
ORIGINAL RESEARCH ARTICLE
published: 18 March 2013

doi: 10.3389/fninf.2013.00004

Accelerating compartmental modeling on a graphical
processing unit
Roy Ben-Shalom1,2†, Gilad Liberman1† and Alon Korngreen1,2*

1 The Leslie and Susan Gonda Interdisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
2 The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel

Edited by:

Andrew P. Davison, Centre National
de la Recherche Scientifique, France

Reviewed by:

Michael Hines, Yale University, USA
Robert C. Cannon, Textensor
Limited, UK

*Correspondence:

Alon Korngreen, The Mina and
Everard Goodman Faculty of life
Sciences, Bar-Ilan University,
Ramat-Gan, 52900, Israel.
e-mail: korngra@mail.biu.ac.il
†These authors have contributed
equally to this work.

Compartmental modeling is a widely used tool in neurophysiology but the detail and
scope of such models is frequently limited by lack of computational resources. Here
we implement compartmental modeling on low cost Graphical Processing Units (GPUs),
which significantly increases simulation speed compared to NEURON. Testing two
methods for solving the current diffusion equation system revealed which method is more
useful for specific neuron morphologies. Regions of applicability were investigated using
a range of simulations from a single membrane potential trace simulated in a simple
fork morphology to multiple traces on multiple realistic cells. A runtime peak 150-fold
faster than the CPU was achieved. This application can be used for statistical analysis and
data fitting optimizations of compartmental models and may be used for simultaneously
simulating large populations of neurons. Since GPUs are forging ahead and proving to be
more cost-effective than CPUs, this may significantly decrease the cost of computation
power and open new computational possibilities for laboratories with limited budgets.

Keywords: CUDA, GPU, NEURON, ILP, parallel computing, compartmental modeling

INTRODUCTION
Rall (1964) introduced compartmental modeling of neurons, pio-
neering the use of digital computers in neuronal simulations. Two
decades later Hines developed an efficient method for solving the
differential equation systems underlying compartmental models
(Hines, 1984). Since then many research groups have developed
software packages using Hines’ theory (De Schutter, 1989; Hines,
1989; Wilson et al., 1989; Manor et al., 1991), but today GENESIS
(Wilson et al., 1989) and NEURON (Carnevale and Hines, 2006)
are the two most commonly used.

A multi-compartmental model demands considerable com-
putation resources, especially where multiple instances of the
model are used for statistical analysis or optimization algorithms
(Keren et al., 2005, 2009; Huys et al., 2006; Van Geit et al., 2008).
Intensive computation results in long runtime and forces com-
promises in model complexity or data size. A common means
of reducing simulation runtime is to disperse the computation
onto different cores by using computer clusters (Keren et al.,
2005, 2009; Druckmann et al., 2007; Van Geit et al., 2008). Hines
et al. (2008) added the functionality of splitting a single neuron
model into sub-trees and sending each to a different proces-
sor, achieving a linear speed related to the number of processors
used. This method is designed for CPU clusters or supercomput-
ers such as the Blue Gene/L (Gara et al., 2005) which are very
costly.

Recent advances in the field of graphical processing units
(GPUs) have brought parallel computation to end-users with
higher cost-effectiveness than with CPUs (Owens et al., 2007;
Nickolls et al., 2008; Ryoo et al., 2008). GPUs have been
utilized for highly demanding applications in hydrodynamics
(Harada et al., 2007), molecular dynamics (Harada et al., 2007),

astrophysics (Nyland et al., 2007), and many other fields (Owens
et al., 2007, 2008). In neuroscience GPUs have been used to
simulate networks of spiking neurons (Fidjeland et al., 2009;
Nageswaran et al., 2009) and processing of data images (Jeong
et al., 2010). We have previously used GPUs to accelerate sim-
ulations of ion channels for data fitting and have achieved
a speed up to a thousand times faster than a single CPU
(Ben-Shalom et al., 2012). Here we present a parallel algorithm
for simulation of multi-compartmental models of neurons on
GPUs and validate its correctness and high speed gain com-
pared to NEURON on various neuron topologies and membrane
models.

METHODS
SIMULATION ENVIRONMENT
All simulations were performed on a PC containing an AMD
Phenom(TM)II X4 920 processor (2.81 GHz with 8 MB) running
Windows 7. GPU simulations were performed on NVIDIA’s Tesla
C2075 (NVIDIA, 2009) with 14 multiprocessors (448 CUDA
cores) and 6 GB of GPU memory. Code was written on Visual
Studio using CUDA 4.2, the program was debugged and pro-
filed with NSIGHT (NVIDIA, 2011a). The source code is freely
available from the authors under the GNU public license—http://
code.google.com/p/neurogpu.

Since NEURON is the most mature and widespread simula-
tion environment for neurophysiological simulations, we imple-
mented our application as closely as possible to NEURON
with adjustments required for GPU coding. We validated the
results against NEURON 7.2 (Carnevale and Hines, 2006). We
set NEURON to work in the Backward Euler scheme that we
implemented using CUDA. NEURON procedures were written

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/Neuroinformatics/10.3389/fninf.2013.00004/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=RoyBen_Shalom&UID=7013
http://community.frontiersin.org/people/GiladLiberman/83031
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=AlonKorngreen&UID=1872
mailto:korngra@mail.biu.ac.il
http://code.google.com/p/neurogpu
http://code.google.com/p/neurogpu
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

using the topology and fmatrix functions (Carnevale and Hines,
2006) for exporting NEURON data to readable files. Data files
were read by the application and the equation system was built
based on this data. Parameters describing the membrane mech-
anisms such as Nernst potential, model parameters, stimulus
parameters, etc., were also exported to the application from
NEURON.

The simulation protocol used here was a current-clamp pro-
tocol with time step sizes of dt = 0.1 ms and dt = 0.01 ms for a
period of t = 10 s, injecting current of −1 nA for passive stimula-
tion and 1 nA for stimulation that provoked an action potential.
In simulation where there were more than two stimuli the cur-
rent started at −1 nA and increased in each sweep by 0.3 nA (see
Figure 5A). We used two membrane models: a passive membrane
(Carnevale and Hines, 2006) and the Hodgkin–Huxley model
(Hodgkin and Huxley, 1952; Carnevale and Hines, 2006). The
passive membrane model solves one equation:

I = g(v − e) (1)

where I is the current passing through the membrane g is the
membrane conductance v is the membrane voltage and e is the
Nernst potential. In terms of computation time, this is almost
equivalent to not using a model at all. On the other hand, the
Hodgkin–Huxley model solves the gate differential equations
requiring more computational effort (Figure 3; see Carnevale
and Hines, 2006). With the passive membrane model, the con-
ductance was 0.001 S/cm2 along the whole neuron. With the
Hodgkin–Huxley model the conductances at the soma were Na+
−24 S/cm2 and K+ −2.88 S/cm2. At the dendrites Na+ conduc-
tance was 0.12 S/cm2 and K+ conductance was −0.036 S/cm2.
To allow realistic comparison, table look up optimization were
turned-off in NEURON by setting usetable_hh = 0. Four topolo-
gies were used: two reconstructed layer 5 pyramidal neurons from
the rat cortex adopted from previous studies (Keren et al., 2005,
2009); one fork topology (Figure 4A) and several binary trees
(Figure 4B) which were artificially programmed in NEURON.
Binary trees were built with depths from 5 to 10, where each node
had one segment, giving 2depth elements in the matrix (equation
system).

CUDA IMPLEMENTATION
Kernels are executed in thread warps (32 threads) on the
GPU multiprocessors, where warps are the true parallel unit
of the device. When other elements, such as several blocks,
multi-threading or several multiprocessors work in parallel, they
resemble multi-core CPU, rather than a parallel SIMD (single
instruction multiple data) device. Each thread has a unique 3D
address within a block and multiple blocks are ordered in a grid.
The dimensions of the grids and blocks are specified when calling
a kernel (NVIDIA, 2011b). Grids and blocks are used for orga-
nizing the threads in a logical hierarchy for execution at the GPU
device.

Here a neuron was simulated by a thread warp, with each seg-
ment computed by a single thread in the warp. If the neuron
had more than 32 segments, each thread was assigned to multiple

segments using instruction level parallelism (ILP). Hence, a sim-
ulation of a current-clamp trace (stimulating the neuron once)
was dispersed to the 32 threads of a warp. Multiple membrane
potential traces were organized in a block; the size of the y-axis
of a block was determined by the number of traces in the proto-
col. Finally, multiple neurons, each represented as a block, were
ordered in a grid.

Global and shared memory organization
We used the global, shared, and local (registers) memories of
the GPU. Global memory is slow and large, its scope being the
application, and all blocks have access to it. In our applica-
tion the global memory stored the membrane potential response
of the neuron and functioned as bridge to transfer memory from
the CPU to the shared memory. Shared memory is limited in
size, specifically on the Tesla C2075 to 48 kilobytes but is very
fast and its scope is the block—threads in the same block can
access the same shared memory. We divided the shared memory
into two sections: framework and per-stimulus. The framework
section was used by all warps in the block and included infor-
mation related to the neuron’s topology. This section was not
subject to change during the simulation. The per-stimulus section
held additional neuronal parameters, as well as buffer memory
used for the matrix calculation, such as the right and left hand
sides of the equation system (Hines, 1984). Each trace in the
protocol, hence each warp, had an independent stimulus sec-
tion within the shared memory. The shared memory was further
used for passing the resultant voltage of each trace from registers
to the global memory via a buffer array of 32 (Warp size) ele-
ments. Every 32 time steps each thread in the warp transferred
the voltage of one time step to the global memory in a coalesced
manner (NVIDIA, 2011b). Local memory was used for local vari-
ables, including the states of the membrane mechanisms and for
using ILP.

Instruction level parallelism (ILP)
One of the main challenges of programming in CUDA is mask-
ing memory transfers’ latencies from the slow global memory. In
order to mask memory latencies, transfers should occur while the
multiprocessor executes math operations on the available mem-
ory. Volkov (2010) suggested that ILP aids reaching the theoretical
computational peak of the GPU. In ILP code each thread executes
instructions for multiple memory elements as opposed to non-
ILP code where each thread deals with a single memory element.
When each thread is accessing multiple memory elements the
advantage is double: first each memory transfer is larger and there
are less memory transfers, second the multiprocessor has more
available memory for math operations within each thread. Thus,
when using ILP, memory latencies are better masked by math
operations. We used ILP for simulating one membrane potential
trace in the neuron. When the neuron had only 32 segments each
thread in the warp simulated one segment. However, when the
neuron was larger, each thread simulated more segments in an
ILP manner. Each thread had an address within the warp between
0 and 31, the thread calculated all the segments in the neuron
so that their remnant of 32 was equal to its address (e.g., if the
neuron had 96 segments each thread calculated 3 segments, such

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

that for example, a warp addressed 3 would calculate the segments
indexed 4, 36, and 68).

THEORY AND RESULTS
Simulating a compartmental model for a neuron may be divided
into calculating the membrane mechanisms for each segment and
solving the equation system which describes the current diffusion.
While the first step falls under the category of “embarrassingly
parallel,” the second step requires solving a quasi tri-diagonal
matrix which is difficult to solve in parallel. For an unbranched
neuron, the problem reduces to solving a (pure) tri-diagonal
equation system. This problem has wide application and has
received much attention from the mathematics and engineer-
ing communities (Stone, 1973; Wang, 1981; Hegland, 1991).
We have focused on a rather early suggestion by Stone (1973)
which, while not presenting the complexity benefits of more
recent research, has the advantage of being simple and flexible
enough to accommodate modification for the back-substitution
phase even in a branched cable problem (resulting in a quasi
tri-diagonal matrix). Another advantage is the low overhead;
speedup is evident even when using a small number of proces-
sors (warpsize in GPUs consists of 32 threads). Several parallel
solutions for the branched cable problem have been suggested
(Mascagni, 1991; Migliore et al., 2006; Plesser et al., 2007; Hines
et al., 2008). These solutions are for a multi-kernel CPU, a
small grid or a supercomputer such as the IBM BlueGene/L
(Markram, 2006) and are not tailored for the GPU SIMD
architecture hence they could not fully utilize the advantages
of GPUs.

The core of the parallelization problem lies in the paral-
lel solutions for the equation system Hx = b, as described by
Hines (1984). Hines also describes how a neuron can be rep-
resented by an almost tri-diagonal matrix. We refer to the
almost tri-diagonal matrix resulting from a branched neuron
as a quasi tri-diagonal matrix. The matrix has elements of the
three diagonals where branching occurs. Stone (1973) intro-
duced a parallel solution for the tri-diagonal matrix, which in
our case represents an unbranched neuron. The tri-diagonal
matrix is solved in three stages: (a) LU decomposition H =
LU , where L and U are bi-diagonal matrices; (b) solution
of Ly = b; (c) solution of Ux = y. Hines (1984) introduced
a serial algorithm solving both a and b stages by applying a
bottom-up scan of the equation system (which he called tri-
angularization), while a top-down scan solved the third stage
[referred to as back-substitution in Hines (1984)]. Note that for
a quasi tri-diagonal matrix the related L and U matrices are not
bi-diagonal.

We show that solving the back-substitution stage (c) can still be
done in parallel using a simple modification of Stone’s algorithm
to this step, while branching points naturally divide the prob-
lem. In both the triangularization and back-substitution steps,
the computation for different branches is independent, given that
they do not precede each other in the tree structure. We use
this feature for parallelizing the triangularization step. For the
back-substitution step, we suggest two options. The first option
is based on the independence between branches (which we call
branch-based parallelization). The second option is based on our

modification of Stone’s method (which we call segment-based
parallelization). The branched-based parallelization is very simi-
lar to what Hines (1994) suggested to use for multiple data stream
machine as the CRAY-YMP.

BRANCH-BASED PARALLELIZATION
A neuron can be described as a tree, and we assign a level for each
branch according to its distance from the root (e.g., soma = 1,
see Figure 1 where the soma compartment has 4 segments). After
indexing the branches in this way, we can independently apply
both triangularization and back-substitution for all branches at
the same level of the tree. All branches in a level can be simulta-
neously solved, if the branches in the preceding level have already
been calculated (i.e., levels that are higher than the current level
in the triangularization stage, and levels that are lower than the
current level in the back-substitution stage). With this method,
the levels are calculated serially but the branches in the level are
calculated simultaneously. The triangularization stage requires
additional computation; each branching in the tree incorporates
the information from all of a node’s child nodes. This can be done
simultaneously by assigning different processers to handle each
branch in a particular level. Finally, the order of complexity for
simulating one time step is:

O(dt) =
depth∑

level = 1

max
branch ∈ level

(L (branch))

+
depth∑

level = 2

max
branch ∈ level

(D (branch)) . (2)

FIGURE 1 | Segment-based parallelism. The calculation for node 8
involves only segments 1–8, and is carried out in parallel according to
Stone’s algorithm. The calculation for node 12 involves segments
1, 2, 3, 4, 9, 10, 11, 12 and is of the same nature as the calculation for node
8, but with different indexing. Calculations for segments 1–4, which are
marked by the dashed line, are the same on both sides and are carried out
only once.

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

where dt is the time step, L is the number of segments in the
branch, and D is the degree of the branch (number of children).

We expect that this approach would perform better for neuron
that has many branches with similar number of segment among
the branches of the same level.

SEGMENT-BASED PARALLELIZATION
When this method is used the triangularization stage is the same
as described above. The difference is at the back-substitution stage
of the algorithm. The node’s value solely depends on its parent’s
value. For an unbranched cable, the parent’s index is the consecu-
tive index. Stone’s algorithm solves the equations in logN parallel
steps, where processor i after j steps has incorporated the val-
ues from the 2j nodes preceding to i (as described at Figure 1).
Thus, after logN steps each processor has integrated the values
from all relevant nodes. A similar process is implemented for the
branched cable back-substitution: the problem properties remain
the same except for the unique path from node i to its root, which
may include non-consecutive indices [the indexing algorithm for
a branched cable is described at Hines (1984)]. Finally all nodes
have the correct index of node/processor which contains the rel-
evant value for the jth step of the algorithm is calculated before
the run of the simulation (in an iterative manner, finding the 2j−1

ancestor of i on the unique path) and stored in the device’s shared
memory. For N segments, the complexity is therefore:

O(dt) = N

W
log2 m (3)

where N is the number of segments, m is the maximal root-
leaf distance and W is the warpsize. (The 1/W factor was left
inside to describe how the architecture, i.e., number of warps per
multiprocessor, affects the runtime).

Both branch-based and segment-based parallelization
approaches are tailored to the GPUs architecture. Both
approaches maintain controlled use of shared memory and
simultaneously compute single instructions on multiple data
(SIMD). The actual computation time on the GPUs may vary
from the theoretical complexity due to the special architecture
properties and optimizations done by the compiler. Computation
time for various instances of the problem will be analyzed in the
following subsections.

CORRECTNESS/ERROR ANALYSIS
To validate correctness of the CUDA application, we simu-
lated a current-clamp protocol using NEURON (Carnevale and
Hines, 2006) and exported it to CUDA. We used the recon-
structed morphology of a pyramidal neuron from a previous
study (Keren et al., 2009) (Figure 2, right) with a Hodgkin–
Huxley membrane mechanism (Hodgkin and Huxley, 1952;
Carnevale and Hines, 2006). Two stimulations were applied
(Figure 2, lower traces), one to produce a passive response (stim-
ulus amplitude was −1 nA) and one for producing an action
potential train (stimulus amplitude was 1nA). Figure 2 shows
the voltage responses of both simulations (middle), along with
error curves (top). Our application showed excellent agree-
ment with NEURON. For the 1 nA sweep, the maximal and

FIGURE 2 | Comparing current-clamp simulations in NEURON and

CUDA. Bottom: Current-clamp protocols for passive and active responses.
Middle: Voltage responses of a pyramidal neuron simulation (morphology
at the right) using NEURON (dots) and CUDA (solid line). Top: Squared error
values between NEURON and CUDA platforms for both passive and train
simulations.

average root-mean-square errors were 0.80 mV2 and 0.20 mV2,
respectively, when using the long-time step (dt = 0.1 ms). With
a shorter-time step (dt = 0.01 ms) maximal and average root-
mean-square errors were −0.22 mV2, 0.03 mV2, respectively.

The apparent increase in the error (Figure 1, up) during the
spike train is due to a small linear shift in time, calculated to
be 0.4 µs per spike, that is due to the use of single-precision
arithmetic. Both time step value gave negligible disagreement
for the passive stimulation (Figure 2, top). This validation of
the application against NEURON assured the correctness of our
method.

MODEL WORKLOAD
Each time step the application solves the membrane mechanism
models and adds their conductance and current contributions to
the current equation system (Hines and Carnevale, 1997, 2000).
When all mechanisms are solved, the application can update the
equation system and solve it. The result from the equation system
is the membrane voltage of each segment of the neuron at the
current time step. The main computation effort for advancing a
time step in the simulation derives mostly from three operations:
calculating the membrane mechanism, setting the equation sys-
tem and solving it. We analyzed the model workload in two steps.
First, we analyzed the runtime for solving the matrix (which rep-
resents the equation system) and the model (Figure 3). Second,
we compared the runtimes of full simulations using different
models on NEURON and CUDA (Figure 4).

The runtime of solving the matrix was analyzed by eliminating
the relevant part of the code and running the simulation without
it. Runtime of solving the model was analyzed using the pas-
sive model, which hardly requires any computational effort. We
conducted another run using the passive model but without solv-
ing the matrix to estimate the runtime for the rest of the code
(Figure 3). Next, we subtracted the runtime of the simulation
without the code for solving the matrix from the runtime of a

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

FIGURE 3 | Analyzing the runtime of matrix and model solving. Four
different simulations were used to analyze the runtime of model solving
and solving the equation system (matrix): 1, full simulation; 2, simulation
with a passive model; 3, simulation without solving the matrix
(Hodgkin–Huxley model); 4, simulation with a passive model and without
solving the matrix. To calculate the runtime of matrix solving the runtime of
simulation with a passive model was subtracted from the full simulation. To
calculate the runtime of model solving the runtime of simulation without
matrix solving was subtracted from full simulation. The simulations were
ran on fork morphologies with 320, 640, and 960 segments.

full simulation to calculate the runtime for solving the matrix.
Similarly, we subtracted the runtime of the simulation with the
passive model from the simulation of the Hodgkin–Huxley model
to calculate the runtime of computing the model.

These tests were repeated with fork morphology of 320, 640,
and 960 segments (the morphology is displayed in Figure 4A).
The results are shown in Figure 3. Most of the runtime was used
for solving the matrix (54.1% at 320 segments 55.2% at 640 seg-
ments and 56.3% at 960 segments). With an increasing number
of segments (heavier simulations) solving the matrix took a more
significant share of the total runtime. This result agrees with the
theoretical analysis; as the per-segment model calculation and
updating the equation system run in linear time, the complexity
of solving the matrix is super-linear.

The runtimes of whole simulations were compared
with NEURON, using an increasing number of segments.
Combinations of the back-substitution method with the different
models and topologies are compared in Figure 4. Figure 4A
shows the simulation runtime for a single trace as a function of
the number of segments in the neuron. We checked runtimes
of both segment-based and branching-based parallelization
approaches using both the passive and Hodgkin–Huxley mod-
els. These were compared to NEURON runtimes. NEURON
outperformed both parallelization methods with the passive
model, (slope ratio of 5.3:1). However, for the Hodgkin–Huxley
model, the GPU was faster (slope ratio of 1:1.8). For the fork
topology, the segment-based parallelization performed best
(Figure 4A). Figure 4B shows the runtimes for Hodgkin–Huxley
simulation on a binary tree topology. In this topology, with
small depths of less than 7, the segment-based parallelization

FIGURE 4 | Simulation of a single sweep of a single neuron of different

topologies, models, and scale. (A) Median runtimes of a fork morphology
(inset) with increasing number of segments for: NEURON simulation (solid
lines); segment-based parallelization (dotted line); and branching-based
parallelization (dashed line). The Hodgkin–Huxley model is shown in black
and the passive model in gray. (B) Median runtimes of full binary tree
morphologies (inset) using the Hodgkin–Huxley model with increasing tree
depth. The passive model is not shown for clarity.

still performed better than the branching-based parallelization.
With depths greater than 7 there was enough branching in the
tree for branching-based parallelization to outperform the other
simulations.

SIMULATING MULTIPLE TRACES
Current-clamp experiments usually use multiple traces to
evaluate the reaction of the neuron to different physiological con-
ditions. As described in the Methods section, each thread block
was organized such that the CUDA block’s y-index described a
different trace. The runtime analysis for simulation of multiple

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

traces in a single multiprocessor is presented in Figure 5. We
used current-clamp protocols, where each trace included 5000
data points, and stimulated the neuron with increasing number
of traces from 1 to 13. The different back-substitution approaches
were used with the different protocols and compared to NEURON
simulations. While NEURON’s runtime is a simple factor of the
number of traces (Figure 5A), the CUDA runtimes for up to
13 traces were sub-linear, as the runtime for 13 traces was only
50% slower than the runtime for a single trace. GPUs’ runtimes
increase sub-linearly due to optimization of multiprocessor con-
text switching, leading to a performance factor of 14.6× on the
tested morphology with the Hodgkin–Huxley model compared to
NEURON.

MULTIPLE NEURON SIMULATIONS
Finally, we utilized all 14 multiprocessors by simulating several
neurons on different multiprocessors using the grid of blocks
(NVIDIA, 2011b). We stimulated each neuron with 13 traces
(65,000 data points) resulting in a block of 32 × 13 threads.
Different number of neurons were ran and the performance
of the two back-substitution approaches were compared with
NEURON. NEURON’s runtime was extrapolated from 3 points

FIGURE 5 | Simulation of multiple sweep protocol and multiple

neurons. A simulation protocol using reconstructed pyramidal neuron
morphology with 112 branches (C) and a varying number of sweeps, where
each sweep included 5000 data points. (A) Run times of increasing number
of sweeps using three simulations: NEURON simulation (solid line);
segment-based parallelization (dotted line); branching-based parallelization
(dashed line). The y-axis shows the runtime on a log scale. (B) Run times of
the three simulations on multiple neurons, where each neuron consists 13
traces (65,000 data points) as described in (A).

since they were linear with the number of neurons. We simu-
lated 1–128 neurons. Above 128 neurons the GPU simulation
runtimes increased linearly with neuron number, while below
14 neurons GPU runtimes remained virtually equal (Figure 5B).
Above 14 neurons, the runtime depended on the longest run-
ning multiprocessor, i.e., the number of 14-neuron units. The
method achieved a 150-fold performance factor for a realis-
tic configuration of morphology and stimulation protocol with
several neurons.

DISCUSSION
We have developed a parallel algorithm for simulating multi-
compartmental models of single neurons on GPU devices.
Simulations using our application were accurate and achieved a
peak running speed 150 times faster than a single CPU running
NEURON (Carnevale and Hines, 2006). Using GPUs signifi-
cantly reduces the flops per dollar ratio (Chien-Ping, 2010),
thus making intensive neuronal simulations available to a larger
audience.

Our application uses NEURON (Carnevale and Hines, 2006)
for constructing the equation system from the neuron morphol-
ogy and solves the system on the GPU. To validate the correct-
ness of our model, we compared our results to those calculated
in NEURON, resulting in a small error between the platforms
(Figure 2), which decreased with smaller step size. The error
probably arises from three factors: (1) CUDA runs in single pre-
cision while NEURON runs in double precision. (2) Using the
hardware “fast math” optimization (NVIDIA, 2011b) reduces
accuracy of math operations. (3) Stone’s algorithm (Stone, 1973)
uses a large number of multiplications, thus propagating the
errors arising from 1 and 2.

Prior to implementing the simulation environment on the
GPU we assumed that most of the computation time would be
used in solving the current diffusion equation system (or the
matrix). This was confirmed by our runtime analysis of the appli-
cation, this task consuming 54–56% of the runtime (Figure 3).
We thus focused on solving the matrix more efficiently. In the
theory presented here, we introduced two methods for the back-
substitution part of solving the equation system—segment-based
(Figure 1) and branching-based parallelization. The branching-
based method performed better for highly branched morpholo-
gies, while the segment-based method was best for relatively sim-
ple morphologies (Figure 4). The branching-based paralleliza-
tion used less framework shared memory (see Methods) than
the segment-based method. This may allow simulation of more
sweeps per blocks, which means running heavier simulations
faster.

After validating the correctness of our application we explored
the domains of applicability, domains in which our simulations
performed better than NEURON. We also examined for which
cases each back-substitution method should be used. The most
basic simulation used a fork morphology and a single sweep
(Figure 4A) and reached a speedup of 1.8-fold when using the
Hodgkin–Huxley model. However, NEURON was 5.3 times faster
using the passive model. This difference in performance was
due to the advantages of the GPU with more complex models,
since the math operations reduce the memory transfer latency

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

[for more details on memory latency on GPU see Nickolls et al.
(2008); Ryoo et al. (2008)].

We next checked more realistic simulations using morpholo-
gies reconstructed from real neurons and each simulation com-
posed of several traces. When NEURON simulates multiple traces
on the same neuron, the increase in performance time shows a
constant relationship to the number of data points. In contrast,
in CUDA the increase in runtime was sub-linear (Figure 5A).
With 13 traces CUDA ran 14.6-fold faster than NEURON. The
application’s runtime did not increase linearly with increase in
trace/data points, since the simulating multiprocessor was occa-
sionally idle and could context switch between warps while
waiting for memory transfers.

The final simulation we ran, used multiple sweeps for many
neurons. Here our application reached a peak of 150-fold faster
than NEURON. The increase in speed arose from each neu-
ron being simulated on one of the 14 different multiprocessors
composing the GPU. Figure 5B shows that runtime increased in
multiples of 14 steps, since runtime was set by the multiprocessor
that finished last. Simulating many instances of the same neuron
expediently, opens the door to apply Monte Carlo simulations for
statistical analysis and optimization algorithms—GPUs outmatch
most platforms for these kind of problems (Lee et al., 2010; Quinn
and Abarbanel, 2011).

Using GPUs for simulating compartmental models may thus
decrease runtime to the order of 2 magnitudes. Naive optimiza-
tion using openCL or running the same algorithm used by the
CPU code converted to a GPU may achieve only minor speedups
in the order of one magnitude. Converted code from CPU to
GPU cannot use the advantages of the SIMD (single instruc-
tion multiple data) architecture of the GPU. Our application,
however, was tailored to the GPU and implemented several opti-
mizations to take advantage of its computational power. For
example, ILP (Volkov, 2010) dealt with multiple segments, so
each thread calculated several segments. Using ILP allowed us
to use a fixed number of threads (32—a single warp) to sim-
ulate the most basic simulation unit—one sweep. Using one
warp for the whole sweep fixed CUDA block’s x-index to 32,
where the y-index was the number of sweeps in the proto-
col (see Methods). This layout was optimal in our application
and spared the user the need to find the optimal number of
threads in the block, as in our previous GPU ion cannel simulator
(Ben-Shalom et al., 2012).

We gained a further increase in performance by using a buffer
shared memory of the size of a warp that held the output of the
recorded site in the simulation. This buffer was filled every 32
time steps by the different threads in the warps and then trans-
ferred the information to the global memory. This optimization
assured that slow global memory transfers occurred only every
32nd step and would be coalesced—uncoalesced memory trans-
fer are major slowdown factors in CUDA applications (Ryoo et al.,
2008).

NEURON is a comprehensive solution for simulations in neu-
roscience. Our application does not replace NEURON. Instead,
we suggest the use of GPUs for compartmental modeling. In the
future we hope to incorporate our application into NEURON,
to allow electrophysiologists to combine the variety of tools
NEURON offers with the low budget speed gain of GPUs pre-
sented here. Currently users can extend our application for their
needs by adding membrane mechanisms using our implementa-
tion of the Hodgkin–Huxley model as an example.

A further natural extension would be to simulate realistic neu-
ronal networks on GPUs. This would result in a supercomputer
with the computational abilities of the expensive Blue Gene (Gara
et al., 2005), allowing laboratories with a much lower budget
access to supercomputing. Until neuronal network simulation is
possible on GPUs, one can use hybrid CPU–GPU supercomput-
ers where the complicated neurons may be simulated using our
application, while the CPUs simulate the network organization
and communication between the neurons.

The aim of this study was to construct a software that uses
GPUs for simulating compartmental models. GPUs are evolv-
ing very quickly. NVIDIA released the new Kepler architec-
ture (NVIDIA, 2012) only 2 years after the Fermi architecture
(NVIDIA, 2009). This new architecture is more power efficient
and nearly doubles performance—3090 GFLOPS compared to
1581 of the Fermi architecture (NVIDIA, 2012). CUDA’s scalabil-
ity permits easy implementation of our application to the new and
future architectures. Easy scalability assures that the application
will perform even better with GPU development.

ACKNOWLEDGMENTS
This project was supported by the German Israeli Foundation
(#1091-27.1/2010). We would like to thank NVIDIA for the kind
donation of the Tesla C2075 GPU and Dr. Mara Almog for the
help with the reconstructed cells.

REFERENCES
Ben-Shalom, R., Aviv, A., Razon,

B., and Korngreen, A. (2012).
Optimizing ion channel mod-
els using a parallel genetic
algorithm on graphical proces-
sors. J. Neurosci. Methods 206,
183–194.

Carnevale, N. T., and Hines, M.
L. (2006). The NEURON Book.
Cambridge, UK: Cambridge
University Press.

Chien-Ping, L. (2010). “K3 Moore’s law
in the era of GPU computing,” in
The 2010 International Symposium

on VLSI Design Automation and Test
(VLSI-DAT) (Hsin Chu), 5.

De Schutter, E. (1989). Computer soft-
ware for development and simula-
tion of compartmental models of
neurons. Comput. Biol. Med. 19,
71–81.

Druckmann, S., Banitt, Y., Gidon, A.,
Schürmann, F., Markram, H., and
Segev, I. (2007). A novel multiple
objective optimization framework
for constraining conductance-based
neuron models by experimental
data. Front. Neurosci. 1:7. doi:
10.3389/neuro.01.1.1.001.2007

Fidjeland, A. K., Roesch, E. B.,
Shanahan, M. P., and Luk, W.
(2009). “NeMo: a platform for neu-
ral modelling of spiking neurons
using GPUs,” in Application-
Specific Systems, Architectures
and Processors, 2009. ASAP
(2009). 20th IEEE International
Conference on: IEEE (Boston, MA),
137–144.

Gara, A., Blumrich, M. A., Chen, D.,
Chiu, G. L. T., Coteus, P., Giampapa,
M. E., et al. (2005). Overview of
the Blue Gene/L system architec-
ture. IBM J. Res. Dev. 49, 195–212.

Harada, T., Koshizuka, S., and
Kawaguchi, Y. (2007). “Smoothed
particle hydrodynamics on GPUs,”
in Computer Graphics International,
eds D. Thalmann and S. R. Musse
(Petropolis: SBC), 63–70.

Hegland, M. (1991). On the par-
allel solution of tridiagonal sys-
tems by wrap-around partitioning
and incomplete LU factorization.
Numer. Math. 59, 453–472.

Hines, M. (1984). Efficient compu-
tation of branched nerve equa-
tions. Int. J. Biomed. Comput. 15,
69–76.

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Ben-Shalom et al. Simulating neurons on GPU

Hines, M. (1989). A program for
simulation of nerve equations
with branching geometries. Int.
J. Biomed. Comput. 24, 55–68.

Hines, M. (1994). The NEURON simu-
lation program. Neural Netw. Simul.
Environ. 254, 147–163.

Hines, M. L., and Carnevale, N. T.
(1997). The NEURON simulation
environment. Neural Comput. 9,
1179–1209.

Hines, M. L., and Carnevale, N. T.
(2000). Expanding NEURON’s
repertoire of mechanisms with
NMODL. Neural Comput. 12,
995–1007.

Hines, M. L., Markram, H., and
Schürmann, F. (2008). Fully
implicit parallel simulation of single
neurons. J. Comput. Neurosci. 25,
439–448.

Hodgkin, A. L., and Huxley, A. F.
(1952). A quantitative description
of membrane current and its appli-
cation to conduction and exci-
tation in nerve. J. Physiol. 117,
500–544.

Huys, Q. J. M., Ahrens, M. B., and
Paninski, L. (2006). Efficient
estimation of detailed single-
neuron models. J. Neurophysiol. 96,
872–890.

Jeong, W. K., Beyer, J., Hadwiger, M.,
Blue, R., Law, C., Vázquez-Reina, A.,
et al. (2010). Ssecrett and neuro-
trace: interactive visualization and
analysis tools for large-scale neu-
roscience data sets. IEEE Comput.
Graph. Appl. 30, 58–70.

Keren, N., Bar-Yehuda, D.,
and Korngreen, A. (2009).
Experimentally guided mod-
elling of dendritic excitability in rat
neocortical pyramidal neurones.
J. Physiol. 587, 1413–1437.

Keren, N., Peled, N., and Korngreen,
A. (2005). Constraining compart-
mental models using multiple
voltage recordings and genetic
algorithms. J. Neurophysiol. 94,
3730–3742.

Lee, A., Yau, C., Giles, M. B., Doucet,
A., and Holmes, C. C. (2010). On
the utility of graphics cards to per-
form massively parallel simulation
of advanced Monte Carlo meth-
ods. J. Comput. Graph. Stat. 19,
769–789.

Manor, Y., Gonczarowski, J., and Segev,
I. (1991). Propagation of action
potentials along complex axonal
trees. Model and implementation.
Biophys. J. 60, 1411–1423.

Markram, H. (2006). The blue brain
project. Nat. Rev. Neurosci. 7,
153–160.

Mascagni, M. (1991). A parallelizing
algorithm for computing solutions
to arbitrarily branched cable neu-
ron models. J. Neurosci. Methods 36,
105–114.

Migliore, M., Cannia, C., Lytton, W.,
Markram, H., and Hines, M. (2006).
Parallel network simulations with
NEURON. J. Comput. Neurosci. 21,
119–129.

Nageswaran, J. M., Dutt, N., Krichmar,
J. L., Nicolau, A., and Veidenbaum,
A. V. (2009). A configurable sim-
ulation environment for the effi-
cient simulation of large-scale spik-
ing neural networks on graph-
ics processors. Neural Netw. 22,
791–800.

Nickolls, J., Buck, I., Garland, M., and
Skadron, K. (2008). Scalable parallel
programming with CUDA. Queue 6,
40–53.

NVIDIA. (2009). NVIDIA Fermi
Compute Architecture Whitepaper,
v. 1.1. Available online at: http://
www.nvidia.com / content / PDF / fer
mi_white_papers/NVIDIA_Fermi_
Compute_Architecture_Whitepaper.
pdf

NVIDIA. (2011a). Nsight, v. 2.0.
Available online at: http://developer.
nvidia.com/nvidia-parallel-nsight

NVIDIA. (2011b). NVIDIA CUDA
C Programming Guide Version
4.0. Santa Clara, CA: NVIDIA
Corporation.

NVIDIA. (2012). NVIDIA’s Next
Generation CUDA Compute
Architecture: Kepler TM GK110.
Available online at: http://www.
nvidia.com/content/PDF/kepler/NV
IDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

Nyland, L., Harris, M., and Prins,
J. (2007). Fast n-body simula-
tion with cuda. GPU Gems 3,
677–695.

Owens, J. D., Houston, M., Luebke, D.,
Green, S., Stone, J. E., and Phillips,
J. C. (2008). GPU computing. Proc.
IEEE 96, 879–899.

Owens, J. D., Luebke, D., Govindaraju,
N., Harris, M., Krüger, J., Lefohn, A.
E., et al. (2007). A Survey of general
purpose computation on graphics
hardware. Comput. Graph. Forum
26, 80–113.

Plesser, H., Eppler, J., Morrison, A.,
Diesmann, M., and Gewaltig,
M. O. (2007). “Efficient parallel
simulation of large-scale neuronal
networks on clusters of multipro-
cessor computers,” in Euro-Par
2007 Parallel Processing (Rennes),
672–681.

Quinn, J. C., and Abarbanel, H. D.
I. (2011). Data assimilation using
a GPU accelerated path integral
Monte Carlo approach. J. Comput.
Phys. 230, 8168–8178.

Rall, W. (1964). “Theoretical signifi-
cance of dendritic trees for neuronal
input-output relations.” in Neural
Theory and Modeling ed R. F. Reiss
(Palo Alto, CA: Stanford University
Press), 73–97.

Ryoo, S., Rodrigues, C. I., Baghsorkhi,
S. S., Stone, S. S., Kirk, D.
B., and Hwu, W. W. (2008).
“Optimization principles and appli-
cation performance evaluation of a
multithreaded GPU using CUDA,”
in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles
and practice of parallel program-
ming (ACM) (Salt Lake City, UT),
73–82.

Stone, H. S. (1973). An efficient parallel
algorithm for the solution of a tridi-
agonal linear system of equations.
JACM 20, 27–38.

Van Geit, W., De Schutter, E., and
Achard, P. (2008). Automated
neuron model optimization tech-
niques: a review. Biol. Cybern. 99,
241–251.

Volkov, V. (2010). “Better performance
at lower occupancy,” in Proceedings
of the GPU Technology Conference,
GTC, (San Jose, CA).

Wang, H. (1981). A parallel method for
tridiagonal equations. ACM Trans.
Math. Softw. 7, 170–183.

Wilson, M. A., Bhalla, U. S., Uhley,
J. D., and Bower, J. M. (1989).
“GENESIS: a system for simulating
neural networks,” in Advances
in Neural Information Processing
Systems, ed D. Touretzky (San
Mateo, CA: Morgan Kaufmann),
485–492.

Conflict of Interest Statement: The
authors declare that the research
was conducted in the absence of any
commercial or financial relationships
that could be construed as a potential
conflict of interest.

Received: 09 January 2013; paper
pending published: 04 February 2013;
accepted: 28 February 2013; published
online: 18 March 2013.
Citation: Ben-Shalom R, Liberman G
and Korngreen A (2013) Accelerating
compartmental modeling on a graphical
processing unit. Front. Neuroinform. 7:4.
doi: 10.3389/fninf.2013.00004
Copyright © 2013 Ben-Shalom,
Liberman and Korngreen. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in other
forums, provided the original authors
and source are credited and subject to
any copyright notices concerning any
third-party graphics etc.

Frontiers in Neuroinformatics www.frontiersin.org March 2013 | Volume 7 | Article 4 | 8

http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
http://developer.nvidia.com/nvidia-parallel-nsight
http://developer.nvidia.com/nvidia-parallel-nsight
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/10.3389/fninf.2013.00004
http://dx.doi.org/10.3389/fninf.2013.00004
http://dx.doi.org/10.3389/fninf.2013.00004
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Accelerating compartmental modeling on a graphical processing unit
	Introduction
	Methods
	Simulation Environment
	CUDA Implementation
	Global and shared memory organization
	Instruction level parallelism (ILP)

	Theory and Results
	Branch-Based Parallelization
	Segment-Based Parallelization

	Correctness/Error Analysis
	Model Workload
	Simulating Multiple Traces
	Multiple Neuron Simulations

	Discussion
	Acknowledgments
	References

