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Abstract: Scaffolds are physical substrates for cell attachments, proliferation, and differentiation,
ultimately leading to tissue regeneration. Current literature validates tissue engineering as an
emerging tool for bone regeneration. Three-dimensionally printed natural and synthetic biomaterials
have been traditionally used for tissue engineering. In recent times, graphene and its derivatives are
potentially employed for constructing bone tissue engineering scaffolds because of their osteogenic
and regenerative properties. Graphene is a synthetic atomic layer of graphite with SP2 bonded carbon
atoms that are arranged in a honeycomb lattice structure. Graphene can be combined with natural
and synthetic biomaterials to enhance the osteogenic potential and mechanical strength of tissue
engineering scaffolds. The objective of this review is to focus on the most recent studies that attempted
to explore the salient features of graphene and its derivatives. Perhaps, a thorough understanding of
the material science can potentiate researchers to use this novel substitute to enhance the osteogenic
and biological properties of scaffold materials that are routinely used for bone tissue engineering.
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1. Introduction

Tissue engineering utilizes the concept of scaffolding to regenerate the bone defects. The technique
for addressing these defects that involves the reconstruction or regeneration of bone always desires
a temporary porous scaffold. Bone defects that are caused by trauma, congenital malformations,
or due to cancerous lesions can best be therapeutically managed by bone tissue engineering scaffolds.
The ultimate aim of modern tissue engineering is to replace the traditional medical procedures
involving the repair and regeneration of tissues with three-dimensional scaffolds. These scaffolds have
a porous surface that serve as a medium, over which cells can grow rapidly and develop into tissues
that are viable. The scaffolds with unique morphology and structural architecture encourage the
cells to regenerate bone tissues of extra cellular matrix [1,2]. Ideally, scaffolds provide the anatomical
support for the multiplying cells to repair the damaged tissues and in the process, undergo gradual
degeneration and resorb without harming the resulting tissues. The scaffolds should be porous,
biocompatible, biodegradable, and designed accordingly to satisfy the required needs to regenerate
or repair the tissues [3–5]. The architecture and composition of the scaffolds are such that, it helps
in cell attachments, proliferation and differentiation of the surrounding host cells into the defect
area on its surface [6–8]. The scaffold materials are classified into natural and synthetic biomaterials.
The pore architecture and design of the scaffolds influence their mechanical strength. The square
design architecture of the scaffold is said to have high strength when compared to other scaffold
designs [9]. Factors such as design, micro-architecture, material property, and strength are essential
in stabilizing the surrounding microenvironment and the cells adhering to it [10–12]. Synthetic
scaffold materials have several advantages over the natural materials in terms of high mechanical
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strength, biocompatibility, biodegradability, and cost effectiveness [13–15]. Biomaterials, like glasses
and ceramics, are being used as scaffold materials for bone tissue engineering [16].

The polymeric scaffolds have excellent biocompatibility and biodegradability, but lack the
ability to withstand the forces acting upon. In order to improve their mechanical strength, many
researchers have incorporated graphene derivatives within the polymers. Besides enhancing the
physical properties, the graphene derivatives also promote cell proliferation and differentiation, owing
to their excellent biocompatibility under limited concentrations.

Graphene is a single layer of aromatic carbon atoms that are arranged in a two-dimensional
lattice [17,18]. Research on graphene and its derivatives have gained immense popularity among
industries as well as in academia due to its fascinating biomechanical properties. The global interest in
this “wonder material” is still growing, especially in the field of bone tissue engineering and biomedical
application. Besides, graphene-based materials have also been used widely in the field of biomedicine
and drug delivery. Because of its excellent biocompatibility under recommended concentrations,
graphene and its derivatives have shown promising results in regulating cell behavior, loading,
and releasing of drug genes. Additionally, it is also believed that they help in the differentiation of
cells by modifying the surface of the scaffold materials. Graphene improves the adhesion, growth,
proliferation, and differentiation of osteoblast [19]. They also possess unique physio-chemical and
mechanical properties, which allow for them to be used with broad range devices and in the form
of scaffold materials to enhance the proliferation of stem cells for bone regeneration. In this article,
we will be emphasizing on the osteogenic influences of graphene derivatives when combined with
different biomaterials for utilization in bone tissue engineering scaffolds.

2. Graphene Derivatives

Graphene is a synthetic atomic layer of graphite with SP2 bonded carbon atoms arranged in
honeycomb lattice structure. Boehm et al. described graphene in 1986 [20]. In 2004, Geim and
Novoselov isolated and identified graphene [21,22]. Graphene remained a popular material that
was researched extensively in the past decade for its remarkable electro-conductivity. The graphene
and its derivatives have also been noted as components of biosensors or to remotely control cell
substrate interfaces [23–28]. The derivatives of graphene, (graphene oxide and reduced graphene
oxide) have many functional groups on their surface and have unique properties, like graphene
(Figure 1). Graphene oxide obtained by the oxidation of graphene, [29] spans the modern trends in
bone regeneration [30] because of its unique physical, chemical, mechanical properties, and good
biocompatibility [31,32].

Graphene oxide, aids in bone regeneration by enhancing the osteogenic differentiation of
progenitor cells. This is accomplished by hydrophobic and electrostatic interactions with the proteins of
the microenvironment [31,33,34]. Graphene oxide differs from graphene in that it forms a uniform and
stable suspension in water, whereas graphene tends to from aggregates. Uniform stable suspension of
graphene oxide helps to infiltrate the porous scaffolds, thereby modifying the surfaces of pore wall [35].
This unique characteristic of graphene oxide makes it the material of choice in bone tissue engineering.
The graphene oxide can further be reduced to form the reduced graphene oxide. The graphene oxide
has many oxygen containing functional groups on their surface, which facilitates the interaction with
cells and biomolecules. Like the graphene oxide, the reduced graphene oxide also contains functional
groups on their surface and has a unique electrical property when compared to graphene oxide.
Indeed, graphene-based materials have proven to enhance cell growth, cell differentiation, and cell
proliferation [36,37].
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3. Natural vs. Synthetic Biomaterials

Various biomaterials have been researched as scaffold materials for bone tissue engineering.
Biocompatibility, biodegradability, and sufficient mechanical strength to withstand the forces acting
upon are the three key factors to be considered for the selection of a scaffold [38]. Depending on their
use and clinical application, the scaffolds can be classified into synthetic or natural, biodegradable or
non-biodegradable, and rigid/non-rigid scaffolds [39].

3.1. Natural Biomaterials

Natural biomaterials that are used in bone tissue regeneration include proteins like silk,
collagen, gelatin, fibrin, fibrinogen, elastin, keratin, actin, and myosin. On the other hand,
polysaccharides, such as chitosan, hyaluronic acid, alginate, agarose, cellulose, amylose, dextran,
chitin, and glycosaminoglycan’s; and, polynucleotides, like DNA, RNA, chitosan, hyaluronic acid,
alginate, and agarose are also being utilized [40]. The aforementioned proteins and polysaccharides
are routinely used with graphene in the field of tissue engineering and biomedical application [41].
The blending of graphene derivatives with these natural polymers enhances the biological properties
of the scaffolds. The most researched polysaccharides are chitosan, cellulose, and alginate, whereas the
protein-based polymers frequently studied include silk, collagen, and gelatin [42].

Natural Biomaterials/Polysaccharides/Graphene Scaffolds in Bone Tissue Engineering

Nishida et al. [43] coated collagen scaffolds with different concentration of graphene oxide and
evaluated the bioactivity, cell proliferation, and differentiation both in vivo and in vitro. The results of
subcutaneous implant tests in rats showed increased cell growth in low concentrations of graphene
oxide. Adverse biological effects where seen in higher concentrations of graphene oxide. Consequently,
scaffolds that are modified with a suitable concentration of graphene oxide are useful as a bioactive
material for tissue engineering [43]. Kang et al. [44] compared the osteogenic potential of Graphene
oxide flakes/collagen scaffolds against collagen scaffolds that served as the control group. qRT-PCR
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analysis was used to compare the mRNA expression of osteogenic markers, alkaline phosphatase
(ALP) and Osteopontin (OP), in human mesenchymal stem cells (hMSCs) cultured on the four types
of scaffolds. The mRNA expression of ALP was 3.9 ± 0.2-fold and 4.3 ± 0.3-fold higher for the
graphene oxide-collagen group compared with the collagen group at 2 and 3 weeks, respectively.
Further, the graphene oxide-collagen group showed significantly enhanced mRNA expression levels of
Osteopontin (OP), which was 6.5 ± 1.1 and 7.7 ± 0.6-fold higher than the collagen group at two weeks
and three weeks, respectively. Immunocytochemical staining of RUNX2 was performed to observe
the osteogenic differentiation of hMSCs on both collagen and graphene oxide-collagen scaffolds.
The hMSCs cultured on graphene oxide (GO)-collagen scaffolds showed more enhanced expression
of RUNX2 compared to those on collagen scaffolds. The results demonstrated that the graphene
oxide/collagen scaffolds showed more osteogenic differentiation of human mesenchymal stem cells
when compared to the control collagen scaffolds [44].

Another study showed that the addition of graphene oxide or reduced graphene oxide to
collagen scaffolds increased the tissue compatibility and bioactivity. In vivo studies showed that
reduced graphene oxide is more bioactive than graphene oxide when coated on collagen scaffolds [45].
Dinescu et al. [46] produced a three-dimensionally printed chitosan and graphene oxide scaffolds
by using 0.5% and 3% graphene oxide and found that addition of graphene oxide increased the
proliferation of murine pre-osteoblast cells and metabolic activity [46]. Three-dimensionally printed
graphene oxide and chitosan scaffolds promoted bone regeneration in calvarial defects of mouse.
They observed an increase in the osteogenic activity and repair of the critical size defect. The addition
of graphene oxide with chitosan showed increase in Alkaline phosphatase activity, expression
of bone morphogenic protein and RUNX-2 factor [47]. The pendant hydroxyl group and high
polarity of graphene oxide were shown to enhance the cell attachment on the scaffolds printed
with chitosan. The negative charge of graphene oxide and its polarity allows for the van der Waals
forces and electrostatic forces to interact with the functional groups of the proteins. This improves the
proliferation and attachment of MC3T3-E1 cells on graphene oxide coated chitosan scaffolds [48–50].
The combination of graphene oxide nanocomposite with carboxymethyl chitosan scaffolds upgrades
the osteogenic differentiation of seeded cells due to their high density of the functional groups.
The carboxymethyl chitosan further enhances the cellular activity with the help of its amino and
carboxyl groups [51]. Chitosan and graphene oxide that were incorporated with hyaluronic acid
showed good attachment and spreading of MC3T3 cells. The proliferation of the cells increased by the
addition of hyaluronic acid [52]. The reduced graphene oxide influences the stem cells function by nano
topographic cues when combined with chitosan. The attachment of mesenchymal stem cells (MSC’s)
on chitosan coated with reduced graphene oxide, increased in the initial days. After five days, the 5%
concentration of reduced graphene oxide coated chitosan showed less cell proliferation when compared
to the 0.05% and 0.5% reduced graphene oxide. This may be due to the cytotoxicity of reduced graphene
oxide. Besides, the 5% reduced graphene oxide showed more calcium deposition and osteocalcin
expression [53]. The combination of graphene oxide with bacterial cellulose increased the antimicrobial
properties of the nanocomposites. The graphene oxide did not inhibit the proliferation of HEK293
cells and further decreased the bacterial attachment of Escherichia coli and Staphylococcus aureus by
95.6% and 65.35%, respectively [54]. Graphene oxide combined with chitosan and gelatin improves the
biological properties of the scaffolds that were used for bone tissue engineering. The scaffolds were
biocompatible and enhanced the proliferation of mouse mesenchymal stem cells into osteoblasts and
increased the deposition of collagen in rat tibial bone defect [55].

Nair et al. [56] incorporated graphene oxide into gelatin/hydroxyapatite scaffolds to enhance the
osteogenic differentiation of human mesenchymal stem cells. MSC’s on the scaffolds were cultured
in two different culture conditions (media with and without osteogenic supplement) for quantitative
evaluation of proliferation and osteogenic differentiation. There was no significant difference in cell
proliferation between gelatin/hydroxyapatite scaffolds and graphene oxide/gelatin/hydroxyapatite
scaffolds and between the culture conditions on all days. When compared to day 1, the number of
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cells were significantly higher on day 7 and day 14 in all groups. However, on day 21, the rate of cell
proliferation was slightly reduced than day 14, still it was comparable to day 1 and day 7. Quantitative
LDH activity measurement demonstrated that the percentage of viable cells from day 7 to 21 was
equivalent and there was no considerable variation between the groups and time points. The results
suggested that the cell proliferation on day 21 was reduced not due to the apoptosis/necrosis of
cells. The graphene oxide scaffolds without the addition of osteogenic supplements, enhanced the
proliferation and osteogenic differentiation of human mesenchymal stem cells [56]. Graphene oxide
combined with silk fiber scaffolds are used for biomedical application and tissue engineering and the
addition of graphene oxide has been shown to enhance the proliferation of MC3T3-E1 osteoblast cells
when combined with silk fiber scaffolds. Furthermore, the graphene oxide reduced the pore diameter
and eventually changed the pore morphology of the scaffolds [57]. Graphene oxide incorporated in
starch nanocomposites has shown to improve the biological property [58]. The application of starch in
tissue engineering, however, is minimal due to its brittleness and hydrophilicity.

3.2. Synthetic Biomaterials

Synthetic polymers are the commonly used materials for tissue regeneration due to their
porosity, quicker degradation time, and superior mechanical strength. They have advantages over
natural polymers, like longer shelf-life, cost effectiveness, ability to be tailored to obtain desired
shape by milling and printing, can quickly be mass produced under controlled conditions, possess
better cell differentiation properties, pore characteristics, and mechanical properties [59]. However,
the drawbacks of synthetic biomaterials are that they lack cell adhesion sites and requires chemical
modification to improve cell adhesion. The commonly used synthetic materials are Polylactic
acid (PLA), Polyglycolic acid (PGA), Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA),
calcium phosphate, hydroxyapatite (HA), β-Tricalcium phosphate (TCP), hydroxyapatite nanoparticles,
glass-ceramics, bioactive ceramics, and bioactive glass [60,61]. These polymers have varying degrees
of biocompatibility, biodegradability, and mechanical strength, but no single polymer possesses all
these three essential properties at an optimal level. Hence, graphene derivatives are often integrated
with synthetic biomaterials to improve the biomechanical behavior of the tissue engineering scaffolds.

Polymers/Graphene Derivatives Scaffolds in Bone Tissue Engineering

Polycaprolactone is a polymer with melting temperature of 60 ◦C and it is hydrophobic in
nature [62]. Polycaprolactone has been wildly used in biomedical application for its excellent
solubility and blend compatibility. Although Polycaprolactone has many advantages, owing to
factors, such as slow degradation, resorption, and hydrophobicity, it might not be suitable to be used
alone. Polycaprolactone can be three-dimensionally printed with graphene derivatives to enhance
their osteogenic potential and biocompatibility. Graphene oxide has been shown to enhance the
differentiation of mesenchymal stem cells and PC12 cells into osteo-and neuro-like cells. Song et al. [63]
cultured mesenchymal stem cells and PC12 cells on the polycaprolactone/graphene oxide scaffolds
and observed the cell growth and adherence. The cell proliferation on different scaffolds were analyzed
using a CCK-8 assay after one, four, and seven days. Both the mMSCs and PC12-L cells grew well
on different composite scaffolds with the extended culture time. The mMSCs proliferated slower on
the PCL/GO composite scaffolds with 0.5- and 1.0-wt % GO. The PCL/GO scaffolds with 1.0-wt %
GO exhibited significantly lower cell proliferation when compared with other scaffolds at the 4th day.
The proliferation rates of mMSCs on the PCL/GO scaffolds with 0.3- and 0.1-wt % GO and the pure
PCL scaffolds did not significantly differ. Similarly, PC12-L cells proliferated slower on the PCL/GO
scaffolds with 0.5- and 1.0-wt % GO, and this difference was more prominent as the culture time
was extended, especially on the scaffolds with 1.0-wt % GO. The results showed that 0.3% and 0.5%
concentration of graphene oxide enhanced the differentiation of mesenchymal stem cells into osteogenic
cells [63]. Wang et al. [64] stated that the addition of pristine graphene enhances the proliferation
and cell viability of human Adipose derived stem cells. The polycaprolactone and pristine graphene
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scaffolds were treated with sodium hydroxide (NaOH) and the results showed that the scaffolds
containing pristine graphene treated with NaOH exhibited an increase in fluorescence intensity when
assessed using Almar Blue Assay. For the scaffolds that were treated with NaOH, the addition of
pristine graphene increased the cell viability and proliferation. Pristine graphene scaffolds showed
better biological performance than the control polycaprolactone scaffolds. They further assessed the
cell attachment and morphology of the scaffolds by SEM and laser confocal microscopy. The addition
of pristine graphene showed extensive cell attachment and spreading. The confocal images of the
scaffolds containing pristine graphene showed that larger number of cells were present, morphology
of the cells were maintained, and the cells showed high confluency [64] (Figure 2).
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Figure 2. Proliferation and cell viability of human adipose derived stem cells on Polycaprolactone
(PCL) and pristine graphene scaffolds (a) SEM images after 21 days culture; and, (b) confocal images
after 28 days culture [64] (copyright 2016, Materials).

Polyvinyl alcohol is another synthetic biodegradable polymer that is soluble in water and
hydrophilic in nature. Poly vinyl alcohol (PVA) is used in biomedical application combined with
graphene oxide in the form of three-dimensionally printed scaffolds [65,66]. Polyvinyl alcohol
and graphene oxide scaffolds are used for bone tissue engineering. Shuai et al. [67] produced
interconnected porous nanocomposite by laser sintering. The graphene oxide added enhanced the
proliferation and differentiation of osteoblast like cells and the addition of 2.5 wt % of graphene oxide
increased the strength of the scaffolds [67]. Iontia et al. [68] added gelatin to the PVA/GO scaffolds
and found that MC3T3-E1 preosteoblast and murine cells were cytocompatible [68]. Qi et al. [69]
prepared nanocomposite PVA/GO scaffolds while using electrospinning. There was an increase in cell
attachment and proliferation of mouse osteoblast MC3T3-E1 cells. The addition of graphene oxide did
not affect the growth and proliferation of the cells. The cells showed a wide spread distribution on to the
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scaffolds [69]. Fu et al. [70] stated that the incorporation of graphene oxide into PLGA/HA nano fibres
scaffolds enhanced the cell proliferation and osteogenic differentiation. The graphene oxide increased
the protein absorption rate and hydrophilicity of the scaffolds significantly. The adsorption of proteins
onto the surface of materials is highly related to biocompatibility of the materials. Bovine serum
albumin (BSA) was selected as a model protein to examine the adsorption efficiencies of synthesized
nanofibrous matrices. The BSA adsorption was determined to be 0.67 ± 0.13 and 0.78 ± 0.13 mg on
PLGA/HA and PLGA/GO, respectively, which were obviously higher than that on PLGA nanofibrous
matrices. The higher protein adsorption capacities of nanofibrous matrices might result from their
improved surface properties and larger specific surface areas after the incorporation of HA and
GO. The highest protein adsorption was obtained for the PLGA/GO/HA nanofibrous matrices,
nearly 1.46 and 1.25 times of adsorption rates than those of PLGA/HA and PLGA/GO nanofibrous
matrices, respectively (Figure 3). The PLGA/GO/HA scaffolds showed an increase in cell adhesion
and proliferation of MC3T3-E1 cells, as well as an increase in ALP activity, mineral deposition,
and osteogenic related gene expression [70].
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Figure 3. Protein adsorption and cell adhesion of Poly lactide-co-glycolic acid (PLGA),
Poly lactide-co-glycolic acid/hydroxyapatite (PLGA/HA), PLGA/graphene oxide (GO),
and PLGA/GO/HA nanofibrous matrices. (a) Fluorescence images of the Rhodamine B labelled BSA
adsorption on PLGA, PLGA/HA PLGA/GO and PLGA/GO/HA; and, (b) The adsorption of protein
onto the PLGA, PLGA/HA, PLGA/GO, and PLGA/GO/HA nanofibrous matrices. PLGA/GO/HA
nanofibrous shows increase protein adsorption (n = 5; * indicates p < 0.05) [70] (Copyright 2017,
PLoS ONE).

Wei et al. [71] produced a three-dimensional porous scaffold containing reduced graphene oxide
and nano hydroxyapatites for bone tissue engineering. The in vitro evaluation showed that the
scaffolds enhanced the proliferation, osteogenic gene expression of rat bone mesenchymal cells,
and increased the ALP activity. The scaffolds placed in the calvarial defects of rabbits showed
good bone healing in six weeks after implantation and there was increased proliferation and
improved collagen deposition when observed by computed tomography and histological analysis [71]
(Figures 4 and 5). Wei et al. [72] produced a three-dimensional graphene-hydroxyapatite hybrid
(GHB) scaffold with calcium phosphate salt that was electrochemically deposited on to the graphene
foam framework. Voltage and temperature were used to control the morphology of HA deposited.
The cell culture of MC3T3-E1 osteoblast cells on GHB scaffolds showed good biocompatibility and
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increased proliferation. The cytotoxicity and health status of the cells were evaluated by Acridine
orange-ethidium bromide double staining assay. Both the three-dimensional graphene foams and
GHB scaffolds showed higher densities of cells and were confirmed by green fluorescence indicating
live cells. The dead cells were identified by orange color. Both the scaffold groups didn’t show any
dead cells (Figure 6). The cells were co-cultured on second day and fourth day. The outcomes of the
study showed that MC3T3-E1 osteoblast cells could grow, adhere, and proliferate on GHB scaffolds.
There was an increase in ALP activity, which showed that GHB scaffolds enhanced the differentiation
of osteoblast cells to mature osteoblasts [72].
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(copyright 2018, Crystals).

Ali et al. [73] prepared a novel graphene oxide incorporated silicate-doped nano hydroxyapatite
composite scaffold for bone tissue engineering. Electrospun PCL scaffolds were fabricated and the
Graphene oxide-Hydroxyapatites nano composite were reinforced within the scaffolds. Graphene
oxide was added in the concentration of 2 wt % and 4 wt %. The scaffolds were tested for protein
absorption and desorption while using FBS solution. The results showed that the graphene oxide
enhanced the absorption and decreased the desorption of proteins. The scaffolds were biocompatible
when treated with human osteosarcoma cell lines. The scaffolds showed good adhesion, proliferation
of cell lines, and increased ALP activity [73].

Bioactive glass has been widely used in the field of bone tissue engineering because of its ability
to form bioactive hydroxyapatite layer, thereby forming a strong bond between implant and the
surrounding bone [74,75]. The bioactive glass does not have sufficient mechanical property to replace
the bone tissues and needs either organic or inorganic materials to be added along to improve their
mechanical strength. Graphene has been shown to have excellent mechanical strength with the added
advantage of good biocompatibility and it does not cause any inflammatory changes to the surrounding
microenvironment [76–78]. Fan et al. [79] produced a scaffold by combining graphene nanosheet
with bioactive glass to improve the mechanical strength of bioactive glass (BG’s). The addition of
graphene nanosheets increased the mechanical strength of the scaffolds, furthermore, the graphene
nanosheets scaffolds showed excellent biocompatibility and cell proliferation. The osteoblast cells
adhered and were wide spread on the scaffolds containing graphene nanosheets. Moreover, an increase
in the proliferation of the osteoblast cells and ALP activity established the osteogenic potential of
the graphene nanosheet coating onto the scaffolds. Alkaline phosphatase activity was observed after
the cells were incubated on the surface of GO, BGs, BG1GO1, BG5GO1, and BG10GO1 for one, two,
and five days, respectively. On one day, ALP activity no apparent difference was observed between
GO, BGs, BG1GO1, BG5GO1, and BG10GO1. As time progressed, an increased trend of ALP activity
was observed, and the ALP activity of BG10GO1 was higher than GO, BGs, BG1GO1, and BG5GO1 on
two and five days, indicating the highest osteogenic differentiation activity of the MC3T3-E1 cells on
the surface of BG10GO1 [79] (Figure 7).

Cheng et al. [78] combined graphene with nano-58S bioactive glass for bone tissue engineering
application. The scaffolds were fabricated using selective laser sintering. The results of the study
showed that graphene potentiated the mechanical strength of the scaffolds. The cell culture work
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was done by immersing the scaffolds in SBF solution for seven days that resulted in well-formed
HCA layer and the calcium/phosphorus ratio was 1.69. Cell culture studies further showed that the
human MG63 cells adhered and grew on the surfaces of the scaffolds containing graphene. Graphene
promoted the increase in proliferation of cells [78]. Turk et al. [80] stated that graphene containing
PCL coated with borate based 13–93 BC bioactive material, increased the electrical conductivity of the
scaffolds. Graphene containing scaffolds were biocompatible with large amount of viable MC3T3-E1
preosteoblast cells after incubation for seven days by XTT test. The cell viability started to decrease
after 14 days of incubation. The graphene-based scaffolds also demonstrated an increase in ALP
activity, which accounted for their osteoblastic differentiation. When subjected to incubation for three
days, a wide spread of MC3T3-E1 cells on the scaffolds coated with graphene were observed and the
cells exhibited flat appearance [80].
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4. Role of Graphene in Stem Cell Proliferation

Graphene, a two-dimensional (2D) nanomaterial has set an enormous trend in research
and development in the burgeoning field of biomedical application and bone tissue engineering.
Despite their potentiality, very few researchers have attempted to use graphene in human stem cell
research. Most of the studies that were done with graphene had focused on increasing the proliferation,
adhesion, and growth of stem cells. There has to be a controlled proliferation and differentiation of
the stem cells in order to attain successful bone regeneration. This can be achieved with the help
of growth factors and osteogenic inducers [81]. Human bone marrow derived stem cells can be
allowed to differentiate and proliferate in a controlled manner by combining them with artificial
scaffolds to regenerate the lost bone tissues [81–85]. Graphene derivatives have been shown to support
stem cell attachment and differentiation, and are also used for various bone tissue regeneration [86].
The physical, chemical, and mechanical properties of graphene allows for the stem cells to differentiate
and proliferate on to the scaffolds [87]. Although graphene has been researched for implementation in
stem cell research, the exact interaction between graphene derivatives and the stem cells is still unclear.
Graphene oxide has been shown to enhance the osteogenic potential of stem cells. Wu et al. [35]
combined graphene oxide with beta tricalcium phosphate bio ceramics and evaluated the osteogenic
potential of the scaffolds. The scaffolds containing graphene oxide enhanced proliferation, osteogenic
gene expression, and ALP activity of human bone marrow stem cells. The scaffolds without graphene
oxide (as control) showed less osteogenic differentiation compared to the scaffolds with graphene
oxide. The in vivo study showed that β-TCP-GRA scaffolds had greater de novo bone formation in the
calvarial defects both at four and eight weeks post implantation when compared with β-TCP scaffolds.
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Micro-CT analysis showed significantly more new bone formation in the β-TCP-GRA group compared
with the β-TCP group. The BV/TV ratio of the β-TCP-GRA group (26.12 ± 4.44% and 44.83 ± 10.82%)
was significantly higher as compared with β-TCP (16.64 ± 4.57% and 30.41 ± 4.10%) at weeks 4 and 8,
respectively. The exact mechanism accounting for an increase in osteogenic potential of graphene oxide
is by activation of Wnt/b-catenin signaling pathway in hBMSCS’s [35]. Akhavan et al. [88] showed that
graphene nano grids enhanced the osteogenic capacity of human mesenchymal stem cells (hMSC’s).
The growth and shape of the stem cells were not affected by the incorporation of graphene, suggesting
the excellent biocompatibility of graphene [88]. Graphene has been shown to accelerate the growth
and differentiation of human mesenchymal stem cells similar to the differentiation influenced by bone
morphogenic protein (BMP-2) [32]. Three-dimensionally printed graphene foams have been shown to
promote osteogenic differentiation and maintain the viability of human mesenchymal stem cells [89].

Luo et al. [90] stated that PLGA/GO enhanced the osteogenic differentiation of human
mesenchymal stem cells. Graphene oxide incorporated on electrospun poly (lactic-co-glycolic acid)
scaffolds helped in the adhesion and proliferation of hMSC’s, thereby accelerating the osteogenic
potential when compared to the scaffolds without graphene oxide (PLGA-control). Additionally,
graphene oxide enhanced the hydrophilic performance and absorption ability of PLGA nanofibers [90].
Tatavarty et al. [91] stated that graphene oxide shows a synergetic effect when combined with
osteoinductive material. Graphene oxide with calcium phosphate nano composite have shown
synergetic effects on the osteogenic differentiation of human mesenchymal stem cells and exhibited
superior stiffness when compared to graphene oxide or calcium phosphate alone. Such an
increase in material stiffness could induce mechanotransduction effect, which regulates stem cell
differentiation. The combination of graphene oxide with calcium phosphate nano composite showed
increased bone nodule formation when compared to the calcium phosphate or graphene oxide
alone, which demonstrates the synergetic effect of graphene oxide combined with osteoinductive or
osteoconductive materials [91]. Graphene that is used for osteogenic differentiation is summarized
in (Table 1).

Table 1. Osteogenic potential of graphene in bone tissue engineering scaffolds.

Material Analysis Outcomes Reference

rGO-Chitosan SEM, Alizarin Red staining, and
immunofluorescence

The differentiation on rGO-chitosan substrate was
higher than the ones obtained on the chitosan

Substrate and polystyrene regardless of the use of
osteogenic induction media.

[53]

rGO-PEDOT Immunofluorescence staining,
Alizarin Red S staining

The multifunctional rGO-PEDOT bioelectronic
interface was used for manipulating attachment

and orientation of MSC. The device acted as a drug
releasing model under electrical modulation.

[92]

GO
Immunofluorescence,

microcomputed tomography,
and Goldner trichrome

The osteogenetic differentiation of human
BMMSCs on Ti/GO substrate was higher

compared to Ti substrate.
[31]

GONR, rGONR Immunofluorescence staining
and Alizarin Red staining

Graphene nanogrids increase the osteogenic
differentiation of BMSC; the differentiation

coincides with the patterns of the nanogrids.
[88]

CVD Immunofluorescence staining The cells adhered and proliferated more on
CVD-grown graphene than on SiO2 substrates. [93]

CVD, GO Immunofluorescence staining
and Alizarin Red staining

Graphene was capable of preconcentrating
osteogenic differentiation factors. GO strongly

enhances adipogenic differentiation.
[87]

CVD
Cell viability assay,

immunofluorescence staining,
and Alizarin Red staining

CVD-grown graphene allowed the proliferation of
MSC and increased the differentiation

towards osteoblast.
[32]
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Table 1. Cont.

Material Analysis Outcomes Reference

3DGp Immunofluorescence staining
and SEM

3DGp maintains MSC viability and promotes
osteogenic differentiation without the use of

chemical inducers.
[89]

CaS-G MTT, SEM, and RT-PCR
Cell adhesion was enhanced by adding 1.5% of

graphene to the material as compared to the
calcium silicate alone.

[94]

SGH
MTT, H & E,

immunofluorescence staining,
and Alizarin staining

The self-supporting graphene hydrogel (SGH) film
allows cell adhesion and proliferation and

accelerates the osteogenic differentiation without
chemical inducer.

[95]

GO-CaP Alizarin Red S staining RT PCR
and immunofluorescence

The GO-CaP nanocomposite exhibited superior
osteoinductivity compared to individual or

combined effects of GO and CaP.
[91]

Carbon
nanotubes and

graphene
SEM, Elisa, and H & E staining

Cells in PLLA composite scaffolds containing
3 wt % of graphene presented higher expression of
osteogenesis-related proteins, calcium deposition,

and the formation of type I collagen.

[96]

Graphene
hydrogel MTT and SEM

Graphene 3D hydrogel allows cell proliferation
and attachment confirming the biocompatibility of

the graphene hydrogel scaffolds.
[97]

Source: Reference [98] (copyright 2015, Stem Cells International).

5. Future Perspectives and Conclusions

There are various factors to be considered in designing a scaffold for bone tissue engineering.
Although some of the biomaterials that were previously used as a scaffold in clinical trials are available
in the commercial market, the methodology and their applications are not always well-balanced.
Graphene with its unique properties are potentially validated to be used as bone tissue engineering
scaffolds. Research on the contribution of graphene derivatives to bone tissue engineering is still
modern, and various studies are ongoing to understand them better. Numerous studies in stem cell
research are being conducted in order to explore graphene for its osteogenic potential, and proliferation
and differentiation of stem cells. Despite its advantages, graphene derivatives are subjected to few
challenges. The toxicity of graphene at higher concentrations and non-biodegradable nature needs
further investigations. The interaction of graphene with the biologic cells is yet to be further evaluated
in depth. Literature should furnish a wide range of comparative studies in the future, between
graphene and the other biomaterials before commercializing them in the market. Concurrently, many
in vivo studies involving graphene needs to be tested to understand the exact metabolic pathways in
which graphene interacts with the microenvironment and bone tissue regeneration. The success of bone
regeneration depends on the proliferation of stem cells. The availability and affordability of graphene
derivatives has led to the outcome of many researchers conducting studies to validate the proliferation
and differentiation of stem cells by the incorporation of graphene derivatives. A remarkable aspect of
graphene derivatives is that their chemical nature seems to act on the proliferation of stem cells, raising
the possibility of favoring this process by modifying the chemical configuration. Cell-based bone tissue
engineering requires a cell component from the appropriate origin that could be able to repair the target
tissues and also a biocompatible material that provides a three-dimensional scaffold for the chosen cells.
The ideal combination of cell and scaffold sources varies in relation to the target tissue to be created.
Moreover, there have been recent advances in biomaterial synthesis and fabrication tools resulting
in the creation of functional and bioactive scaffolds that stimulate different cell functions. Titanium
and synthetic biomaterials are used for the reconstruction of lost bone tissues. Titanium is considered
as a best suitable material for bone regeneration due to its mechanical strength and biocompatibility.
Although titanium helps in better osseointegration, there are chances of development of fibrous tissues,
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which may lead to failure of implants. To overcome this drawback, graphene can be coated onto
the surface of implants to enhance better osseointegration and bone formation. Although graphene
enhances the bone formation, the long term success of graphene coated on to the implant surface is
yet to be researched. Attempts had been made to use Graphene as a carrier for delivery of BMP-2 for
better osseointegration. Nonetheless, the outcomes in clinical application are questionable. Graphene
derivatives have been tried along with synthetic biomaterials and titanium for modular endoprosthesis
in reconstruction of fractured and resected bone segments. Perhaps, studies are still in the early stages
of in vitro analysis and in vivo experiments are yet to be conducted. Prospective in vitro and in vivo
studies can be helpful to elucidate the full mechanisms of action of the actual available configurations
of graphene-based scaffolds. Indeed, the foreseeable future can take advantage of this carbon material
to be used as a promising scaffold for bone tissue engineering.

Funding: The APC was funded by National University of Singapore, grant No. R-221-000-092-133.
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Abbreviation

MSC’s human mesenchymal stem cells
BMSCs Bone marrow-derived mesenchymal stem cells
PLA Polylactic acid
PGA Polyglycolic acid
PCL Polycaprolactone
PLGA Poly lactide-co-glycolic acid
HA hydroxyapatite
TCP β-Tricalcium phosphate
NaOH sodium hydroxide
PVA Polyvinyl alcohol
GO graphene oxide
GHB graphene-hydroxyapatite hybrid
ALP Alkaline phosphatase
SBF simulated body fluid
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