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Abstract

Background:Artificial intelligence (AI) is increasingly a part of daily life and offers great

possibilities to enrich health care. Imaging applications of AI have been mostly devel-

oped by large, well-funded companies and currently are inaccessible to the compara-

tively small market of point-of-care ultrasound (POCUS) programs. Given this absence

of commercial solutions, we sought to create and test a do-it-yourself (DIY) deep learn-

ing algorithm to classify ultrasound images to enhance the quality assurance work-flow

for POCUS programs.

Methods: We created a convolutional neural network using publicly available soft-

ware tools and pre-existing convolutional neural network architecture. The convolu-

tional neural network was subsequently trained using ultrasound images from seven

ultrasound exam types: pelvis, heart, lung, abdomen, musculoskeletal, ocular, and cen-

tral vascular access from 189 publicly available POCUS videos. Approximately 121,000

individual images were extracted from the videos, 80% were used for model training

and 10% each for cross validation and testing. We then tested the algorithm for accu-

racy against a set of 160 randomly extracted ultrasound frames from ultrasound videos

not previously used for training and thatwere performedondifferent ultrasoundequip-

ment. Three POCUS experts blindly categorized the 160 random images, and results

were compared to the convolutional neural network algorithm. Descriptive statistics

and Krippendorff alpha reliability estimates were calculated.

Results: The cross validation of the convolutional neural network approached 99%

for accuracy. The algorithm accurately classified 98% of the test ultrasound images.

In the new POCUS program simulation phase, the algorithm accurately classified 70%

of 160 new images for moderate correlation with the ground truth, 𝛼 = 0.64. The

three blinded POCUS experts correctly classified 93%, 94%, and 98% of the images,
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respectively. There was excellent agreement among the experts with 𝛼 = 0.87. Agree-

ment between experts and algorithm was good with 𝛼 = 0.74. The most common error

was misclassifying musculoskeletal images for both the algorithm (40%) and POCUS

experts (40.6%). The algorithm took 7 minutes 45 seconds to review and classify the

new 160 images. The 3 expert reviewers took 27, 32, and 45 minutes to classify the

images, respectively.

Conclusions:Our algorithmaccurately classified 98%of new images, by body scan area,

related to its training pool, simulating POCUS program workflow. Performance was

diminished with exam images from an unrelated image pool and ultrasound equipment,

suggesting additional images and convolutional neural network training are necessary

for fine tuning when using across different POCUS programs. The algorithm showed

theoretical potential to improve workflow for POCUS program directors, if fully imple-

mented. The implicationsofourDIYAI forPOCUSare scalable and furtherwork tomax-

imize the collaboration between AI and POCUS programs is warranted.
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1 INTRODUCTION

1.1 Background

Artificial intelligence (AI) is a general term applied to a range of meth-

ods through which computers complete tasks that have traditionally

relied on human intelligence. Breakthroughs in 2012 in the archi-

tecture of neural networks—coupled with increasing computational

power and access to large amounts of data—led to the recent explosion

of applied AI technologies within a variety of domains. One of themost

widely studied domains is deep learning. Deep learning refers to the

application of neural networks in image analysis, as commonly seen in

facial recognition and object detection in self driving car operation.

Within medicine, deep learning algorithms have shown particu-

lar promise in the machine interpretation of diagnostic imaging tech-

niques across various organ systems. For example, the application of

deep learning techniques to the interpretation of chest x-rays and

computed tomography (CT) scans of the head and chest have all

been shown to yield improved diagnostic accuracy when compared to

radiologists.1-4 However, some of these studies and algorithms have

come under justified criticism for inadequate validation in real world

applications.5

1.2 Importance

Although far less studied, deep learning may be applied to assist

in the interpretation of ultrasound images as well. This is timely

for the point-of-care ultrasound (POCUS) arena in particular as the

number of POCUS users across all specialties is growing rapidly,

yet educational capacity to train these users remains a significant

roadblock.6,7 Specifically, the amount of data (ultrasound examina-

tions) that requires sorting, interpretation, and quality assurance is

rapidly outpacing the resources of ultrasound program directors.8,9

The paucity of faculty and corresponding quality assurance pressures

have been widely acknowledged in emergency medicine and other

POCUS communities.10 An automated method for image and study

classification based on body location could decrease POCUS director

workload by allowing automatic sorting of POCUS examinations for

review by faculty assigned to reviewing different examination types

and for image storage.

1.3 Goals

We sought to describe a proof of concept for methods through

which individual POCUS program directors and others could begin to

access deep learning for their workflow needs by creating and test-

ing a “do-it-yourself” (DIY) deep learning algorithm designed to help

expedite physician review and categorization of POCUS studies. We

also explore alternatives for those who do not have access to large

restricted or highly expensive ultrasound image databases. To these

ends, we created a convolutional neural network, based on an exist-

ing a convolutional neural network skeleton architecture, capable of

automatically classifying ultrasound images into one of seven differ-

ent point-of-care exam sub-types and tested its accuracy in a real

world scenario against three blinded POCUS experts. Rather than an

evaluation of diagnostic accuracy, we tested the ability of an algo-

rithm to categorize by each ultrasound image by scan type or body

location.
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2 METHODS

2.1 Study design

This was a study of deep learning algorithm development for auto-

mated categorization of POCUS studies into one of seven common

classes. The study was exempted by the Institutional Review Board;

neither patients nor patient data were used in this study, including cre-

ation and testing of the deep learning algorithm.

2.2 Data

Ultrasound image data focusing on pelvic, cardiac, lung, abdominal,

musculoskeletal, central vascular access, and ocular examinations was

obtained from public domain, open sources with no accompanying

patient information. Compared to large public domain radiology imag-

ingdatabases for chestX-rays, head, andbodyCT images, no suchultra-

sound databases are currently available.11-13 Ultrasound videos, which

are commonly obtained in POCUS scanning for education, yield large

numbers of individual images that can be used for convolutional neu-

ral network training. Convolutional neural networks aremodeled after

mammalian cortex, but have mathematical equations or nodes in place

of neurons, which communicate with other nodes.

Sources used included internet-posted ultrasound videos, open

source image and video bank repositories, and open source educa-

tional multimedia materials and videos available from unrestricted

ultrasound vendor tutorials. No patient identifiers were present on

any of the image sources and this was manually confirmed by study

authors for each video. Videos were collected from a wide variety of

ultrasound machine types with varying image quality, resolution, scan-

ning quality, and presence of pathology as might be encountered in

a typical POCUS program. Researcher performed searches over a 5-

month period as time allowed, using various search methods and key

terms/word related to ultrasound.

Images from the same examination type/class performed with dif-

ferent transducer formats (linear, curvilinear, and phased array) were

included. This should ensure a more robust convolutional neural net-

work training set that does not simply associate the transducer type

with certain examinations, a potential pitfall seen indeep learning. Such

an association is likely to otherwise lead to examination classification

errors when applied to outside data sets. Additionally, a recent review

of all radiology deep learning and medical image studies published

over a 2-year period highlighted the vulnerability of deep learning

algorithms to be fine-tuned for researchers data but not built robust

enough for real world data encounters.5

2.3 Datamanipulation

Videos downloaded from websites, repositories, and those extracted

from open source educational multimedia sources were checked for

labels revealing examination type. When labels were identified, they

The Bottom Line

The number of ultrasounds requiring quality assurance is

growing in emergency medicine, placing a burden on those

who review these studies. This study used a do-it-yourself

deep learning algorithm to aid categorization of POCUS by

body site to expedite retrieval and review.

were masked, or frames containing them were deleted using video

editing software. The image size and aspect ratios of videos were

not altered or standardized before algorithm training. A total of 189

ultrasound videos containing normal and abnormal findings were used

in the initial algorithm training, validation, and testing. No videos or

images were excluded. All videos were broken down into individual

frames/still images using FFMPEG. FFMPEG is an open source video

manipulation software,which canbe encoded toperformvarious batch

tasks on videos and images (http://ffmpeg.org).

The resultant individual images were randomly divided into three

groups, 80% assigned to a training data set, 10% into a cross validation

data set (for validation during convolutional neural network training),

and 10% for a testing data set applied after training and validation.

The training data set contained 97,822 images (14,321 pelvic, 13,971

abdominal, 12,668 musculoskeletal, 13,774 ocular, 13,234 cardiac,

16,024 lung, and 13,830 vascular access), the validation and testing

data sets contained 10,873 and 12,079 images, respectively. Dividing

an image data set in such a fashion and into these categories is stan-

dard in deep learning algorithm development. The validation data was

used to fine tune convolutional neural network weights to optimize

network performance during network training. The testing data set

was used after training completion to test the algorithm’s performance

on images that were originally selected from the same pool as the

training and validation images. This would represent new images

coming from the same POCUS program, covering the same range of

examinations andmachines.

Finally, we sought to examine the effect of transferring this algo-

rithm from one POCUS program to another. We hypothesized that the

algorithm may encounter ultrasound images from previously unseen

ultrasound machines and formats that differ from those the algorithm

was trained on. Failure to perform such real-world testing on never

before seen data from different locations and from different systems

from the original data pool has been cited as a weakness in many deep

learning image classification studies.5,14 Researchers identified and

downloaded another batch of ultrasound videos covering the seven

examination types. Several videos selected were of poor image quality

and orientation, reflecting real-world POCUS scan challenges. These

videos were similarly broken into individual frames and examination

labels that revealed examination typemaskedwhere applicable. A total

of 160 frames were randomly selected from a batch of 11,210 frames

covering the seven randomly ordered image sets. These frames were

put through the algorithm to test image recognition and classification

with the total time required tracked. The same frames were used, in

http://ffmpeg.org
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random order, to populate an online survey designed with Microsoft

Forms that was sent to three POCUS experts who were blinded to

examination type. The expert reviewers were asked to assign an image

class and a probability for the answer being correct. This matched the

standard algorithm output of the top three possibilities with a proba-

bility of up to 100% assigned to each. In cases where 100% probability

was assigned, that answer was treated as the only likely answer with

the other two representing noise. This is similar to the results used to

interpret algorithm output.

2.4 Algorithm design

Researchers used open access Anaconda software and libraries

along with open access TensorFlow (a deep learning utility used for

coding and convolutional neural network creation) to customize the

convolutional neural network and train it. We used transfer learning,

a method where a pre-trained convolutional neural network algo-

rithm architecture is then trained on specific image types, such as

ultrasound images. All code was written in Python 3.6 programming

language. VGG-19 architecture was used because of its good excellent

performance in other image classification tasks (eg, ImageNet—a

public image database) as well as relative computational efficiency

given that training would be performed on a home PC. VGG-19 has

a depth of 19 layers and has been pre-trained using the ImageNet

database that contains over 20,000,000 images made up of >20,000

image classes.15 It is publicly available for use from a variety of

sources. Using this existing architecture allows for more efficient

training of the network with fewer ultrasound images using the

network’s prior training for general image recognition. All images

are automatically cropped by the python code to 224 × 224 pix-

els as required by the VGG-19 network architecture before image

analysis. Images are also randomly rotated to increase network

robustness and train it to recognize a more diverse variety of image

presentations.

2.5 Algorithm training

The convolutional neural network was trained using 120,774 images.

The images were kept in individual folders with randomly generated

numerical file names corresponding to specific examination type that

was used as ground truth (deep learning term for gold standard or

actual value of the data/class of the image) for convolutional neural

network training. A JSON (a text file listing examination type by num-

ber) file was created for connecting image code to specific examina-

tion types, identifying the image category type during training, valida-

tion, and testing. A desktop Microsoft PC was used for training with a

NVIDIA GeForce RTX 2018 Ti 11 GB GPU graphics card required for

deep learning computations. Training optimization was accomplished

through incremental refinements. Figure 1 shows a flow chart of the

training and evaluation process.

F IGURE 1 Flow diagram of the video/image acquisition, training,
and testing process

2.6 Algorithm validation

We used 10,873 images that were randomly selected to serve as a

training validation set and another 12,079 for testing. The validation

occurs through algorithm training automatically and the testing at the

end of training. This is common practice in convolutional neural net-

work training to confirm that the algorithm is not suffering from over-

fitting or the capacity to very accurately predict results for the training

set, but not on novel images. Nooverfittingwas observedwith the opti-

mized training regimen. However, these steps are not enough to act as

an actual real-world use case test of an algorithm.

2.7 Additional testing representing algorithm
application at different POCUS program

To test the robustness of the algorithm, AI researchers have recom-

mend using images from alternative institutions and not used in the

training or cross validation phase. This is seen in only 6% out of nearly

500 recently reviewed radiology AI studies, but is felt to be critical

before widespread use.5 We used novel images, formats, and pre-

viously unused ultrasound machines by downloading additional new

ultrasound video and images from public internet sources. Videos

were screened for labels specifying examination type and any labels

were masked. These videos, representing the selected seven ultra-

sound examination types, were similarly broken down into individual

images. A variety of transducer formats for each examination class

were obtained to test real-world variation seen in practice. A total

of 160 images were randomly selected from the seven examination

classes.
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TABLE 1 Data for algorithm and POCUS expert performance on
160 real-world image test classification

Image classifier

Review

time

%Classified

correctly

Most common

classification error

POCUS 1 27min 93 Musculoskeletal

POCUS 2 32min 94 Musculoskeletal

POCUS 3 45min 98 Musculoskeletal

Convolutional

neural network

(VGG19)

7min 45 s 70 Musculoskeletal

2.8 Expert classification of real-world image set

The same randomly selected 160 images were inserted into an online

survey, at original resolution rather than the reduced resolution trained

on by the algorithm, and sent to three blindedPOCUSexperts. Review-

ers were given no information regarding the scan, only single images

to rate the probability (0% to 100%) of examination type, mirroring the

process followed by the algorithm. Image order was randomized. Algo-

rithm and POCUS expert answers were compared to the known image

class for each image, or ground truth as it is known in deep learning

design. Reviewer answers were recorded in an Excel database for later

analysis. As with the training images obtained from videos, real-world

test images from videowere susceptible to having low heterogeneity if

operators scanned the sameanatomic areawith little transducermove-

ment for a prolonged period of time.

2.9 Statistical analysis

Regression analysis and descriptive statistics available with the Ana-

condapackageswere used to evaluate algorithmaccuracy during train-

ing, validation, and testing. Descriptive statistics and Krippendorff 𝛼

reliability estimates were calculated for the real-world testing por-

tion. Krippendorff 𝛼 reliability estimate was chosen for comparison

of>2 raters.

3 RESULTS

Training was first attempted using batches of 50 images and 20 total

epochs. An epoch is one training cycle through an entire data set; mul-

tiple epochs are used in deep learning training. Accuracy reached 99%

on cross validation early and the total training took ≈29 hours. The

code was then progressively changed and we found best performance

with batches of 100 images; this increased speed but did not degrade

accuracy on algorithm validation. Eight epochs were used instead of

the original 20. Training took 12 hours to complete and an accuracy

of 99% was reached on cross validation and 98% on the test image

batch. Table 1 shows POCUS experts and algorithm results for the 160

real-world image classification test. There was excellent agreement

among the expertswith 𝛼=0.87, agreement betweenexperts and algo-

F IGURE 2 Image of a knee effusion from a lengthy video of an
aspiration attempt by a point-of-care ultrasound (POCUS) user.
Random selection of frames for testing resulted in several
representative frames from this video that lacks identifiable
landmarks and caused confusion for both POCUS experts and the
algorithmwith lung and abdominal images

rithmwas goodwith 𝛼 = 0.74; the algorithm showedmoderate correla-

tion with ground truth/gold standard with 𝛼 = 0.64. The most common

errorwasmisclassifyingmusculoskeletal images for both the algorithm

(40%) and POCUS experts (40.6%).

Analysis of themost common errors for both algorithm and POCUS

experts revealed that most originated from a lengthy musculoskele-

tal video showing a large knee effusion that dominated the image

(Figure 2). These musculoskeletal images were misclassified as lung,

abdominal, and pelvic images. The video largely consisted of a similar

angle image and changed little for a prolonged time, resulting in a

disproportionately large representation of these images (that were

difficult to interpret because of few obvious anatomic landmarks that

caused confusion with other class types repeatedly). Similarly, the

next most common error, misclassification of abdominal images, was

related to zoomed-in video of an abdominal aortic aneurysm (Figure 3).

This portion of the video generated numerous still images that were

confused with other classes such as pelvic and lung both by algorithm

and POCUS expert reviewer.

4 DISCUSSION

The recent advances of AI have been described as the “fourth indus-

trial revolution” and are predicted to have a dramatic influence on

all aspects of life. In medicine, imaging analysis is among the most

prominent and exciting AI applications. This technology is being

driven largely by industry rather than by frontline clinicians.16,17

Given this, the vast majority of deep learning activity by corporations

are focused on radiology AI use and POCUS uses have been largely

overlooked.18

Although thepaceofAI development accelerates, so toohasPOCUS

use with multiple new clinical specialties beginning to adopt POCUS in
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F IGURE 3 An image of a zoomed view of an abdominal aortic
aneurysm. This image came from a lengthy explorative video of a
particularly large andwell-defined abdominal aortic aneurysm. The
length of the video resulted inmultiple random image samples with a
zoomed-in view potentially suggesting other scan types being
included in the test data set. The imagewasmost commonly confused
with a pelvic scan by POCUS experts and deep learning algorithm

clinical practice and education.19-21 Additionally, ultrasound education

into medical school curricula has significantly increased.22-25 All

of these developments mean the generation of increasing amount

of ultrasound image data, not only from the mandated emergency

medicine ultrasound in residency training, but throughout the house

of medicine.9,26,27 As many hospitals and medical systems attempt

to promote and ensure safe use of POCUS, an increasing number of

emergency medicine, critical care, and internal medicine physicians

are taking on roles as system ultrasound directors.8 The massive

amounts of ultrasound video and images generated by faculty, res-

idents, medical students, and others frequently overwhelm quality

assurance and educational directors responsible for reviewing and

assessing these studies.28,29 Automated classification of images and

videos into specific categories can enable distribution of studies to

specific faculty focusing on different ultrasound applications without

initial review by the ultrasound director, decreasing their manual work

burden. We were unable to identify any publications describing inter-

nal creation of similar automated classification described for POCUS

settings.

Althougha faculty-createdneural networkmay seemambitious, our

work highlights the ability to create customized, DIY AI deep learning

algorithms using freely available images, software, and algorithms. Our

convolutional neural network focused on image identification and clas-

sification into multiple categories of examinations as would be present

inmanyPOCUSprograms.We chose this task because labeling POCUS

images by their exam type is the first step and common workflow bot-

tleneck in the image review and quality assurance process. However,

such categorization and labeling is also essential for programmanage-

ment and any informatics or data-driven research in the future. Fur-

ther, we saw this as an easily digested starting point as correct image

classification is a necessary achievement before proceeding with more

subtle AI image interpretation tasks. This is a familiar application of AI,

akin to facial recognition in snapshots on one’s smartphone or social

media.

The ability to use open source ultrasound video for generation of

training data may be unique to POCUS applications because of the

history and growth of POCUS throughout the world. As opposed to

traditional imaging, such as radiology and cardiology, which had their

start with ultrasound before the digital age, POCUS clinicians honed

the craft in the digital video and YouTube era, resulting in large vol-

umes of ultrasound data being readily available online. POCUS clini-

cians also scan themselves rather than having technologists scan and

provide example still images to be read. POCUS directors with large

and available ultrasound image and video databanksmay choose to use

them for training of deep learning algorithms. Our study indicates very

high accuracy can be attained in image classification, but also points

out that this accuracy may decrease when applied to different ultra-

sound machines and scanning styles, such as with the introduction of

newusers andpurchaseof newequipment. Thismeansadditional train-

ing of an algorithmmay be required when applying in a new hospital or

when newmachines are purchases by a POCUS program.

Some ultrasound review programs will sort images into exam types

based on a combination of the transducer and exam type selected. For

instance, cardiac preset on a phased array probe will lead to catego-

rization as a cardiac exam. Although correct a portion of the time, users

commonly cross over exam types (intentionally or unintentionally) and

the errors produced through this “classify-by-probe-type” logic man-

date manual, exam-by-exam verification by ultrasound program direc-

tors. By eliminating this tedious process, our algorithm could further

improve the workflow of POCUS programs.

When created for a specific POCUS program and trained on its own

inherent range of ultrasound examinations, this algorithm produced

high accuracy (98%). This reliability will allow POCUS directors to rely

on algorithms to categorize submitted videos and images that are not

labeled automatically. In our results, the algorithm reviewed and classi-

fied images greater than four times faster than expert human reviews.

When operating 24 hours per day, automatically when an examination

is submitted to a cloud or other central storage systemor off of existing

stored studies, a computer can run through unsorted studies without

regard to hours spent on the task.

A limitation of our algorithm was that when taking on ultrasound

images mimicking multiple different POCUS programs, its accuracy

declined. This shows that our algorithmwould require additional train-

ing on new sample imageswhen applied at a different POCUSprogram.

When faced with ultrasound images from previously unseen videos

from randomly selected ultrasound examinations of the same seven

categories and using different ultrasound equipment, the algorithm

correctly classified 70% of examinations. This occurred secondary

to algorithm exposure to ultrasound images that were unrelated to

the original training data set, including one generated on ultrasound

machines not included in the training data. The algorithm had par-

ticular difficulty with test musculoskeletal ultrasound images, which

was the most common error for both algorithm and expert reviewers.

Because of random selection,many of the test frames came from a long
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musculoskeletal procedure video showing a highly magnified view of a

knee with an effusion and its drainage. The video contributed a large

number of frames to the total real-world test pool and happened to

yield challenging individual frames to interpret as seen in Figure 2.

Another problematic image type came from a length transverse

trace down a large abdominal aortic aneurysm in a very thin patient.

The sonologist used a long slow pass through the abdominal aorta,

zooming in on the area of interest. This again created an appearance

that overlappedwith other examination types leaving both the POCUS

experts and algorithm few distinct anatomic landmarks to use in classi-

fication (Figure3). These results suggest that images fromawider array

of sources would result in optimal results. Yet, this requires access to

larger ultrasound image databases.

Whileperformingworse than thePOCUSexperts, thealgorithmhad

goodagreementwith theground truth and theexperts alike.Had it sim-

ply picked classes for images by random, the expected accuracy would

be ≈14%. The drop in algorithm accuracy from classifying images from

the same general data set it was trained on to the realworld test of pre-

viously unseen image sets and equipment support the criticism leveled

by Kim et al,5 who noted most radiology AI algorithms were not prop-

erly tested in institutions outside of their creation and in different envi-

ronments. Clearly, our data suggest this is important and challenging,

likely requiring larger and broader data sets. Our data set size was still

suboptimal, despite the considerable breadth of data sources utilized.

A limitation of this paper is that this approach requires some base-

line fluency in convolutional neural networks andPython programming

language.Additionally,wedidnotprospectively enroll patients and test

their data. However, although this was not a prospective human data

study, andour algorithmcould not be testedonprospectively acquitted

images, the use of new real-world ultrasound video simulated impor-

tant deep learning study design criteria suggested in a recent radiology

deep learning article.5 The degree of computer and AI understanding

provides a barrier to entry for some clinicians; however, readily acces-

sible online programs on AI can bridge this gap more readily for a clini-

cian than any online clinical coursework could for a trained non-clinical

AI engineer. However, this results in a high percentage of images that

are relatively similar, especially if the video is recorded with the trans-

ducer being held in one location and when the ultrasound scenery is

not changing, rather than sweeping through an area of interest. Similar

images can lead to poorer generalizability of the trained convolutional

neural network.

5 CONCLUSIONS

Our algorithm accurately classified 98% of new images, by body scan

area, related to its training pool, simulating POCUS program work-

flow. Performancewasdiminishedwith exam images fromanunrelated

image pool and ultrasound equipment, suggesting additional images

and convolutional neural network training are necessary for fine tuning

when using across different POCUS programs. The algorithm showed

theoretical potential to improve workflow for POCUS program direc-

tors, if fully implemented. The implications of our DIY AI for POCUS

are scalable and further work to maximize the collaboration between

AI and POCUS programs is warranted.
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