transcriptional changes of selected plant genes. Reliable results depend, however, on measuring stably expressed reference genes that serve as internal normalization controls. We identified the most stably expressed tomato genes based on microarray analyses of Xcv-infected tomato leaves and evaluated the reliability of 11 genes for gRT-PCR studies in comparison to four traditionally employed reference genes. Three different statistical algorithms, geNorm, NormFinder and BestKeeper, concordantly determined the superiority of the newly identified reference genes. The most suitable reference genes encode proteins with homology to PHD finger family proteins and the U6 snRNA-associated protein LSm7. In addition, we identified pepper orthologs and validated several genes as reliable normalization controls for qRT-PCR analysis of Xcv-infected pepper plants. The newly identified reference genes will be beneficial for future qRT-PCR studies of the Xcv-tomato and Xcv-pepper pathosystems, as well as for the identification of suitable normalization controls for gRT-PCR studies of other plant-pathogen interactions, especially, if related plant species are used in combination with bacterial pathogens.

Introduction

The analysis of gene transcription profiles is a powerful tool to uncover the roles of specific genes in cellular processes and to place them into regulatory networks. Quantitative reverse transcription PCR (qRT-PCR), also termed real-time RT-PCR, is the method of choice to analyze changes in gene transcription because of its high sensitivity, large dynamic range and accuracy [1]. The reliability of results strongly depends on suitable reference genes for

normalization which should be stably expressed under the experimental conditions used. Housekeeping genes encoding, e.g., actin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and ribosomal RNAs, are generally assumed to represent suitable normalization controls [2]. However, a number of studies reported that transcription of housekeeping genes can fluctuate considerably under certain experimental conditions, even if expression is constant in other cases ([3] and references therein). This illustrates the necessity to systematically validate reference genes for specific experimental conditions to avoid misinterpretation of qRT-PCR results [3, 4].

The interaction of plants with pathogens induces dramatic changes in plant transcription patterns. In most cases, the plant withstands pathogen attacks by inducing innate immune responses, associated with transcriptional reprogramming, e.g., the induction of pathogenesis-related (*PR*) genes [5-7]. Specialized pathogens, however, can suppress plant immunity and successfully colonize the host. Infection is accompanied by transcriptional changes of numerous plant genes including those involved in basal cell processes [7-12]. For example, in maize seeds infected by fungi genes involved in metabolism, energy and protein synthesis are prevalently down-regulated, including classical housekeeping genes like GAPDH [9]. The bacterial pathogen *Pseudomonas syringae* pv. *tomato* represses cell wall and photosynthetic genes in Arabidopsis plants [12]. Similar results were obtained in sweet orange and peach infected with *Xanthomonas citri* supsp. *citri* and *X. arboricola* pv. *pruni*, respectively [8, 11].

Recently, there were a number of reports validating reference genes in different plant species after infection with fungi, oomycetes, viruses or bacteria [13-31], or suffering from plant and animal parasites [32-36]. Among the genes most often found to be suitable normalization controls under biotic stress conditions were genes encoding actin [13, 23, 24, 30, 34, 35], glyceral-dehyde 3-phosphate dehydrogenase (GAPDH) [15, 16, 27, 28, 30], β -tubulin [17, 25, 28, 32] and elongation factor 1 α (EF-1 α) [21, 34-36]. However, a major drawback of most studies is the selection of reference gene candidates based on "the usual suspects", i.e., genes with known or suspected housekeeping roles. Such a biased approach might miss the optimal internal control. This idea is supported by whole-transcriptome analyses in different plant species and different experimental setups that, together with qRT-PCR studies, identified genes differing from the traditional housekeeping genes as most stably transcribed [37-43].

Our lab studies the interaction of the phytopathogenic γ -proteobacterium *X. campestris* pv. *vesicatoria* (*Xcv*) with its solanaceous hosts, tomato (*Solanum lycopersicum*) and pepper (*Capsicum annuum*). *Xcv* causes bacterial spot disease which results in defoliation and severely spotted fruits, both of which lead to massive yield losses, especially in regions with a warm and humid climate [44]. An essential pathogenicity factor of *Xcv* is the type III secretion (T3S) system that translocates bacterial effector proteins into the plant cell cytosol. Although the molecular function of many *Xcv* type III effectors is unknown, several suppress host defenses elicited upon recognition of pathogen-associated molecular patterns (PAMPs), i.e., PAMP-triggered immunity (PTI) [45]. A well-characterized effector family from *Xanthomonas* are TAL (transcription activator-like) effectors [46]. The type member AvrBs3 from *Xcv* binds to plant gene promoters and activates the transcription of *UPA* (upregulated by AvrBs3) genes in pepper and other solanaceous plants resulting in hypertrophy, i.e., enlargement, of mesophyll cells [47, 48]. In resistant pepper plants, *UPA* genes include the *Bs3* resistance gene leading to the specific elicitation of the hypersensitive response (HR), a rapid, localized programmed cell death at the infection site, that is a hallmark of effector-triggered immunity (ETI) [49].

Since we are interested in transcriptome changes during pathogen attack, we first analyzed the results of two genome-wide microarray screens of tomato cv. MoneyMaker (MM) to identify reference gene candidates suitable for qRT-PCR analysis of *Xcv*-infected (pathogenic and non-pathogenic strains) compared to unchallenged plants. Validation by qRT-PCR revealed 11 novel tomato reference genes. In addition, we identified the pepper orthologs of these genes and found several to be suitable normalization controls for qRT-PCR analyses in pepper during biotic stress.

Material and Methods

Plant material and inoculations

Tomato (*Solanum lycopersicum*) plants of cultivar (cv.) MoneyMaker and pepper (*Capsicum annuum*) cv. ECW-30R plants were grown in the greenhouse under standard conditions (day and night temperatures of 23°C and 19°C, respectively, for tomato, and 25°C and 19°C for pepper, with 16 h light and 40 to 60% humidity). For qRT-PCR studies, tomato and pepper plants were transferred to a Percival growth chamber (Percival Scientific, Perry, USA) three days before inoculation. Mature leaves of seven-week-old tomato and pepper plants were inoculated with mock (10 mM MgCl₂) or *Xcv* (5×10⁸ cfu/ml in 10 mM MgCl₂) using a needleless syringe.

Bacterial strains and growth conditions

Xcv strains 85–10 [50] and 85–10 Δ *hrcN* [51] were grown at 30°C on NYG (nutrient yeast glycerol) agar plates [52] supplemented with appropriate antibiotics. Plasmids pLAT211 (*avrBs4* in pLAFR6 [53]) and pGGX1:avrBs3 [54] were introduced into *Xcv* by conjugation, using pRK2013 as helper plasmid in triparental matings [55].

Microarray analyses

For microarray studies, 12 tomato plants were inoculated per experiment. To minimize differences in gene expression due to leaf-to-leaf variability, *Xcv* strains and 10 mM MgCl₂, respectively, were infiltrated into the same leaves. Four leaf discs (0.5 cm diameter) per inoculum and leaf were harvested, immediately frozen in liquid nitrogen and stored at -80°C. In the first study, *Xcv* 85–10 and 85–10 Δ *hrcN* were inoculated; leaf material was harvested 45 min and 6, 10 and 24 hours post infiltration (hpi). Leaf material of four plants was pooled for each timepoint (16 leaf discs per sample, three technical replicates). In the second study, 85–10 Δ *hrcN* and 10 mM MgCl₂ were infiltrated and leaf material was harvested at 0, 4, 8 and 16 hpi and pooled as above. In addition, four leaf discs per plant were harvested as control before treatment. This was performed three times independently with four plants each (biological replicates). The experimental setup is summarized in <u>S1 Fig</u>.

Total RNA was extracted using the QIAGEN RNeasy Plant Mini Kit (QIAGEN, Hilden, Germany) and treated with DNase I (Roche, Mannheim, Germany) for 30 min. Approximately 1.5 μ g total RNA was sent to Source BioScience (Berlin, Germany) for cDNA synthesis and microarray hybridizations.

For the tomato whole-genome chip (Source BioScience), oligonucleotides for 34,383 annotated tomato genes [according to the international tomato annotation group (ITAG, version 2.3)] were spotted on Agilent custom arrays. Five 50-bp oligonucleotides per gene were tested on an Agilent custom array 4x180K, and a set of suitable oligos was chosen for the final chip. Due to space limitations (8x60K), 25,985 randomly chosen genes were represented twice with different oligonucleotides, whereas 8398 genes were represented by one oligonucleotide each. Finally, seven identical 8x60K chips were used for sample analysis. Different chips were hybridized with biological and technical replicates, respectively. cDNA synthesis, labelling, hybridization, washing, scanning and data collection was performed by Source BioScience according to Agilent standard protocols.

Data processing and statistical analyses

Microarray raw data (column "gProcessedSignal") were analyzed by the statistical software R [56]. All experiments of one study (treatments, time points and replicates) were normalized by quantile normalization on the probe level using the "preprocessCore" R package (version 1.26.1, http://www.bioconductor.org/packages/release/bioc/html/preprocessCore.html). For each gene, values for transcript accumulation were obtained as the arithmetic mean of the intensities of all probes representing the gene. The coefficient of variation (CV) was computed for each gene as the standard deviation of its transcript levels across all experiments divided by its mean transcript level. To evaluate the similarity of expression patterns in biological and technical replicates, normalized log-expression values of the individual experiments were clustered hierarchically using the R function hclust [56]. The distance between the expression values using the R function cor.dist from the bioDist package of the Bioconductor suite [57]. Clustering was performed using complete linkage, which yields compact clusters with high intra-cluster correlations. Dendrograms were plotted using the specific plot function of the R class hclust [56].

Quantitative reverse transcription polymerase chain reaction (qRT-PCR)

Templates for qRT-PCR were produced as follows: three to four leaf discs (1.3 cm diameter) from different plants infiltrated with *Xcv* and MgCl₂, respectively, were pooled for RNA isolation using the QIAGEN RNeasy Plant Mini Kit. Oligo-dT- and random hexamer-primed cDNA was synthesized with the Maxima First Strand cDNA Synthesis Kit (Thermo Scientific, Schwerte, Germany). qRT-PCR was performed on a CFX96 thermal cycler (Bio-Rad, Munich, Germany) using a SYBR Green-based PCR reaction mixture (Absolute Blue qPCR SYBR Green Fluorescein Mix; Thermo Scientific) and 8 ng template cDNA. Oligonucleotide sequences are listed in <u>S1 Table</u>. To compare Ct (cycle threshold) values measured on different plates using different reaction mixtures, automatically calculated thresholds of all plates were set manually to the highest threshold obtained. The efficiency of PCR reactions was determined for each primer pair using a dilution series of template plotted into a standard curve. To ensure amplification specificity, amplicons were subjected to melting curve analysis and analyzed on 1% agarose gels. Transcript levels were determined as technical duplicates of biological triplicates.

Evaluation of reference gene stability

qRT-PCR data were analyzed using geNorm [58] which is included in the GenEx package (GenEx6 version 3.1.3; <u>http://multid.se</u>), NormFinder [59] and BestKeeper [60].

Results

Selection of candidate reference genes for gene expression studies in tomato

To identify reference genes suitable for the analysis of *Xcv*-induced changes in the mRNA levels of tomato genes we evaluated the results of two whole-genome microarray screens. For the first screen, *S. lycopersicum* cv. MM plants were inoculated with the *Xcv* wild-type (WT) strain 85–10 and the T3S-deficient derivative 85–10 Δ *hrcN*, respectively. Leaf material was harvested 45 min and 6, 10 and 24 hours post infiltration (hpi). In the second screen, *S. lycopersicum* cv. MM plants challenged by 85–10 Δ *hrcN* inoculation were compared to mock-infiltrated tomato plants, and leaf material was harvested at 0, 4, 8 and 16 hpi. Transcriptional changes of 34,383

Fig 1. Expression pattern of traditional reference genes in healthy and *Xcv***-infected tomato plants.** Leaves of *S. lycopersicum* cv. MM plants were untreated or infiltrated with 10 mM MgCl₂ (mock) and 85–10 Δ *hrcN*, respectively. To analyze mRNA accumulation of selected genes leaf material was harvested at 0, 4, 8 and 16 hours post infiltration (hpi). Relative RNA levels of housekeeping genes traditionally employed as references [<u>30, 61–64</u>] were determined by microarray hybridization analysis. Expression values of analyzed plant samples are plotted separately, i.e., three biological replicates per time-point per infiltration. For each gene, expression values were obtained as the mean of the intensities of all probes representing the respective gene. Blue curves represent housekeeping genes that were also analyzed in this study together with novel reference genes. In addition, the most stably expressed gene in the microarray experiment is shown (red curve). *ACT (actin)*, TC194780a; *EF-1a (elongation factor 1a)*, SGN-U212845; *GAPDH (glyceraldehyde 3-phosphate dehydrogenase*), TC198136a; *UBI (ubiquitin)*, TC193502a; *TBP (TATA binding protein)*, SGN-U329249; *RPL8 (ribosomal protein L8)*, X64562; *TUA (a-tubulin)*, AC122540; *CYP (cyclophilin)*, AK326854; *TAF6 (TFIID subunit 6)*, Solyc10g006100.2.1.

annotated tomato genes were analyzed using "Agilent custom arrays". Hierarchical cluster analysis illustrates similar expression patterns in biological and technical replicates confirming that the experimental treatments worked (S1 Fig). In the first screen, two samples ("85–10; 45 mpi; #2" and "85–10; 6 hpi; #2") showed aberrant gene expression patterns compared to the corresponding replicates resulting in separate clustering (S1A Fig). Both samples were excluded from further data evaluation.

The microarray analyses revealed a high variability in the expression patterns of housekeeping genes conventionally used as references in transcript studies [30, 61–64] (Fig 1). To identify the most stably transcribed genes, the coefficient of variation (CV) was determined for each gene, which is defined as the standard deviation of its expression levels across all experiments (treatments and time-points) divided by its mean expression level. Genes with a log₂ mean expression level below 7 or above 13 were excluded to account for the bigger influence of random noise on low expression values, and for saturation effects of microarrays at high mRNA levels, respectively. Genes with CV values ≤ 0.12 in both microarray studies were ranked by increasing CV in the second screen which delivers more reliable data compared to the first study (biological instead of technical replicates). The best 50 candidate reference genes are listed in <u>Table 1</u>. The tomato sequences were classified based on the functional categories of their *A. thaliana* orthologs which were identified by BLASTx [65] against "The Arabidopsis Information Resource" database (TAIR Blast 2.2.8; <u>S2 Fig</u>). Only predicted proteins that displayed minimum 40% amino-acid identity over at least 70% of the tomato sequence were taken into account. This allowed a functional classification of approximately three quarters of the sequences (74%), most of them possessing putative functions in protein expression (transcription and splicing) and turnover (ubiquitination/proteolysis; <u>S2 Fig</u>).

Evaluation of the expression stability of novel and traditional tomato reference genes

qRT-PCR analyses of the 11 most stably expressed genes (Table 1) were performed to validate their expression stability in S. lycopersicum cv. MM infected with Xcv. The genes encode a TFIID subunit (*TAF6*), importin β (*IMP-* β), a PHD finger family protein (*PHD*), a cytochrome c oxidase subunit (COX), polyribonucleotide 5'-hydroxyl-kinase Clp1 (CLP1), a ubiquitin carboxyl-terminal hydrolase family protein (UCH), a polypyrimidine tract-binding protein-like protein (PTBL), U6 snRNA-associated Sm-like protein LSm7 (LSM7) and an acyl carrier protein (ACP), as well as two unknown proteins (UP1 and UP2; Table 1, S2 Table). For comparison, four housekeeping genes were analyzed that are widely used as references, namely actin (ACT), EF-1α, GAPDH and ubiquitin (UBI). First, suitability of oligonucleotides (S1 Table) and target sequences was confirmed. Melting curves and gel electrophoresis revealed unique amplicons for all oligonucleotide combinations used validating their specificity (S3 Fig). PCR efficiencies ranged between 80.48 and 99.71% (S1 Table). For expression analysis of the reference gene candidates, total RNA was isolated from tomato leaves 0, 6, 10 and 24 h after treatment with 10 mM MgCl₂, Xcv 85-10, 85-10\[Lambda hrcN and 85-10(pavrBs4), respectively. The latter strain induces the ETI, i.e., the HR in S. lycopersicum cv. MM due to the Bs4-dependent recognition of the avirulence protein AvrBs4, a member of the TAL effector family [66]. Technical duplicates of three biological replicates were subjected to qRT-PCR analysis. Average Ct (cycle threshold) values of the new reference gene candidates ranged from 27.1 (*CLP1*) to 31.1 (*UP1*; Fig 2). To select the optimal reference genes, we used three different algorithms to evaluate our qRT-PCR results: geNorm [58], NormFinder [59] and BestKeeper [60].

geNorm analysis. The geNorm software provides a ranking of the tested genes based on a stability value M which is calculated by average pairwise variation of each candidate gene combination [58]. The lower the M value, the higher the expression stability of the gene. Eventually, the algorithm selects an optimal pair of reference genes out of the candidate set analyzed. Considering a cutoff of $M \leq 0.5$, the traditional references *GAPDH*, *ACT* and *UBI* proved unreliable for the normalization of qRT-PCR data under the experimental conditions chosen (Fig 3). By contrast, all newly identified tomato candidate genes and *EF-1* α represent suitable references, with *IMP-* β and *PHD* being optimal (Fig 3).

NormFinder analysis. Next, we analyzed the qRT-PCR data using NormFinder [59]. The stability value M calculated by this "model-based variance estimation approach" considers not only the "overall expression variation" measured in different samples, but additionally takes into account variations among and inside sample subgroups [59]. Thus, the algorithm avoids co-regulated reference genes which display systematic intergroup variation and would lead to erroneous conclusions. Since we are interested in changes of plant gene expression levels induced by different *Xanthomonas* strains but also in expression level changes over a certain time period, two separate NormFinder analyses were performed with sample subgroups defined based on treatment [MgCl₂, *Xcv* 85–10, 85–10 Δ *hrcN* and 85-10(p*avrBs4*)] and time-

Table 1. The 50 most stable tomato genes during Xcv infection based on microarray analyses.

Skyle1000100.2 0.060 958 52 Transcription initiation factor TEID Suburit 6 Skyle207p022202 0.063 12.54 80 Importin beta-2 suburit Skyle207p022202 0.069 1.254 80 Importin beta-2 suburit Skyle20p01210 0.060 3.234 258 Suburit Vb of cytochrome couldase Skyle20p0120 0.082 1.276 105 Polytibonuclacidia 5 ⁺ hydroxyk-kinase family 1 protein Skyle20p01302.0 0.082 2.166 180 Ubiquit vb of cytochrome couldase Skyle20p01302.0 0.082 2.166 180 Ubiquit vb of cytochrome couldase Skyle20p020820.0 0.085 2.367 201 Polytyrimidine traub-inding protein-1ke Skyle20p020820.0 0.088 1.132 105 Serinethreenine-protein Knase BUD32 Skyle20p020820.2 0.089 1.831 166 Developmentally-regulated GTP-binding protein 2 Skyle20p020820.2 0.089 2.571 446 Dual specificity tyrosine chasphase CoC25 Skyle20p0208310.2 0.095 5.571 519	Gene ID	CV ^{a)}	ME	SD	Annotation ^{b)}
Solyci2pt2222 0.063 623 39 Genomic DNA chromosome 5 TAC clone K19P17 Solyci2pt21282 0.080 1.537 122 PHD finger family protein Solyci2pt2057120.1 0.080 3.234 256 Subunit Vb of cytochrome c coxidaae Solyci2pt208110.2 0.083 2.166 180 Ubiquitin carboxyl-terminal hydroideae family 1 protein Solyci2pt208110.2 0.085 2.367 201 Polycynimitein tractactioniding protein LSm7 Solyci2pt208110.2 0.086 1.032 88 Genomic DNA chromosome 3 P1 clone MSJ11 Solyci2pt20810.370.2 0.088 2.484 226 Acyl carrier protein Solyci2pt20822.2 0.088 1.192 106 Serinet/threonine-protein kinase BUD32 Solyci2pt20822.2 0.089 4.256 380 Splicing factor LXP-bendints Splicing factor LXP-bendints Solyci2pt20811 0.080 6.251 Earne stholar Solyci2pt2082 0.092 5.271 Solyci2pt20812.0 0.092 2.511 241 Zin finger family protein Solyci2pt207742 0.092 2.426	Solyc10g006100.2	0.060	858	52	Transcription initiation factor TFIID subunit 6
Solyci111780.2 0.064 1,254 80 Importin beta-2 subunit Solyci2g057120.1 0.080 3,234 258 Subunit Wib of cycohrome c oxidase Solyci2g057120.1 0.082 1,276 105 Polythouncledide 5-hydroxyftenae Clp1 Solyci2g057120.1 0.085 2,367 201 Polythouncledide 5-hydroxyftenae Clp1 Solyci2g068110.2 0.086 1,302 88 Genomic DNA chromosome 3 P1 clone MSJ11 Solyci2g069640.2 0.087 4,740 414 Us antikthreenine-protein kinase BUD32 Solyci2g062902.2 0.088 1,192 105 Seininthreenine-protein kinase BUD32 Solyci2g062902.2 0.088 1,192 105 Seininthreenine-protein kinase BUD32 Solyci2g06292.2 0.099 4,265 380 Splicing factor U2AF large subunit Solyci2g06291.2 0.091 1,831 166 Developmentally-regulated GTF-binding protein anticity solitary solitary solitary solitary Solyci2g062910.2 0.092 5,571 519 Nuclear transcription factor Y subunit B-6 Solyci2g0697810.2 0.095 1,528 </td <td>Solyc07g062920.2</td> <td>0.063</td> <td>623</td> <td>39</td> <td>Genomic DNA chromosome 5 TAC clone K19P17</td>	Solyc07g062920.2	0.063	623	39	Genomic DNA chromosome 5 TAC clone K19P17
Solycödgös1420.2 0.080 1.537 122 PHD Inger family protein Solyc12067121 0.080 3.234 258 Suburit VIb Grigotomes c xxidase Solyc01g00290.2 0.081 2.166 180 Ubiquitri carboxyt-terminal hydrotomes c xxidase Solyc02g08110.2 0.085 2.367 201 Polyphyrinidine tractosid Smilke protein-Ike Solyc02g081042 0.086 1.032 88 Genomic DNA chromesone 3P 1 clone MS111 Solyc02g02202 0.088 2.584 228 Acyl carrier protein Solyc02g022020 Solyc02g02202 0.089 4.256 380 Splicing tactor LZP-1 kings subunit Solyc02g02020 0.089 4.256 380 Splicing tactor LZP-1 kings subunit Solyc02g02802.0 0.099 4.256 380 Splicing tactor LZP-1 kings subunit Solyc02g02802.0 0.099 5.273 486 Dual-specificity trosine-phosphatase CDC25 Solyc02g0802.0 0.092 5.273 486 Dual-specificity trosine-phosphatase CDC25 Solyc02g0802.0 0.092 5.671 519 <td< td=""><td>Solyc01g111780.2</td><td>0.064</td><td>1,254</td><td>80</td><td>Importin beta-2 subunit</td></td<>	Solyc01g111780.2	0.064	1,254	80	Importin beta-2 subunit
Solyc1200220.2 0.080 1.276 105 Polyribonucleotide 5-hydroxyl-kinase Cip1 Solyc01g00220.2 0.083 2.166 180 Ubiquitn carboxyl-terminal hydrolase family 1 protein Solyc02008110.2 0.086 1.02 88 Genomic DNA chromosome 3 P1 clone MSJ11 Solyc02008040.2 0.088 2.564 228 Acyl cartier protein Solyc02005040.2 Solyc02005140.2 0.088 1.192 105 Serine/threorine/protein/tenzeprotein kinase BUD32 Solyc02005140.2 0.088 1.192 105 Serine/threorine/protein/tenzeprotein kinase BUD32 Solyc02005140.2 0.089 1.227 486 Davalparting factor UZAF large subunit Solyc02007040.2 0.092 2.611 241 Znc fnger CCCH+pe wth G patch domain-containing protein Solyc02007040.2 0.094 446 42 Peptide chain release factor 1 Solyc02007307.042.2 0.095 1.526 144 Cyclin family protein Solyc02007307.02 0.095 1.526 144 Cyclin family protein Solyc020090738.01 0.095 6.678 <td>Solyc06g051420.2</td> <td>0.080</td> <td>1,537</td> <td>122</td> <td>PHD finger family protein</td>	Solyc06g051420.2	0.080	1,537	122	PHD finger family protein
Selyc1002690.2 0.082 1.276 105 Polythonuclobide 5-hydroxyknase Clp1 Solyc02098110.2 0.083 2.166 180 Ubiquitn carboxyknase Clp1 Solyc02098110.2 0.086 2.367 201 Polytyminidine track-binding protein-like Solyc02098102.2 0.086 2.584 228 Acyl carrier protein Solyc0209222 Solyc020922.2 0.089 4.256 390 Splicing factor LAZAF large subunit Solyc0209222.2 0.099 6.24 56 Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein Solyc0209222.2 0.099 6.24 56 Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein Solyc020927140.2 0.090 6.24 56 Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein Solyc020927140.2 0.091 1.831 166 Developmentally-regulated GTP-binding protein Solyc02092700740.2 0.092 5.273 486 Dual-specificity lytosine-phosphatase CDC25 Solyc02092702.0 0.094 446 42 Peptide chain release factor 1 Solyc02092032.0	Solyc12g057120.1	0.080	3,234	258	Subunit VIb of cytochrome c oxidase
Solyc039(18730.2 0.083 2.166 180 Ubiquit carboxyl-terminal hydrolase family 1 protein Solyc039(0660.2 0.086 1.032 88 Genomic DNA chromosome 3 P1 clone MS111 Solyc039(05640.2 0.088 2.584 228 Acyl carrier protein Solyc039(05140.2 0.088 1.182 105 Serien/throonine-protein kinase BUD22 Solyc039(05140.2 0.089 1.182 105 Serien/throonine-protein kinase BUD22 Solyc039(05140.2 0.089 4.256 380 Splicing factor UZAF large subunit Solyc039(121980.2 0.091 1.831 166 Developmentally-regulated GTP-binding protein 2 Solyc039(21990.2 0.091 1.831 166 Developmentally regulated GTP-binding protein 2 Solyc039(2700.2 0.092 5.271 519 Nuclear transcription factor Y subunit B-6 Solyc039(2702.0 0.094 446 42 Peptide chain release factor 1 Solyc039(2702.0 0.095 1.526 144 Cyclin family protein Solyc039(2702.0 0.095 1.450 144 Paptid	Solyc01g009290.2	0.082	1,276	105	Polyribonucleotide 5´-hydroxyl-kinase Clp1
Salyd2208110.2 0.085 2,367 201 Polypymidline tract-binding protein-like Solyd0800606.2 0.086 1,032 88 Genomic DNA chromosome 3 P1 clone MSJ11 Solyd08006040.2 0.087 4,740 414 Us mRNA-associated Sm-like protein LSm7 Solyd0800540.2 0.088 1,192 105 Serine/Hroomine-protein kinase BU032 Solyd02005290.2 0.089 4,256 380 Splicing factor 12A-dependent RNA helicase-like protein Solyd020076910.1 0.090 624 56 Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein Solyd020076910.2 0.091 1.811 166 Devalopmentality-regulated GTP-binding protein 2 Solyd02007040.2 0.092 2.573 486 Dual-specificity tyrosine-phosphatase CDC25 Solyd02007040.2 0.092 2.571 519 Nuclear transcription factor Y subunit B-6 Solyd02007802.2 0.095 1,526 144 Cyclin family protein Solyd0200372.0.2 0.095 1,450 138 HLA-B associated transcript 3 (Fagment) Solyd0200370.2 0.096 <td< td=""><td>Solyc09g018730.2</td><td>0.083</td><td>2,166</td><td>180</td><td>Ubiquitin carboxyl-terminal hydrolase family 1 protein</td></td<>	Solyc09g018730.2	0.083	2,166	180	Ubiquitin carboxyl-terminal hydrolase family 1 protein
Solyc0806080.2 0.086 1.032 88 Genomic DNA chromose 3 P1 clone MSJ11 Solyc04051570.2 0.087 4.740 414 U6 snRNA-associated Sm-like protein LSm7 Solyc04051570.2 0.088 1.192 105 Serinet/treorine-protein kinase BUD32 Solyc0205902.2 0.089 4.256 380 Splicing factor U2AF large subunit Solyc0205701.1 0.000 624 56 Pre-mRNA splicing factor XP-dependent RNA helicase-like protein Solyc0205701.0 0.092 5.273 486 Dual-specificity tyrosine-phosphatase CDC25 Solyc02050702.0 0.092 2.611 241 Znc finger CCCH-type with G patch domain-containing protein Solyc02050702.0 0.094 4.46 42 Peptide chain release factor 1 Solyc02050702.0 0.095 1.450 138 HLAB associated transcript 3 (Fragment) Solyc02050702.0 0.095 6.651 652 NADH-quinone oxidorductase subunit 1 Solyc01090450.2 0.096 6.678 642 Polyademylate-binding protein 2 Solyc02050760.2 0.097 1.933 <t< td=""><td>Solyc02g088110.2</td><td>0.085</td><td>2,367</td><td>201</td><td>Polypyrimidine tract-binding protein-like</td></t<>	Solyc02g088110.2	0.085	2,367	201	Polypyrimidine tract-binding protein-like
Solyc0909040.2 0.087 4.740 414 U6 snNA-associated Sm-like protein LSm7 Solyc0400515370.2 0.088 2.564 228 Acyl carrier protein kinase BUD32 Solyc040050140.2 0.088 4.256 380 Splining factor V2AF large subunit Solyc03021902.2 0.090 624 56 Pre-mRNA splining factor XP-dependent RNA helicase-like protein Solyc010076910.1 0.090 624 56 Pre-mRNA splining rotein domain-containing protein Solyc010007140.2 0.092 5.273 486 Duels-specificity tronsine-phosphatase CDC25 Solyc01007040.2 0.092 2.611 241 Zinc finger CCH+type with G patch domain-containing protein Solyc020907802.0 0.093 5.571 519 Nuclear transcription factor 1 Solyc020907810.0 0.095 1.326 144 Cyclin family protein Solyc020907820.2 0.095 1.381 HLAB associated transcription factor 1 Solyc020903720.2 0.095 6.851 652 NADH-quinone oxidoreductase subunit 1 Solyc02090370.2 0.097 1.933 187	Solyc08g060860.2	0.086	1,032	88	Genomic DNA chromosome 3 P1 clone MSJ11
Solyc04p115370.2 0.088 2.84 2.81 Acyl carrier protein Solyc0605140.2 0.089 1.192 105 Sprinc/threonine-protein kinase BUD32 Solyc02062922.2 0.089 4.256 380 Splicing factor U2AF large subunit Solyc02067910.1 0.090 6.24 56 Pre-mRNA splicing factor V2AF large subunit Solyc02067910.2 0.091 1.831 166 Developmentally-regulated GTP-binding protein 2 Solyc0207007040.2 0.092 2.611 241 Zre finger CCCH-lype with G patch domain-containing protein Solyc0207020.2 0.093 5.571 519 Nuclear transcription factor Y subunit B-6 Solyc0207020.2 0.094 446 42 Peptide chain release factor 1 Solyc02080230.2 0.095 2.332 227 DSBA oxidoreductase family protein Solyc0206080370.2 0.095 1.450 138 HLA-B associated transcription factor 1 Solyc0206080400.2 0.097 1.333 187 Heterogeneous nuclear transcription factor 1 Solyc0206080400.2 0.097 1.383 174 <td>Solyc09g009640.2</td> <td>0.087</td> <td>4,740</td> <td>414</td> <td>U6 snRNA-associated Sm-like protein LSm7</td>	Solyc09g009640.2	0.087	4,740	414	U6 snRNA-associated Sm-like protein LSm7
Solyc08g005140.2 0.088 1,192 105 Serine/threonine-protein kinase BUD32 Solyc03g02520.2 0.089 4,256 380 Splicing factor 12A-faces subunit Solyc03g121980.2 0.091 1,831 166 Developmentally-regulated GTP-binding protein 2 Solyc01g07740.2 0.092 5,273 486 Dual-specificity tyrosine-phosphatase CDC25 Solyc01g07040.2 0.092 2,811 241 Zinc finger CCCH-type with Cpatch domain-containing protein Solyc03g07020.2 0.094 446 42 Peptide chain release factor 1 Solyc02g08930.2 0.095 2,392 227 DSBA oxidoreductase family protein Solyc02g089230.2 0.095 1,480 188 HLA-B associated transcript 3 (Fagment) Solyc02g089230.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc02g064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc04g0602.2 0.097 1,799 175 Mitosis protein Dim1 Solyc04g008730.2 0.097 1,799 176 Mitosis pr	Solyc04g015370.2	0.088	2,584	228	Acyl carrier protein
Solyc02g06292.2 0.089 4.256 380 Splicing factor U2AF large subunit Solyc01g07f910.1 0.090 624 56 Pre-mRNA splicing factor XPT-dependent RNA helicase-like protein Solyc01g07f140.2 0.092 5,273 486 Duel-specificity tyrosine-phosphatase CDC25 Solyc03g07602.0 0.093 5,571 519 Nuclear transcription factor Y subunit B-6 Solyc03g07802.0 0.094 446 42 Peptide chain release factor 1 Solyc03g07802.0 0.095 2,382 227 DSBA oxidoreductase subunit 1 Solyc03g07802.0 0.095 1,450 1144 Cyclin family protein Solyc03g064510.2 0.096 6,651 652 NADH-quinone oxidoreductase subunit 1 Solyc04g06730.2 0.096 6,651 652 NADH-quinone oxidoreductase subunit 1 Solyc04g0730.2 0.097 1,333 187 Heterogeneous nuclear ribonucleoprotein K Solyc04g00830.2 0.097 1,333 187 Heterogeneous nuclear ribonucleoprotein K Solyc04g00830.2 0.099 1,421 141	Solyc08g005140.2	0.088	1,192	105	Serine/threonine-protein kinase BUD32
Solyc10g076910.1 0.090 624 56 Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein Solyc03g121980.2 0.091 1.831 166 Developmentally-regulated GTP-binding protein 2 Solyc01g097140.2 0.092 2.611 241 Zinc finger CCCH-type with G patch domain-containing protein Solyc03g07802.0 0.093 5.571 519 Nuclear transcription factor Y subunit B-6 Solyc03g07802.0 0.094 446 42 Peptide chain release factor 1 Solyc03g07802.0 0.095 1.526 144 Cyclin family protein Solyc03g0823.0.2 0.095 2.392 227 DSBA oxidoreductase family protein Solyc03g0823.0.2 0.095 6.851 652 NADH-aylinone oxidoreductase subunit 1 Solyc01g046510.2 0.096 6.678 642 Polyadenylate-binding protein 2 Solyc01g073904510.2 0.096 6.678 642 Polyadenylate-binding protein 3 Solyc04g0400.2 0.097 1,739 175 Mitosis protein Dim1 Solyc04g0402.0.2 0.097 1,739 175 Mitosis protein Dim1 Solyc04g0	Solyc02g062920.2	0.089	4,256	380	Splicing factor U2AF large subunit
Solyc03g121980.2 0.091 1,831 166 Developmentally-regulated GTP-binding protein 2 Solyc01g097140.2 0.092 5,273 486 Dual-specificity tyrosine-phosphatase CDC25 Solyc00g069310.2 0.093 5,571 519 Nuclear transcription factor Y subunit B-6 Solyc03g07802.0 0.094 446 42 Peptide chain release factor 1 Solyc03g07802.0 0.095 1,526 144 Oyclin family protein Solyc03g07802.0 0.095 1,526 NADH-quinone oxidoreductase family protein Solyc06g036720.2 0.095 6,851 652 NADH-quinone oxidoreductase subunit 1 Solyc05g04510.2 0.096 639 61 DnaJ homolog subfamily C member 8 Solyc05g07870.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc05g07870.2 0.099 1,421 141 T-snare Solyc05g07870.2 0.099 1,421 141 T-snare Solyc04g0055760.2 0.101 1,457 46 Histone acetyltransferase Solyc04g005801.2	Solyc10g076910.1	0.090	624	56	Pre-mRNA splicing factor ATP-dependent RNA helicase-like protein
Solyc01g097140.2 0.092 5.273 486 Dual-specificity tyrosine-phosphatase CDC25 Solyc07g007040.2 0.092 2.611 241 Zinc finger CCCH-type with G patch domain-containing protein Solyc03g07802.2 0.093 5.571 519 Nuclear transcription factor Y subunit B-6 Solyc03g07802.2 0.094 446 42 Peptide chain release factor 1 Solyc03g07802.2 0.095 1.526 144 Cyclin family protein Solyc03g0820.2 0.095 2.392 227 DSBA oxidoreductase family protein Solyc01g08720.2 0.095 6.851 652 NADH-quinone oxidoreductase subunit 1 Solyc01g07g064510.2 0.096 6.678 642 Polyadenylate-thinding protein 2 Solyc01g07g064510.2 0.096 6.678 642 Polyadenylate-thinding protein 2 Solyc020g0802.0 0.097 1,739 175 Mitosis protein Dim1 Solyc04g00802.2 0.097 1,739 175 Mitosis protein Dim1 Solyc04g005780.1 0.100 1,138 114 Trae are	Solyc03g121980.2	0.091	1,831	166	Developmentally-regulated GTP-binding protein 2
Solyc07g007040.2 0.092 2,611 241 Zinc finger CCCH-type with G patch domain-containing protein Solyc03g07802.2 0.093 5,571 519 Nuclear transcription factor Y subunit B-6 Solyc03g07802.2 0.095 1,526 144 Cyclin family protein Solyc02g08230.2 0.095 2,392 227 DSBA oxidoreductase family protein Solyc02g08230.2 0.095 1,450 138 HLA-B associated transcript 3 (Fragment) Solyc02g08230.2 0.095 6,657 642 Polyadenylate-binding protein 2 Solyc07g064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc04g008230.2 0.097 1,933 187 Heterogeneous nuclear ibonucleoprotein K Solyc04g008230.2 0.097 1,799 175 Mitosis protein Solyc04g008230.2 0.097 1,799 175 Mitosis protein Solyc04g008230.2 0.097 1,799 175 Mitosis protein Solyc04g008230.2 0.099 1,421 141 T-snare Solyc04g00580.1	Solyc01g097140.2	0.092	5,273	486	Dual-specificity tyrosine-phosphatase CDC25
S0lyc06g069310.2 0.093 5,571 519 Nuclear transcription factor Y subunit B-6 S0lyc03g078020.2 0.094 446 42 Peptide chain release factor 1 S0lyc03g078020.2 0.095 1,526 144 Cyclin family protein Solyc02g0820.2 0.095 2,329 227 DSBA oxidoreductase family protein Solyc01g097812.0 0.095 6,851 652 NADH-quinone oxidoreductase subunit I Solyc01g0964510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc04g008230.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc04g008230.2 0.097 1,799 175 Mitosis protein Solyc04g008230.2 0.097 1,799 175 Mitosis protein Solyc04g0087870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc04g008610.2 0.101 1,457 46 Histone acceltransferase Solyc04g008610.2 0.101 547 45 Alpha/beta hydrolase Solyc04g005800.2	Solyc07g007040.2	0.092	2,611	241	Zinc finger CCCH-type with G patch domain-containing protein
Solyc03g078020.2 0.094 446 42 Peptide chain release factor 1 Solyc10g078180.1 0.095 1.526 144 Cyclin family protein Solyc03g089230.2 0.095 2.392 227 DSBA oxidoreductase family protein Solyc01g109620.2 0.095 6.851 652 NADH-quinone oxidoreductase subunit 1 Solyc01g064510.2 0.096 6.678 642 Polyadenylate-binding protein 2 Solyc040g064000.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc040g06230.2 0.099 1,421 141 T-snare Solyc040g065760.2 0.099 1,421 141 T-snare Solyc040g06570.2 0.099 1,421 141 T-snare Solyc040g06570.2 0.101 1,475 46 Histone acetyltransferase Solyc040g05800.2 0.101 3,475 351 CWC15 hornolog Solyc012g005780.2 0.101 3,475 351 CWC35 hornolog Solyc012g021130.1 0.101 3,475 351 <t< td=""><td>Solyc06g069310.2</td><td>0.093</td><td>5,571</td><td>519</td><td>Nuclear transcription factor Y subunit B-6</td></t<>	Solyc06g069310.2	0.093	5,571	519	Nuclear transcription factor Y subunit B-6
SolvC10078180.1 0.095 1,526 144 Cyclin family protein SolvC020089230.2 0.095 2,392 227 DSBA oxidoreductase family protein SolvC02008920.2 0.095 1,450 138 HLA-B associated transcript 3 (Fragment) SolvC0109062.2 0.096 6,678 642 Polyadenylate-binding protein 2 SolvC030064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 SolvC04009230.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K SolvC050073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 SolvC040090530.2 0.100 1,138 114 Trasnare SolvC040015300.2 0.101 457 46 Histone acetyltransferase SolvC040015300.2 0.101 521 52 Alpha/beta hydrolase SolvC03005800.2 0.101 3,475 351 CWC15 homolog SolvC03005800.2 0.101 1,666 108 RNA polymerase-associated protein CtP homolog SolvC03005802.2	Solyc03g078020.2	0.094	446	42	Peptide chain release factor 1
Solyc02089230.2 0.095 2,392 227 DSBA oxidoreductase family protein Solyc06g036720.2 0.095 1,450 138 HLA-B associated transcript 3 (Fragment) Solyc01g109620.2 0.095 6,851 652 NADH-quinone oxidoreductase subunit 1 Solyc01g064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc06g084000.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc06g073670.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc04g009230.2 0.097 1,799 175 Mitosis protein Dim1 Solyc04g009367.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc04g005780.2 0.099 1,421 141 T-snare Solyc04g005800.2 0.101 521 52 Alpha/beta hydrolase Solyc04g015300.2 0.101 521 52 Alpha/bydrolase Solyc10g015800.2 0.101 1,160 117 ATP dependent RNA helicase Solyc10g07g041550	Solvc10g078180.1	0.095	1,526	144	Cyclin family protein
Solyc06036720.2 0.095 1,450 138 HLA-B associated transcript 3 (Fragment) Solyc01g109620.2 0.095 6,851 652 NADH-quinone oxidoreductase subunit I Solyc01g079064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc01g079064510.2 0.097 1,933 187 Heterogeneous nuclear inbonucleoprotein K Solyc04g009230.2 0.097 1,799 175 Mitosis protein Dim1 Solyc05g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc04g005760.2 0.099 1,421 141 T-snare Solyc04g005800.2 0.101 1,518 114 TraB family protein Solyc01g005800.2 0.101 3,475 351 CWC15 homolog Solyc01g005800.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g073g0.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g073g0.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc01g073g0.2	Solyc02g089230.2	0.095	2,392	227	DSBA oxidoreductase family protein
Solyc0199620.2 0.095 6,851 652 NADH-quinone oxidoreductase subunit I Solyc07g064510.2 0.096 6,678 642 Polyadenylate-binding protein 2 Solyc017g064510.2 0.096 639 61 DnaJ homolog subfamily C member 8 Solyc04000220.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc04000230.2 0.097 1,799 175 Mitosis protein Dim1 Solyc04000230.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc0400805780.1 0.100 1,138 114 T-snare Solyc040080610.2 0.101 457 46 Histone acetyltransferase Solyc040005800.2 0.101 457 46 Histone acetyltransferase Solyc040005800.2 0.101 521 52 Alpha/beta hydrolase Solyc102005800.2 0.101 3,475 351 CWC15 homolog Solyc103079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc1030794150.2 0.101 1,0	Solvc06q036720.2	0.095	1.450	138	HLA-B associated transcript 3 (Fragment)
Solyc07064510.2 0.096 6.678 642 Polyadenylate-binding protein 2 Solyc011g071930.1 0.096 639 61 DnaJ homolog subfamily C member 8 Solyc06g084000.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc2055760.2 0.099 1,421 141 T-snare Solyc204g0055760.2 0.099 1,421 141 T-snare Solyc204g0056760.2 0.100 1,138 114 TraB family protein Solyc204g005800.2 0.101 457 46 Histone acetyltransferase Solyc204g015300.2 0.101 521 52 Alpha/beta hydrolase Solyc204g015300.2 0.101 3,475 351 CWC15 homolog Solyc204g0130.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g079330.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc02g092957.1 0.102 767<	Solvc01g109620.2	0.095	6.851	652	NADH-auinone oxidoreductase subunit I
Solyc11g071930.1 0.096 639 61 Dna J homolog subfamily C member 8 Solyc106g084000.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc02g005760.2 0.099 1,421 141 T-snare Solyc04g008610.2 0.101 1457 46 Histone acetyltransferase Solyc12g005780.1 0.100 1,138 114 TraB family protein Solyc10g005800.2 0.101 521 52 Alpha/beta hydrolase Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc02g041550.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc01g004305420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc01g0044900.1 0.103 854 88 Heat shock factor binding protein 2	Solyc07g064510.2	0.096	6,678	642	Polyadenylate-binding protein 2
Solyc060084000.2 0.097 1,933 187 Heterogeneous nuclear ribonucleoprotein K Solyc04g009230.2 0.097 1,799 175 Mitosis protein Dim1 Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc09g055760.2 0.099 1,421 141 T-snare Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g008600.2 0.101 521 52 Alpha/beta hydrolase Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc10g005800.2 0.101 1,160 117 ATP dependent RNA helicase Solyc10g079330.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g04490.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g04490.1 0.103 969	Solvc11g071930.1	0.096	639	61	DnaJ homolog subfamily C member 8
Solyc04g009230.2 0.097 1,799 175 Mitosis protein Dim1 Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc09g055760.2 0.099 1,421 141 T-snare Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g008610.2 0.101 521 52 Alpha/beta hydrolase Solyc01g005800.2 0.101 3,475 351 CWC15 homolog Solyc01g005800.2 0.101 3,475 351 CWC15 homolog Solyc01g005800.2 0.101 1,160 117 ATP dependent RNA helicase Solyc03g059420.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g048400.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g044900.1 0.103 969 100 Importin α-2 subunit Solyc00g04270.1 0.103 969 100 Importin α	Solyc06g084000.2	0.097	1,933	187	Heterogeneous nuclear ribonucleoprotein K
Solyc06g073870.2 0.099 2,349 231 DNA-directed RNA polymerase II subunit RPB4 Solyc09g055760.2 0.099 1,421 141 T-snare Solyc04g005780.1 0.100 1,138 114 TraB family protein Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g015300.2 0.101 521 52 Alpha/beta hydrolase Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g07930.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc11g07950.1 0.102 1,774 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g084270.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g084270.1 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699	Solyc04g009230.2	0.097	1,799	175	Mitosis protein Dim1
Solyc09055760.2 0.099 1,421 141 T-snare Solyc012g005780.1 0.100 1,138 114 TraB family protein Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g015300.2 0.101 521 52 Alpha/beta hydrolase Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc012g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc02g05576.1 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g044900.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc02g092380.2 0.104 699 72 Pep	Solyc06g073870.2	0.099	2,349	231	DNA-directed RNA polymerase II subunit RPB4
Solyc12005780.1 0.100 1,138 114 TraB family protein Solyc204g008610.2 0.101 457 46 Histone acetyltransferase Solyc104g005800.2 0.101 521 52 Alpha/beta hydrolase Solyc12g005780.1 0.101 3,475 351 CWC15 homolog Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g07930.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc12g09570.1 0.102 1,704 173 Sister chromatid cohesion 2 Solyc12g099570.1 0.102 767 78 Unknown Protein Solyc10g044900.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g048270.1 0.103 969 100 Importin c-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699	Solyc09g055760.2	0.099	1,421	141	T-snare
Solyc04g008610.2 0.101 457 46 Histone acetyltransferase Solyc04g015300.2 0.101 521 52 Alpha/beta hydrolase Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g07930.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc01g07930.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc2g092380.2 0.103 1,356 140 Transcription factor (Fragment) Solyc2g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 <	Solyc12g005780.1	0.100	1,138	114	TraB family protein
Solyc04g015300.2 0.101 521 52 Alpha/beta hydrolase Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc01g079330.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g044900.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc2g092380.2 0.104 969 100 Importin α-2 subunit Solyc2g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc2g092380.2 0.104 1,149 119 BTB/POZ domain containing protein expressed Solyc2g092380.2 0.104	Solyc04g008610.2	0.101	457	46	Histone acetyltransferase
Solyc10g005800.2 0.101 3,475 351 CWC15 homolog Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc07g041550.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc10g044900.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g084270.1 0.103 160 16 CASTOR protein (Fragment) Solyc20g02380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 1,149 119 BTB/POZ domain containing protein expressed Solyc10g00880.1 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g0055450.1 0.105 1.503 157 Uhiruutita-prortein lin	Solyc04g015300.2	0.101	521	52	Alpha/beta hydrolase
Solyc12g021130.1 0.101 240 24 3-beta-hydroxysteroid dehydrogenase-like Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc07g041550.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 1,419 119 BTB/POZ domain containing protein expressed Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g008950.2 <td>Solyc10g005800.2</td> <td>0.101</td> <td>3,475</td> <td>351</td> <td>CWC15 homolog</td>	Solyc10g005800.2	0.101	3,475	351	CWC15 homolog
Solyc01g079330.2 0.101 1,160 117 ATP dependent RNA helicase Solyc07g041550.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g08950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g08950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g055450.1 0.105 1.503 157 Ubiquitin-protein linase 4	Solvc12g021130.1	0.101	240	24	3-beta-hydroxysteroid dehydrogenase-like
Solyc07g041550.2 0.101 1,066 108 RNA polymerase-associated protein Ctr9 homolog Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 1,419 119 BTB/POZ domain containing protein expressed Solyc06g009860.1 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 <td>Solyc01g079330.2</td> <td>0.101</td> <td>1,160</td> <td>117</td> <td>ATP dependent RNA helicase</td>	Solyc01g079330.2	0.101	1,160	117	ATP dependent RNA helicase
Solyc03g059420.2 0.102 1,704 173 Sister chromatid cohesion 2 Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc06g009860.1 0.104 1,419 119 BTB/POZ domain containing protein expressed Solyc10g08950.2 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g0055450.1 0.105 1.503 157 Ubicuitin-protein linase 4	Solyc07g041550.2	0.101	1,066	108	RNA polymerase-associated protein Ctr9 homolog
Solyc11g071950.1 0.102 767 78 Unknown Protein Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc05g052960.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc06g009860.1 0.104 1,49 119 BTB/POZ domain containing protein expressed Solyc10g008950.2 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g0055450.1 0.105 1.503 157 Ubicuitin-protein linase 4	Solvc03q059420.2	0.102	1.704	173	Sister chromatid cohesion 2
Solyc12g099570.1 0.103 854 88 Heat shock factor binding protein 2 Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc06g0052960.2 0.104 1,149 119 BTB/POZ domain containing protein expressed Solyc06g009860.1 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g0055450.1 0.105 1.503 157 Ubiquitin-protein linase 4	Solvc11g071950.1	0.102	767	78	Unknown Protein
Solyc10g044900.1 0.103 160 16 CASTOR protein (Fragment) Solyc10g084270.1 0.103 969 100 Importin α-2 subunit Solyc06g016750.2 0.103 1,356 140 Transcription factor (Fragment) Solyc02g092380.2 0.104 699 72 Peptidyl-prolyl cis-trans isomerase Solyc05g052960.2 0.104 1,149 119 BTB/POZ domain containing protein expressed Solyc06g009860.1 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g0055450.1 0.105 1.503 157 Ubiquitin-protein linase 4	Solvc12g099570.1	0.103	854	88	Heat shock factor binding protein 2
Solyc10g084270.10.103969100Importin α-2 subunitSolyc06g016750.20.1031,356140Transcription factor (Fragment)Solyc02g092380.20.10469972Peptidyl-prolyl cis-trans isomeraseSolyc05g052960.20.1041,149119BTB/POZ domain containing protein expressedSolyc06g009860.10.1041,044108Mercaptopyruvate sulfurtransferase-like proteinSolyc10g008950.20.104977102Guanylate-binding protein 10Solyc10g055450.10.1051.503157Ubiquitin-protein linase 4	Solvc10a044900.1	0.103	160	16	CASTOR protein (Fragment)
Solyc06g016750.20.1031,356140Transcription factor (Fragment)Solyc02g092380.20.10469972Peptidyl-prolyl cis-trans isomeraseSolyc05g052960.20.1041,149119BTB/POZ domain containing protein expressedSolyc06g009860.10.1041,044108Mercaptopyruvate sulfurtransferase-like proteinSolyc10g008950.20.104977102Guanylate-binding protein 10Solyc10g055450.10.1051.503157Ubiquitin-protein linase 4	Solvc10g084270.1	0.103	969	100	Importin q-2 subunit
Solyc02g092380.20.10469972Peptidyl-prolyl cis-trans isomeraseSolyc05g052960.20.1041,149119BTB/POZ domain containing protein expressedSolyc06g009860.10.1041,044108Mercaptopyruvate sulfurtransferase-like proteinSolyc10g008950.20.104977102Guanylate-binding protein 10Solyc10g055450.10.1051.503157Ubiquitin-protein linase 4	Solvc06a016750.2	0.103	1.356	140	Transcription factor (Fragment)
Solyc05g052960.20.1041,149119BTB/POZ domain containing protein expressedSolyc06g009860.10.1041,044108Mercaptopyruvate sulfurtransferase-like proteinSolyc10g008950.20.104977102Guanylate-binding protein 10Solyc10g055450.10.1051.503157Ubiquitin-protein linase 4	Solvc02g092380.2	0.104	699	72	Peptidyl-prolyl cis-trans isomerase
Solyc06g009860.1 0.104 1,044 108 Mercaptopyruvate sulfurtransferase-like protein Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g055450.1 0.105 1.503 157 Ubiquitin-protein ligase 4	Solvc05g052960.2	0.104	1,149	119	BTB/POZ domain containing protein expressed
Solyc10g008950.2 0.104 977 102 Guanylate-binding protein 10 Solyc10g055450.1 0.105 1.503 157 Ubiquitin-protein ligase 4	Solvc06g009860.1	0.104	1.044	108	Mercaptopyruvate sulfurtransferase-like protein
Solvc10a055450.1 0.105 1.503 1.57 Ubiquitin-protein ligase 4	Solvc10g008950 2	0.104	977	102	Guanylate-binding protein 10
	Solvc10g055450.1	0.105	1.503	157	Ubiguitin-protein ligase 4

(Continued)

Gene ID	CV ^{a)}	ME	SD	Annotation ^{b)}
Solyc05g006580.2	0.105	518	54	Unknown protein
Solyc03g121310.2	0.105	3,802	398	RWD domain-containing protein
Solyc09g010180.2	0.106	1,850	196	TPR repeat-containing protein

^{a)} Coefficient of variation (CV) values for the second microarray study defined as standard deviation (SD) of expression levels of a specific gene across all experiments (treatments, time points, and replicates) divided by its mean expression level (ME). Only genes with a CV value \leq 0.12 in the first microarray study are listed.

^{b)} Based on the annotation by the international tomato annotation group"(ITAG, version 2.3).

doi:10.1371/journal.pone.0136499.t001

point of sampling (0, 6, 10 and 24 hpi), respectively. As shown in Fig 4, all tested genes fulfill the minimal requirement for suitable reference genes, i.e., possess an *M* value below 1.5. However, the traditionally employed reference genes *ACT* and *GAPDH* were considerably less stable than the other genes, whereas $EF-1\alpha$ and UBI seemed more suitable under the chosen experimental conditions. The top-ranked references, however, were among the newly identified candidate genes, namely COX > PHD > CLP1 > LSM7 with respect to the grouping by treatment (Fig 4A).

BestKeeper analysis. We compared the six most stable new reference genes according to NormFinder with the four classical reference genes using BestKeeper [60]. This tool evaluates the suitability of up to 10 reference genes based on the calculation of Ct value variations, performing pair-wise correlations of all candidate gene combinations. Extreme samples (x-fold over-/under-expression) are also considered. As shown in <u>Table 2</u>, expression of all genes except for *ACT* and *GAPDH* fluctuated in a range compatible with standard deviations (SD) [\pm Ct] < 1 and SD [\pm x-fold] < 2, which represents an acceptable overall variation [60]. Notably,

Fig 2. Expression profiles of new candidate reference genes and classical housekeeping genes from tomato. Box plot graphs of Ct values for each reference gene tested in all samples (n = 48). Ct values are inversely proportional to the amount of template. Boxes indicate the 25/75 percentiles, median values are represented by black lines. Whisker caps indicate the value range, dots represent outliers. New reference gene candidates are indicated in bold.

doi:10.1371/journal.pone.0136499.g002

Fig 3. Expression stability of candidate reference genes in Xcv-infected and mock-treated tomato plants evaluated by geNorm. Tomato reference genes were ranked based on expression stability calculated by geNorm. New reference gene candidates are indicated in bold. M values represent the average expression stability of each gene (n = 48). The cut-off value for reliable reference genes is indicated by a dashed line.

BestKeeper evaluated all six new reference gene candidates as better suited than the four traditional housekeeping genes, with PHD > CLP1 > LSM7 > COX being the top four. Taken together, regardless of the ranking order, geNorm, NormFinder and BestKeeper evidenced the superior expression stability of the new tomato reference genes under the experimental conditions chosen.

Quantification of immunity marker genes in infected tomato leaves

We applied our findings to the analysis of two target genes previously reported to be induced during PTI and ETI, respectively, LRR22 [67] and an UDP-glucosyltransferase gene (UGT, Solyc09g092500 [68]). For this, total RNA was analyzed from tomato leaves six hours after treatment with 10 mM MgCl₂, Xcv 85-10, 85-10\DeltahrcN and 85-10(pavrBs4), respectively. To increase the accuracy of normalization we took into account two reference genes. We compared the two best reference genes identified by geNorm (*IMP-\beta* and *PHD*), NormFinder (PHD and COX) and BestKeeper (CLP1 and PHD) with the two least-stable genes, GAPDH and ACT, for their ability to provide reliable relative quantification of SlLRR22 and SlUGT by qRT-PCR. As shown in Fig 5, accumulation of SlLRR22 transcript was approximately two-fold higher in the leaves treated with $85-10\Delta hrcN$ than in the mock control if compared to any of the new reference gene combinations. By contrast, comparison to the suboptimal references revealed an apparent five-fold induction of gene expression. In addition, referring to ACT and GAPDH suggested a more than two-fold upregulation of SlLRR22 by the Xcv WT strain 85–10 and by 85-10(pavrBs4), the latter induction being significant, which was not detectable with any of the superior reference genes. Notably, standard deviations between the different biological datasets were substantially lower if one of the new reference gene combinations was

Fig 4. Expression stability of candidate reference genes in *Xcv*-infected and mock-treated tomato plants evaluated by NormFinder. Tomato reference genes were ranked based on expression stability calculated by NormFinder (n = 48). New reference gene candidates are indicated in bold. The cut-off value for reliable reference genes is indicated by a dashed line. Sample groups were defined based on (a) treatment [MgCl₂, *Xcv* 85–10, 85–10 Δ hrcN and 85-10(pavrBs4)] or (b) time-point of harvesting (0, 6, 10 and 24 hpi).

employed. The analysis of the ETI marker gene, *SlUGT*, did not show pronounced differences in the expression pattern depending on the reference genes chosen. In all cases, transcript abundance was significantly higher in the leaves treated with the avirulent strain 85-10 (p*avrBs4*) than in the mock-infiltrated leaves. However, a slight induction of *SlUGT* expression by both *Xcv* 85–10 and 85–10 Δ *hrcN* was only detected when the traditional references were employed. A possible explanation for these results is downregulation of *ACT* and/or *GAPDH*

		-	-							
Ranking Gene name ^{a)}	1 <i>CLP1</i>	2 PHD	3 LSM7	4 ACP	5 ΙΜΡ-β	6 COX	7 EF-1a	8 UBI	9 ACT	10 GAPDH
Min [Ct]	26.64	27.02	26.45	27.42	28.91	27.77	22.91	26.55	31.81	23.36
Max [Ct]	28.62	29.09	28.83	29.67	31.22	30.29	25.86	32.32	38.96	29.83
SD [± Ct]	0.41	0.47	0.53	0.53	0.55	0.61	0.72	0.86	1.27	1.41
CV [% Ct]	1.50	1.67	1.90	1.86	1.83	2.09	2.97	3.09	3.70	5.50
Min [x-fold]	-1.88	-1.78	-2.16	-2.02	-2.06	-1.75	-2.52	-2.61	-3.33	-3.66
Max [x-fold]	2.00	2.29	2.22	2.10	1.96	1.92	2.76	20.28	11.75	12.24
SD [± x-fold]	1.28	1.32	1.37	1.38	1.39	1.44	1.55	1.69	2.15	2.34

Table 2. Descriptive statistics of six newly identified and four classical tomato reference genes based on their crossing point values in all samples combined (n = 48) as calculated by BestKeeper.

^{a)} New reference gene candidates are indicated in bold. [Ct], cycle threshold; Geo Mean [Ct], geometric mean of Ct; Min [Ct] and Max [Ct], the extreme values of Ct; SD [± Ct], standard deviation of the Ct; CV [% Ct], CV expressed as a percentage on the Ct level; Min [x-fold] and Max [x-fold], the extreme values of expression levels expressed as an absolute x-fold over- or under-regulation coefficient; SD [± x-fold], standard deviation of the absolute regulation coefficients.

doi:10.1371/journal.pone.0136499.t002

by *Xcv* infection. To test this possibility, the expression of both genes was analyzed using the newly identified reference genes as normalization controls. As shown in <u>S4 Fig</u>, *GAPDH* transcript levels were indeed significantly lower in the leaf material inoculated with bacteria compared to the mock control, whereas *ACT* appeared not to be changed under these conditions.

Selection and validation of pepper reference genes based on tomato orthologs

Based on the tomato microarray data, pepper orthologs of the eleven most stably expressed genes (Table 1) were identified by BLASTx against the European Nucleotide Archive (http://www.ebi. ac.uk/ena). Oligonucleotides for qRT-PCR were derived (S1 Table), and melting curve analysis and gel electrophoresis confirmed specific products for nine candidate genes (S5 Fig). PCR efficiencies ranged between 72.09 and 99.32% (S1 Table). For expression analysis, pepper ECW-30R (*Bs3*) leaves were infiltrated with 10 mM MgCl₂, *Xcv* 85–10, 85–10 Δ *hrcN* and 85-10(*pavrBs3*), respectively, and leaf material was harvested at 0, 6, 10 and 24 hpi. 85-10(*pavrBs3*) translocates the effector AvrBs3 which induces the HR in *Bs3* pepper plants. Technical duplicates of three biological replicates were subjected to qRT-PCR analysis. Average Ct values of the new reference gene candidates ranged from 27.4 (*UCH*) to 38.8 (*TAF6*; Fig 6). For comparison, the four classical reference genes *EF-1a*, *GAPDH*, *ACT* and *β-tubulin* (*TUB*) were also analyzed.

The data were evaluated similarly to the analysis of the tomato reference genes described above. GeNorm analysis revealed that only three genes, *UCH*, *LSM7* and *PHD*, match the cut-off-value for a reliable reference gene ($M \le 0.5$). In general, the pepper orthologs of the newly identified tomato reference genes were more stably expressed than the traditional pepper references (Fig 7).

Using NormFinder, the classical reference gene $EF-1\alpha$ matched the requirements of a suitable reference gene (M < 1.5) when the sample subgroups were defined by treatment (Fig 8A), but turned out to be completely unreliable when the classification was based on the time-point of sampling (Fig 8B). *GAPDH* and *TUB* matched the minimal requirements of a reliable reference gene but were considerably less stable than the other genes tested, while *ACT* appeared more suitable. Notably, all newly identified reference genes were evaluated as reliable normalization controls with UCH > PHD > UP2 > LSM7 as the top-four when the grouping was based on treatment (Fig 8A).

BestKeeper analysis of the six best new pepper reference genes according to NormFinder and the four classical references surprisingly revealed that only one gene, *UCH*, fulfilled both requirements for a suitable normalization control in qRT-PCR studies, i.e., SD [\pm Ct] < 1 and SD [\pm x-fold] < 2 (<u>Table 3</u>). Most of the other genes matched at least the threshold for SD [\pm x-fold], whereas *EF*-1 α appeared to be completely unreliable as reference gene (<u>Table 3</u>).

Fig 5. Relative expression of PTI and ETI marker genes in *Xcv*-infected and mock-treated tomato plants. Expression patterns of *SlLRR22* (a) and *SlUGT* (b) in *S. lycopersicum* cv. MM leaves treated with 10 mM MgCl₂ (mock) or 5×10^8 cfu/ml of *Xcv* 85–10, 85–10 Δ *hrcN* and 85-10(pavrBs4), respectively, 6 hpi. qRT-PCR data were normalized with different reference gene pairs. Values are mean-fold changes in mRNA levels in *Xcv*-infected relative to mock-inoculated leaves for three biological replicates. Error bars indicate standard deviation (SD). Letters denote statistically significant differences (Student's *t*-test, *P* < 0.05).

doi:10.1371/journal.pone.0136499.g005

Fig 6. Expression profiles of new candidate reference genes and classical housekeeping genes from pepper. Box plot graphs of Ct values for each reference gene tested in all samples (n = 48). Ct values are inversely proportional to the amount of template. The boxes indicate the 25/75 percentiles, median values are represented by black lines. Whisker caps indicate the value range, dots represent outliers. New reference gene candidates are indicated in bold.

Quantification of PTI and ETI marker genes in infected pepper leaves

We compared the two best reference genes from pepper identified by geNorm, i.e., *UCH* and *LSM7* with the best reference genes according to BestKeeper, *UCH* and *ACT*, and the traditional reference genes *EF-1a* and *GAPDH* for their ability to provide reliable relative quantification of the target genes *LRR22* and *TFT4*, which are induced during PTI and ETI, respectively [67, 69]. As shown in Fig 9, employment of different reference genes did not result in substantial differences in the expression patterns of *CaLRR22* and *CaTFT4*. The T3S-deficient *Xcv* strain 85–10 Δ *hrcN* led to significantly higher expression of *CaLRR22* compared to the WT strain 85–10 and *Xcv* 85-10(p*avrBs3*). *CaTFT4* was induced significantly during the incompatible interaction with *Xcv* 85-10(p*avrBs3*), similarly to the reported induction after recognition of the type III effector AvrBs2 [69]. However, the observed differences in target gene expression levels were only judged as significant when the newly identified reference genes were used, but not with the traditional combination *EF-1a/GAPDH*. Utilization of the newly identified normalization controls resulted in significantly lower standard deviations underlining the higher reproducibility of the results in different experiments (Fig 9).

Discussion

Correct normalization of gene transcripts depends on the choice of suitable reference genes. This is essential for reliable analyses of gene expression by qRT-PCR and has to be established for specific experimental conditions [4]. Based on microarray expression analyses of >34,000 genes, we identified and validated 11 novel tomato reference genes with superior expression stability under biotic stress conditions, i.e., challenge by the bacterial pathogen *Xcv*. Although

Fig 7. Expression stability of candidate reference genes in Xcv-infected and mock-treated pepper plants evaluated by geNorm. Ranking of C. annuum reference genes based on expression stability calculated by geNorm. New reference gene candidates are indicated in bold. M values represent the average expression stability of each gene (n = 48). The cut-off value for reliable reference genes is indicated by a dashed line.

the new reference genes do not comprise "classical" housekeeping genes, homologies on the protein level indicate putative roles in basic cell functions, e.g., oxidation/reduction processes (*COX*), mRNA processing (*LSM7*, *CLP1*, *PTBL*), regulation of transcription/chromatin dynamics (*PHD*), nuclear import (*IMP-* β) and fatty acid biosynthesis (*ACP*; <u>S2 Table</u>). The three statistical programs we used for the evaluation of gene expression stability, geNorm, NormFinder and BestKeeper, slightly differed in the ranking of the reference gene candidates, which was also observed in previous studies and is probably due to different algorithms underlying the programs [23, 30, 31, 70]. Importantly, the newly identified genes were usually evaluated as more stable than the traditional housekeeping genes we analyzed for comparison and, notably, always included the optimal normalization control identified by the respective program. Based on our results, we recommend the use of *PHD* and *LSM7* as reference genes for normalization in future plant gene expression studies in the *Xcv*-tomato pathosystem.

To the best of our knowledge, previous studies of pepper and tomato comparing reference gene stabilities selected candidates solely based on homology. It was shown that different genes, often housekeeping genes, are preferable under different conditions [23, 30, 38, 62, 71–73]. Notably, our microarray data revealed that the expression of classical tomato housekeeping genes varied considerably, confirmed by qRT-PCR studies of selected genes. In particular, *GAPDH* and *ACT* were attested a variability too high for a reliable reference gene by geNorm and BestKeeper, respectively. Therefore, we do not recommend the further employment of these genes as normalization controls in qRT-PCR analysis of tomato genes after pathogen infection, especially because we clearly showed an *Xcv*-dependent downregulation of *GAPDH* expression. Taken together, our results demonstrate the advantage of an unbiased, whole

Fig 8. Expression stability of candidate reference genes in *Xcv*-infected and mock-treated pepper plants evaluated by NormFinder. Ranking of *C. annuum* reference genes based on expression stability calculated by NormFinder (n = 48). New reference gene candidates are indicated in bold. The cut-off value for reliable reference genes is indicated by a dashed line. Sample groups were defined based on (a) treatment [MgCl₂, *Xcv* 85–10, 85–10 Δ hrcN and 85-10(pavrBs3)] and (b) time-points of harvesting (0, 6, 10 and 24 hpi).

transcriptome-based approach to identify suitable reference genes. Concordantly, several whole-transcriptome analyses of different plant species and experimental setups identified other than traditional housekeeping genes as the most stably expressed genes [37–43].

It is, however, not feasible to perform microarray analyses for reference gene identification every time the experimental setup is changed. Therefore, one has to resort also to the homology-based selection of candidate genes. The identification of suitable candidates can be strongly improved by using orthologs of genes that were experimentally verified as appropriate

Ranking Gene name ^{a)}	1 ИСН	2 ACT	3 UP2	4 PHD	5 LSM7	6 TAF6	7 IMP-β	8	9 GAPDH	10 <i>EF-1</i> α
								TUB		
Geo Mean [Ct]	27,33	26,52	32,18	32,90	30,05	38,62	32,71	28,95	30,46	31,97
Min [Ct]	24,98	23,84	29,76	30,31	27,25	35,09	29,46	25,28	26,52	25,73
Max [Ct]	29,98	28,65	35,68	35,54	32,50	42,53	37,12	32,64	34,27	38,60
SD [± Ct]	0,95	1,00	1,01	1,04	1,20	1,24	1,31	1,34	1,53	2,81
CV [% Ct]	3,48	3,75	3,14	3,17	4,00	3,21	4,00	4,61	5,00	8,73
Min [x-fold]	-4,62	-5,27	-4,09	-4,27	-4,88	-3,62	-5,18	-9,39	-10,14	-48,01
Max [x-fold]	5,64	3,75	7,68	4,37	3,99	4,16	9,37	9,47	9,39	61,27
SD [± x-fold]	1,42	1,44	1,45	1,46	1,55	1,57	1,61	1,63	1,74	2,78

Table 3. Descriptive statistics of six newly identified and four classical pepper reference genes based on their crossing point values in all samples combined (n = 48) as calculated by BestKeeper.

^{a)} New reference gene candidates are indicated in bold. [Ct], cycle threshold; Geo Mean [Ct], geometric mean of Ct; Min [Ct] and Max [Ct], the extreme values of Ct; SD [± Ct], standard deviation of the Ct; CV [% Ct], CV expressed as a percentage on the Ct level; Min [x-fold] and Max [x-fold], the extreme values of expression levels expressed as an absolute x-fold over- or under-regulation coefficient; SD [± x-fold], standard deviation of the absolute regulation coefficients.

doi:10.1371/journal.pone.0136499.t003

references in related organisms under similar experimental or developmental conditions [38, 74–76]. We used such an approach to identify the pepper orthologs of our new superior tomato reference genes and determined *UCH* and *PHD* as the most suitable references for normalization of plant gene expression in the *Xcv*-pepper pathosystem. Interestingly, one of the traditional reference genes, *ACT*, also turned out to be stably expressed in our experimental setup. This contradicts the results of Wan et al. who described *ACT* as relatively unstable under different abiotic stresses and hormonal treatments [72]. On the other hand, *EF-1a* turned out to be the most unstable pepper gene in our analyses although it was published as one of the least-variably expressed genes under abiotic stress conditions and hormone treatment [71]. This underpins the observation that a chosen gene can be stable under certain conditions but highly variable under others [3]. It should be noted that differences between the pepper lines used in the different studies might also play a role.

Although our selection of pepper orthologs of the new tomato reference genes surely represents an improvement compared to the selection of genes based on their known or suspected housekeeping roles, the ranking of our tomato reference genes and their pepper equivalents illustrates that the expression of gene orthologs can distinctly differ even between related plant species. In general, the *M* values calculated by NormFinder were lower for the tomato genes compared with their pepper orthologs. This difference appeared even more pronounced using geNorm which judged only three of the pepper genes tested as reliable reference genes. Similarly, using Bestkeeper, only one pepper gene, *UCH*, matched both requirements for a suitable reference gene. Therefore, we would like to emphasize that, even if our new pepper reference genes proved to be superior to most of the classical normalization controls we analyzed, a whole-transcriptome analysis of *Xcv*-challenged pepper plants might uncover even more suitable reference genes.

Taken together, the newly discovered tomato reference genes proved to be superior normalization controls for qRT-PCR studies of *Xcv*-infected tomato plants. In addition, they led to successful identification of the pepper orthologs as reliable reference genes in qRT-PCR analyses of the *Xcv*-pepper pathosystem. Similarly, these genes might be useful for the identification of suitable qRT-PCR normalization controls in other plant species for the analysis of plant gene expression during pathogen infection.

Fig 9. Relative expression of PTI and ETI marker genes in *Xcv*-infected and mock-treated pepper leaves. Expression patterns of *CaLRR22* (a) and *CaTFT4* (b) in *C. annuum* ECW-30R leaves treated with 10 mM MgCl₂ (mock) or 5×10^8 cfu/ml of *Xcv* 85–10, 85–10 Δ *hrcN* and 85-10(pavrBs3), respectively, six hpi. qRT-PCR data were normalized with different reference gene pairs. Values are mean fold changes in mRNA levels in *Xcv*-infected relative to mock-inoculated leaves for three biological replicates. Error bars indicate SD. Letters denote statistically significant differences (Student's *t*-test, *P* < 0.05).

PLOS ONE

Supporting Information

S1 Fig. Experimental setup and data cluster analysis of the tomato microarray screens. (a) First microarray experiment. 12 plants were inoculated with *Xcv* strains 85–10 and 85–10 Δ *hrcN*, four leaves per plant. Leaf material was harvested 45 min post infiltration (mpi) and 6, 10 and 24 hpi and pooled (four plants each). RNA was isolated, and the cDNAs used for microarray hybridizations. (b) Second microarray experiment. Three separate infiltrations of four plants each were performed with 10 mM MgCl₂ (mock) and *Xcv* 85–10 Δ *hrcN*. Leaf material was harvested 0, 4, 8 and 16 hpi and analyzed as described in (a). Dendrograms on the right show hierarchical cluster analysis of the respective microarray dataset (normalized log-

expression values). (TIF)

S2 Fig. Functional classification of the 50 most stable reference genes in *Xcv***-infected versus uninfected tomato plants.** Functional categories of the 50 most stably expressed tomato genes according to microarray hybridization data, based on Gene Ontology (GO) terms of the respective *A. thaliana* orthologs.

(TIF)

S3 Fig. Validation of oligonucleotide pairs of new tomato reference gene candidates for qRT-PCR analysis. Presence of unique amplicons as a measure of PCR amplification specificity was determined (a) by electrophoresis on 1% agarose gel and (b) by melting curve analysis. (TIF)

S4 Fig. Relative expression of ACT and GAPDH in Xcv-infected and mock-treated tomato plants. Expression patterns of (a) SlACT and (b) SlGAPDH in S. lycopersicum cv. MM leaves 6 hpi of 10 mM MgCl₂ (mock) or 5×10^8 cfu/ml of Xcv 85–10, 85–10 Δ hrcN and 85-10(pavrBs4), respectively. qRT-PCR data were normalized with different reference gene pairs. Values are mean-fold changes in mRNA levels in Xcv-infected relative to mock-inoculated leaves for three biological replicates. Error bars indicate SD. Letters denote statistically significant differences (Student 's t-test, P < 0.05).

S5 Fig. Validation of oligonucleotide pairs of new pepper reference gene candidates for qRT-PCR analysis. Presence of unique amplicons as a measure of PCR amplification specificity was determined (a) by electrophoresis on a 1% agarose gel and (b) by melting curve analysis.

(TIF)

S1 Table. Oligonucleotide sequences used for qRT-PCR analyses. (DOC)

S2 Table. Functional classification of Arabidopsis orthologs corresponding to the new tomato reference genes.

(DOC)

Acknowledgments

We thank B. Rosinsky and M. Schulze for excellent technical assistance.

Author Contributions

Conceived and designed the experiments: OAM ST HP UB. Performed the experiments: OAM HP NA AS. Analyzed the data: OAM JG ST UB. Contributed reagents/materials/analysis tools: UB. Wrote the paper: ST OAM JG UB.

References

- Huggett J, Dheda K, Bustin S, Zumla A. Real-time RT-PCR normalisation; strategies and considerations. Genes Immun. 2005; 6(4):279–84. doi: <u>10.1038/sj.gene.6364190</u> PMID: <u>15815687</u>
- Stürzenbaum S, Kille P. Control genes in quantitative molecular biological techniques: the variability of invariance. Comp Biochem Physiol B Biochem Mol Biol. 2001; 130(3):281–9. doi: <u>10.1016/s1096-4959</u> (01)00440-7 PMID: <u>11567890</u>

- Gutierrez L, Mauriat M, Pelloux J, Bellini C, Van Wuytswinkel O. Towards a systematic validation of references in real-time RT-PCR. Plant Cell. 2008; 20(7):1734–5. doi: <u>10.1105/tpc.108.059774</u> PMID: <u>18664615</u>
- Guenin S, Mauriat M, Pelloux J, Wuytswinkel OV, Bellini C, Gutierrez L. Normalization of qRT-PCR data: the necessity of adopting a systematic, experimental conditions-specific, validation of references. J Exp Bot. 2009; 60(2):487–93. doi: <u>10.1093/jxb/ern305</u> PMID: <u>19264760</u>
- Eulgem T. Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci. 2005; 10(2):71–8. doi: 10.1016/j.tplants.2004.12.006 PMID: 15708344
- van Loon L, Rep M, Pieterse C. Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol. 2006; 44:135–62. doi: <u>10.1146/annurev.phyto.44.070505.143425</u> PMID: <u>16602946</u>
- Soria-Guerra R, Rosales-Mendoza S, Chang S, Haudenshield J, Padmanaban A, Rodriguez-Zas S, et al. Transcriptome analysis of resistant and susceptible genotypes of *Glycine tomentella* during *Phakopsora pachyrhizi* infection reveals novel rust resistance genes. Theor Appl Genet. 2010; 120 (7):1315–33. doi: 10.1007/s00122-009-1258-0 PMID: 20058146
- Fu X-Z, Gong X-Q, Zhang Y-X, Wang Y, Liu J-H. Different transcriptional response to *Xanthomonas citri* subsp. *citri* between kumquat and sweet orange with contrasting canker tolerance. PLoS ONE. 2012; 7(7):e41790. doi: <u>10.1371/journal.pone.0041790</u> PMID: <u>22848606</u>
- Lanubile A, Pasini L, Marocco A. Differential gene expression in kernels and silks of maize lines with contrasting levels of ear rot resistance after *Fusarium verticillioides* infection. Plant Physiol. 2010; 167 (16):1398–406. doi: <u>http://dx.doi.org/10.1016/j.jplph.2010.05.015</u>
- Grewal R, Gupta S, Das S. Xanthomonas oryzae pv. oryzae triggers immediate transcriptomic modulations in rice. BMC Genomics. 2012; 13:49. doi: <u>10.1186/1471-2164-13-49</u> PMID: <u>22289642</u>
- Socquet-Juglard D, Kamber T, Pothier J, Christen D, Gessler C, Duffy B, et al. Comparative RNA-seq analysis of early-infected peach leaves by the invasive phytopathogen *Xanthomonas arboricola* pv. pruni. PLoS ONE. 2013; 8(1):e54196. doi: 10.1371/journal.pone.0054196 PMID: 23342103
- Thilmony R, Underwood W, He SY. Genome-wide transcriptional analysis of the Arabidopsis thaliana interaction with the plant pathogen *Pseudomonas syringae* pv. *tomato* DC3000 and the human pathogen *Escherichia coli* O157:H7. Plant J. 2006; 46(1):34–53. doi: <u>10.1111/j.1365-313X.2006.02725.x</u> PMID: 16553894
- Nicot N, Hausman J-F, Hoffmann L, Evers D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J Exp Bot. 2005; 56(421):2907–14. doi: <u>10.1093/jxb/eri285</u> PMID: <u>16188960</u>
- Qi J, Yu S, Zhang F, Shen X, Zhao X, Yu Y, et al. Reference gene selection for real-time quantitative polymerase chain reaction of mRNA transcript levels in Chinese cabbage (*Brassica rapa* L. ssp. *pekinensis*). Plant Mol Biol Rep. 2010; 28:597–604. doi: 10.1007/s11105-010-0185-1
- Chen L, Zhong H, Kuang J, Li J, Lu W, Chen J. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. Planta. 2011; 234(2):377–90. doi: <u>10.1007/s00425-011-1410-3</u> PMID: <u>21505864</u>
- Selim M, Legay S, Berkelmann-Löhnertz B, Langen G, Kogel KH, Evers D. Identification of suitable reference genes for real-time RT-PCR normalization in the grapevine-downy mildew pathosystem. Plant Cell Rep. 2012; 31(1):205–16. doi: <u>10.1007/s00299-011-1156-1</u> PMID: <u>22006104</u>
- Wei L, Miao H, Zhao R, Han X, Zhang T, Zhang H. Identification and testing of reference genes for Sesame gene expression analysis by quantitative real-time PCR. Planta. 2013; 237(3):873–89. doi: <u>10.</u> <u>1007/s00425-012-1805-9</u> PMID: <u>23229061</u>
- Monteiro F, Sebastiana M, Pais M, Figueiredo A. Reference gene selection and validation for the early responses to downy mildew infection in susceptible and resistant *Vitis vinifera* cultivars. PLoS ONE. 2013; 8(9):e72998. doi: <u>10.1371/journal.pone.0072998</u> PMID: <u>24023800</u>
- Zhu X, Li X, Chen W, Chen J, Lu W, Chen L, et al. Evaluation of new reference genes in papaya for accurate transcript normalization under different experimental conditions. PLoS ONE. 2012; 7(8): e44405. doi: 10.1371/journal.pone.0044405 PMID: 22952972
- 20. Klie M, Debener T. Identification of superior reference genes for data normalisation of expression studies via quantitative PCR in hybrid roses (*Rosa hybrida*). BMC Res Notes. 2011; 4:518. doi: <u>10.1186/</u><u>1756-0500-4-518</u> PMID: <u>22123042</u>
- Pinheiro T, Litholdo C, Sereno M, Leal G, Albuquerque P, Figueira A. Establishing references for gene expression analyses by RT-qPCR in *Theobroma cacao* tissues. Genet Mol Res. 2011; 10(4):3291– 305. doi: 10.4238/2011.November.17.4 PMID: 22095481

- Štajner N, Cregeen S, Javornik B. Evaluation of reference genes for RT-qPCR expression studies in hop (*Humulus lupulus* L.) during infection with vascular pathogen *Verticillium albo-atrum*. PLoS ONE. 2013; 8(7):e68228. doi: <u>10.1371/journal.pone.0068228</u> PMID: <u>23874551</u>
- Wieczorek P, Wrzesińska B, Obrępalska-Stęplowska A. Assessment of reference gene stability influenced by extremely divergent disease symptoms in *Solanum lycopersicum* L. J Virol Methods. 2013; 194(1–2):161–8. doi: <u>10.1016/j.jviromet.2013.08.010</u> PMID: <u>23994079</u>
- Saha G, Vandemark G. Stability of expression of reference genes among different lentil (*Lens culinaris*) genotypes subjected to cold stress, white mold disease, and *Aphanomyces* root rot. Plant Mol Biol Rep. 2013; 31(5):1109–15. doi: 10.1007/s11105-013-0579-y
- Saha G, Vandemark G. Evaluation of expression stability of candidate references genes among green and yellow pea cultivars (*Pisum sativum* L.) subjected to abiotic and biotic stress. American J Plant Sci. 2012; 3(2):235–42. doi: 10.4236/ajps.2012.32028
- 26. Kong Q, Yuan J, Niu P, Xie J, Jiang W, Huang Y, et al. Screening suitable reference genes for normalization in reverse transcription quantitative real-time PCR analysis in melon. PLoS ONE. 2014; 9(1): e87197. doi: 10.1371/journal.pone.0087197 PMID: 24475250
- Mafra V, Kubo K, Alves-Ferreira M, Ribeiro-Alves M, Stuart R, Boava L, et al. Reference genes for accurate transcript normalization in citrus genotypes under different experimental conditions. PLoS ONE. 2012; 7(2):e31263. doi: <u>10.1371/journal.pone.0031263</u> PMID: <u>22347455</u>
- Jarosová J, Kundu J. Validation of reference genes as internal control for studying viral infections in cereals by quantitative real-time RT-PCR. BMC Plant Biol. 2010; 10:146. doi: <u>10.1186/1471-2229-10-146</u> PMID: <u>20630112</u>
- Lilly S, Drummond R, Pearson M, MacDiarmid R. Identification and validation of reference genes for normalization of transcripts from virus-infected *Arabidopsis thaliana*. Mol Plant-Microbe Interact. 2011; 24(3):294–304. doi: <u>10.1094/mpmi-10-10-0236</u> PMID: <u>21091160</u>
- Mascia T, Santovito E, Gallitelli D, Cillo F. Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol Plant Pathol. 2010; 11 (6):805–16. doi: 10.1111/j.1364-3703.2010.00646.x PMID: 21029324
- Liu D, Shi L, Han C, Yu J, Li D, Zhang Y. Validation of reference genes for gene expression studies in virus-infected *Nicotiana benthamiana* using quantitative real-time PCR. PLoS ONE. 2012; 7(9):e46451. doi: 10.1371/journal.pone.0046451 PMID: 23029521
- Die J, Román B, Nadal S, González-Verdejo C. Evaluation of candidate reference genes for expression studies in *Pisum sativum* under different experimental conditions. Planta. 2010; 232(1):145–53. doi: <u>10.</u> <u>1007/s00425-010-1158-1</u> PMID: 20379832
- Castro-Quezada P, Aarrouf J, Claverie M, Favery B, Mugniéry D, Lefebvre V, et al. Identification of reference genes for normalizing RNA expression in potato roots infected with cyst nematodes. Plant Mol Biol Rep. 2013; 31(4):936–45. doi: 10.1007/s11105-013-0566-3
- Miranda V, Coelho R, Viana A, de Oliveira Neto O, Carneiro R, Rocha T, et al. Validation of reference genes aiming accurate normalization of qPCR data in soybean upon nematode parasitism and insect attack. BMC Res Notes. 2013; 6:196. doi: <u>10.1186/1756-0500-6-196</u> PMID: <u>23668315</u>
- Kundu A, Patel A, Pal A. Defining reference genes for qPCR normalization to study biotic and abiotic stress responses in *Vigna mungo*. Plant Cell Rep. 2013; 32(10):1647–58. doi: <u>10.1007/s00299-013-</u> 1478-2 PMID: 23868569
- 36. Gu C, Chen S, Liu Z, Shan H, Luo H, Guan Z, et al. Reference gene selection for quantitative real-time PCR in *Chrysanthemum* subjected to biotic and abiotic stress. Mol Biotechnol. 2011; 49(2):192–7. doi: 10.1007/s12033-011-9394-6 PMID: 21416201
- Czechowski T, Stitt M, Altmann T, Udvardi M, Scheible W-R. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 2005; 139(1):5–17. doi: 10.1104/pp.105.063743 PMID: 16166256
- Dekkers B, Willems L, Bassel G, van Bolderen-Veldkamp R, Ligterink W, Hilhorst H, et al. Identification of reference genes for RT-qPCR expression analysis in Arabidopsis and tomato seeds. Plant Cell Physiol. 2012; 53(1):28–37. doi: <u>10.1093/pcp/pcr113</u> PMID: <u>21852359</u>
- de Oliveira L, Breton M, Bastolla F, Camargo S, Margis R, Frazzon J, et al. Reference genes for the normalization of gene expression in *Eucalyptus* species. Plant Cell Physiol. 2012; 53(2):405–22. doi: <u>10.</u> <u>1093/pcp/pcr187</u> PMID: <u>22197885</u>
- 40. Demidenko NV, Logacheva MD, Penin AA. Selection and validation of reference genes for quantitative real-time PCR in buckwheat (*Fagopyrum esculentum*) based on transcriptome sequence data. PLoS ONE. 2011; 6(5):e19434. doi: 10.1371/journal.pone.0019434 PMID: 21589908

- Narsai R, Ivanova A, Ng S, Whelan J. Defining reference genes in *Oryza sativa* using organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biol. 2010; 10:56. doi: <u>10.1186/1471-2229-10-56</u> PMID: <u>20353606</u>
- 42. Gamm M, Héloir M-C, Kelloniemi J, Poinssot B, Wendehenne D, Adrian M. Identification of reference genes suitable for qRT-PCR in grapevine and application for the study of the expression of genes involved in pterostilbene synthesis. mol genet genomics. 2011; 285(4):273–85. doi: <u>10.1007/s00438-011-0607-2</u> PMID: 21340517
- **43.** Lin F, Jiang L, Liu Y, Lv Y, Dai H, Zhao H. Genome-wide identification of housekeeping genes in maize. Plant Mol Biol. 2014; 86(4–5):543–54. doi: <u>10.1007/s11103-014-0246-1</u> PMID: <u>25209110</u>
- Stall RE. Xanthomonas campestris pv. vesicatoria. In: Singh RPS U.S., and Kohmoto K., editor. Pathogenesis and Host-Parasite Specificity in Plant Diseases. I, Prokaryotes. Tarrytown, NY: Pergamon, Elsevier Science Inc.; 1995. p. 167–84.
- Büttner D, Bonas U. Regulation and secretion of *Xanthomonas* virulence factors. FEMS Microbiol Rev. 2010; 34(2):107–33. doi: http://dx.doi.org/10.1111/j.1574-6976.2009.00192.x PMID: 19925633
- Boch J, Bonas U. Xanthomonas AvrBs3 family-type III effectors: discovery and function. Annu Rev Phytopathol. 2010; 48:419–36. doi: <u>10.1146/annurev-phyto-080508-081936</u> PMID: <u>19400638</u>
- Kay S, Hahn S, Marois E, Hause G, Bonas U. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science. 2007; 318:648–51. doi: <u>10.1126/science.1144956</u> PMID: <u>17962565</u>
- Marois E, Van den Ackerveken G, Bonas U. The *Xanthomonas* type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host. Mol Plant-Microbe Interact. 2002; 15(7):637–46. doi: <u>http://dx.doi.org/10.1094/MPMI.2002.15.7.637</u> PMID: <u>12118879</u>
- 49. Römer P, Hahn S, Jordan T, Strauß T, Bonas U, Lahaye T. Plant-pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science. 2007; 318:645–8. doi: <u>10.1126/</u> <u>science.1144958</u> PMID: <u>17962564</u>
- 50. Thieme F, Koebnik R, Bekel T, Berger C, Boch J, Büttner D, et al. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium *Xanthomonas campestris* pv. *vesicatoria* revealed by the complete genome sequence. J Bacteriol. 2005; 187(21):7254–66. doi: <u>10.1128/JB.187.21.7254–7266.2005</u> PMID: 16237009
- Lorenz C, Büttner D. Functional characterization of the type III secretion ATPase HrcN from the plant pathogen *Xanthomonas campestris* pv. vesicatoria. J Bacteriol. 2009; 191(5):1414–28. doi: <u>10.1128/jb.</u> <u>01446-08</u> PMID: <u>19114489</u>
- Daniels MJ, Barber CE, Turner PC, Sawczyc MK, Byrde RJW, Fielding AH. Cloning of genes involved in pathogenicity of *Xanthomonas campestris* pv. *campestris* using the broad host range cosmid pLAFR1. EMBO J. 1984; 3:3323–8. PMID: <u>16453595</u>
- Bonas U, Conrads-Strauch J, Balbo I. Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet. 1993; 238:261–9. PMID: 8479432
- Schreiber T, Sorgatz A, List F, Blüher D, Thieme S, Wilmanns M, et al. Refined requirements for protein regions important for activity of the TALE AvrBs3. PLoS ONE. 2015; 10(3). Epub e0120214. doi: <u>10.</u> <u>1371/journal.pone.0120214</u>
- 55. Figurski D, Helinski DR. Replication of an origin-containing derivative of plasmid RK2 is dependent on a plasmid function provided in trans. Proc Natl Acad Sci U S A. 1979; 76:1648–52. doi: <u>10.1073/pnas.</u> <u>76.4.1648</u> PMID: <u>377280</u>
- 56. R-Core-Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria 2013. Available: <u>http://www.R-project.org/</u>.
- Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating highthroughput genomic analysis with Bioconductor. Nat Meth. 2015; 12(2):115–21. doi: <u>10.1038/nmeth.</u> <u>3252</u>
- Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002; 3(7):RESEARCH0034. doi: 10.1186/gb-2002-3-7-research0034 PMID: 12184808
- 59. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004; 64(15):5245–50. doi: <u>10.1158/0008-5472</u>. CAN-04-0496 PMID: 15289330
- 60. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise

correlations. Biotechnol Lett. 2004; 26(6):509–15. doi: <u>10.1023/b:bile.0000019559.84305.47</u> PMID: <u>15127793</u>

- Taylor KW, Kim JG, Su XB, Aakre CD, Roden JA. Tomato TFT1 is required for PAMP-triggered immunity and mutations that prevent T3S effector XopN from binding to TFT1 attenuate *Xanthomonas* virulence. PLoS Pathog. 2012; 8(6):e1002768. doi: <u>10.1371/journal.ppat.1002768</u> PMID: <u>22719257</u>
- Løvdal T, Lillo C. Reference gene selection for quantitative real-time PCR normalization in tomato subjected to nitrogen, cold, and light stress. Anal Biochem. 2009; 387(2):238–42. doi: <u>10.1016/j.ab.2009</u>. 01.024 PMID: <u>19454243</u>
- 63. Cohn JR, Martin GB. Pseudomonas syringae pv. tomato type III effectors AvrPto and AvrPtoB promote ethylene-dependent cell death in tomato. Plant J. 2005; 44(1):139–54. doi: <u>10.1111/j.1365-313X.2005</u>. <u>02516.x</u> PMID: <u>16167902</u>
- Expósito-Rodríguez M, Borges A, Borges-Pérez A, Pérez J. Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process. BMC Plant Biol. 2008; 8:131. doi: 10.1186/1471-2229-8-131 PMID: 19102748
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nuc Acids Res. 1997; 25(17):3389– 402. doi: 10.1093/nar/25.17.3389
- 66. Ballvora A, Pierre M, Van den Ackerveken G, Schornack S, Rossier O, Ganal M, et al. Genetic mapping and functional analysis of the tomato *Bs4* locus governing recognition of the *Xanthomonas campestris* pv. vesicatoria AvrBs4 protein. Mol Plant-Microbe Interact. 2001; 14(5):629–38. doi: <u>http://dx.doi.org/</u> <u>10.1094/MPMI.2001.14.5.629 PMID: 11332727</u>
- 67. Kim J-GG, Li X, Roden JA, Taylor KW, Aakre CD, Su B, et al. Xanthomonas T3S effector XopN suppresses PAMP-triggered immunity and interacts with a tomato atypical receptor-like kinase and TFT1. Plant Cell. 2009; 21(4):1305–23. doi: <u>10.1105/tpc.108.063123</u> PMID: <u>19366901</u>
- 68. Pombo MA, Zheng Y, Fernandez-Pozo N. Transcriptomic analysis reveals tomato genes whose expression is induced specifically during effector-triggered immunity and identifies the Epk1 protein kinase which is required for the host response to three bacterial effector proteins. Genome Biol. 2014; 15(10):492. doi: 10.1186/s13059-014-0492-1 PMID: 25323444
- Teper D, Salomon D, Sunitha S, Kim J-G, Mudgett MB, Sessa G. Xanthomonas euvesicatoria type III effector XopQ interacts with tomato and pepper 14–3–3 isoforms to suppress effector-triggered immunity. Plant J. 2014; 77(2):297–309. doi: 10.1111/tpj.12391 PMID: 24279912
- 70. Yang H, Liu J, Huang S, Guo T, Deng L, Hua W. Selection and evaluation of novel reference genes for quantitative reverse transcription PCR (qRT-PCR) based on genome and transcriptome data in *Brassica napus* L. Gene. 2014; 538(1):113–22. doi: <u>10.1016/j.gene.2013.12.057</u> PMID: <u>24406618</u>
- Bin WS, Wei LK, Ping DW, Li Z, Wei G, Bing LJ, et al. Evaluation of appropriate reference genes for gene expression studies in pepper by quantitative real-time PCR. Mol Breeding. 2012; 30(3):1393– 400. doi: <u>10.1007/s11032-012-9726-7</u>
- 72. Wan H, Yuan W, Ruan M, Ye Q, Wang R, Li Z, et al. Identification of reference genes for reverse transcription quantitative real-time PCR normalization in pepper (*Capsicum annuum* L.). Biochem Biophys Res Commun. 2011; 416(1–2):24–30. doi: 10.1016/j.bbrc.2011.10.105 PMID: 22086175
- Gao S, Xu T, Qi M, Liu Y, Li H, Lv S, et al. Evaluation of the expression of internal control transcripts by real-time RT-PCR analysis during tomato flower abscission. African J Biotechnol. 2012; 11(66):12983– 9. doi: <u>10.5897/ajb12.931</u>
- 74. Graeber K, Linkies A, Wood ATA, Leubner-Metzger G. A guideline to family-wide comparative state-ofthe-art quantitative RT-PCR analysis exemplified with a Brassicaceae cross-species seed germination case study. Plant Cell. 2011; 23(6):2045–63. doi: <u>10.1105/tpc.111.084103</u> PMID: <u>21666000</u>
- 75. Hruz T, Wyss M, Docquier M, Pfaffl MW, Masanetz S, Borghi L, et al. RefGenes: identification of reliable and condition specific reference genes for RT-qPCR data normalization. BMC Genomics. 2011; 12 (1):156. doi: 10.1186/1471-2164-12-156
- Die JV, Rowland LJ. Superior cross-species reference genes: a blueberry case study. PLoS ONE. 2013; 8(9):e73354. doi: <u>10.1371/journal.pone.0073354</u> PMID: <u>24058469</u>