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Abstract
ALK-break positive non-small cell lung cancer (NSCLC) patients initially respond to crizoti-

nib, but resistance occurs inevitably. In this study we aimed to identify fusion genes in crizo-

tinib resistant tumor samples. Re-biopsies of three patients were subjected to paired-end

RNA sequencing to identify fusion genes using deFuse and EricScript. The IGV browser

was used to determine presence of known resistance-associated mutations. Sanger

sequencing was used to validate fusion genes and digital droplet PCR to validate mutations.

ALK fusion genes were detected in all three patients with EML4 being the fusion partner.

One patient had no additional fusion genes. Another patient had one additional fusion gene,

but without a predicted open reading frame (ORF). The third patient had three additional

fusion genes, of which two were derived from the same chromosomal region as the EML4-
ALK. A predicted ORF was identified only in the CLIP4-VSNL1 fusion product. The fusion

genes validated in the post-treatment sample were also present in the biopsy before crizoti-

nib. ALKmutations (p.C1156Y and p.G1269A) detected in the re-biopsies of two patients,

were not detected in pre-treatment biopsies. In conclusion, fusion genes identified in our

study are unlikely to be involved in crizotinib resistance based on presence in pre-treatment

biopsies. The detection of ALKmutations in post-treatment tumor samples of two patients

underlines their role in crizotinib resistance.

Introduction
Chromosomal rearrangements involving the anaplastic lymphoma kinase (ALK) gene can
occur in different cancers including NSCLC, anaplastic large cell lymphoma and inflammatory
myofibroblastic tumors [1]. The echinoderm microtubule-associated protein-like 4 (EML4)
gene is the most common fusion partner of the ALK gene in NSCLC [2]. Presence of an
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EML4-ALK fusion gene in NSCLC has been reported for the first time in 2007 [3]. In addition,
KIF5B, KLC1 and TFG have also been described as fusion partners [4]. Injection of EML4-ALK
overexpressing 3T3 cells into nude mice induced tumor growth indicating transforming activ-
ity of the EML-ALK fusion protein [3]. ALK rearrangements have been detected in approxi-
mately 4–7% of the NSCLC patients [3,5]. The frequency is higher in young, non-smoking
patients with adenocarcinoma [6]. The EML4-ALK fusion results in overexpression of the
fusion product that includes the tyrosine kinase activity domain of ALK [7].

Despite an initial favorable response to crizotinib, patients inevitably acquire resistance due
to selective pressure of the tyrosine kinase inhibitor (TKI) [1]. Different genomic aberrations
have been identified as resistance mechanisms to ALK-TKI, including ALK-dependent and
ALK-independent mechanisms. ALK-dependent mechanisms include gatekeeper (L1196M) or
other mutations such as C1156Y and G1269A in the ALK kinase domain and ALK copy num-
ber gain [8–9]. Gatekeeper mutations are defined as mutations in the gatekeeper residue of the
tyrosine kinase protein, i.e. the leucine residue at position 1196 [8]. ALK-independent mecha-
nisms include KRAS and EGFRmutations (L858R) and KIT amplification. In addition, AXL
overexpression and changes in the pathways of the epithelial-mesenchymal transition (EMT)
have been described as a resistance mechanisms to the ALK-TKI in cell lines [10]. Despite the
increasing number of known resistance mechanisms, the mechanisms remains unknown in
approximately 18–44% of the patients [1,9].

As it is known that TKs can be activated by chromosomal translocations, we speculate that
fusion genes might form a potential novel resistance mechanism. In this study we aimed to
identify presence of fusion genes as a novel resistance mechanism in patients progressing on
crizotinib using transcriptome sequencing. We used deFuse and EricScript to detect fusion
genes in paired-end RNA sequencing (RNA-seq) data and validated fusion genes by RT-PCR
and Sanger sequencing. Fusion genes confirmed in post-treatment samples were subsequently
analyzed in the pre-treatment samples. In addition, we used the RNA sequencing data to deter-
mine presence of crizotinib resistance-associated mutations in EGFR, KRAS and ALK genes.

Materials and Methods

Patients and tumor samples
Patients were selected at our outpatient clinic of the University Medical Center Groningen
when they had non-squamous cell lung cancer with an ALK break as determined by FISH
(> 15% breaks). Among 36 ALK-positive NSCLC patients treated between 2010 and 2013, we
had frozen tissue available of crizotinib-resistant post-treatment tumor samples of three lung
adenocarcinoma patients (Table 1). Formalin fixed paraffin embedded (FFPE) tumor tissue
was available before and after crizotinib treatment for all three patients. A normal lung tissue
sample was used as control for the RT-PCR.

Informed Consent and Ethics
Written informed consent for tumor tissue from all three patients was obtained before bio-
banking and retrieval from the Groningen Pathology biobank. All patient data were anon-
ymized and de-identified prior to analysis (Table 1). The authors were not informed about
identification variables. The study was approved by the Medical Ethical Committee of the Uni-
versity Medical Center Groningen and conducted in accordance with the provisions of the
Declaration of Helsinki and Good Clinical Practice guidelines. Due to the retrospective nature
of this study, under Dutch Law for human medical research (WMO), no specific permission
was compulsory from the Institutional Review Board.
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Fluorescence in situ hybridization (FISH)
FISH was performed using the ALK dual color break probes (Vysis LSI ALK Break Apart FISH
Probe Kit, Abbott Molecular Inc., Des Plaines, USA) and EML4-ALK fusion FISH (Kreatech,
Leica Biosystems, Wetzlar, Germany) following standard protocols. After deparaffinization,
slides were incubated in TRIS/EDTA pH9.0 buffer in a pressure cooker for 7 min at 120°C.
This was followed by an RNase (Thermo Fisher Scientific Inc., Waltham, USA) treatment step
for 10 min at 37°C, followed by a pepsin (Sigma-Aldrich, St. Louis, United States) treatment
for 1h at 37°C. Hybridization and wash steps were performed according the manufacturer´s
protocol. Slides were mounted in vectashield with DAPI (1:1 diluted in vectashield). Three
images were captured from each slide using an appropriate single filter (Olympus DP50 cam-
era, USA). Scoring was performed according to the international guidelines (www.Abbott.
com) by two independent well-trained and experienced readers and a case was called ALK-
break positive if�15% of the evaluated neoplastic nuclei (n = 100) had a break-apart pattern.
For the EML4-ALK fusion a case was called positive when>15% of the cells showed co-locali-
zation of the two FISH signals.

ALK immunohistochemistry
ALK immunohistochemistry (IHC) was performed on 3 micron FFPE tumor tissue sections,
using the ALK rabbit monoclonal antibody clone D5F3 (Roche, Basel, Switzerland) in the
VENTANA BenchMark ULTRA according to the manufacturer’s protocol (Ventana, Tucson,
Arizona). The staining was visualized using the OptiView DAB IHC Detection Kit (Ventana)
and OptiView Amplification Kit (Ventana). Samples were scored ALK-positive if strong granu-
lar cytoplasmic brown staining present in the neoplastic cells [11]. Appropriate positive and
negative controls were included in each experiment.

RNA and DNA isolation
Total RNA was isolated from frozen tissue according to a standard laboratory protocol using
TRIzol (Life technologies, Carlsbad, USA). RNA from FFPE samples was isolated using the
RNeasy FFPE kit according to the manufacturer’s protocol (Qiagen, Venlo, The Netherlands).
Genomic DNA from frozen tissue samples was isolated using a routine salt-chloroform proto-
col using standard protocols. The ReliaPrep™ FFPE gDNAMiniprep System kit (Promega,
Madison, USA) was used to isolate DNA from FFPE samples following the protocol of the

Table 1. Patients’ characteristics and fusion products detected in crizotinib resistant tumors.

Patient Biobank
no.

Sample accession ID
at ENA website

Age at
diagnosis

Smoking Tumor
response (PFS
in months)

Type Tumor
(%)

High confidence
gene fusions

Predicted
ORF

#1 1211987 SAMEA3881068 27 None PR (7.0) Frozen 90 EML4-ALK Yes

NRG1-RBPMS No

#2 1219581 SAMEA3881069 55 Current PR (9.5) Frozen 70 EML4-ALK Yes

#3 1305996 SAMEA3881070 34 None PR (15.9) Frozen 90 EML4-ALK Yes

CLIP4-VSNL1 Yes

MCFD2-CLIP4 No

KIAA0040-RFWD2 No

PFS is progression free survival; ORF: Open reading frame.

doi:10.1371/journal.pone.0153065.t001
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manufacturer. The NanoDrop (Thermo Fisher Scientific Inc., Waltham, USA) was used to
determine DNA and RNA concentrations.

Transcriptome sequencing and fusion detection
Library preparation for paired-end RNA sequencing was performed using the TruSeq RNA kit
(Illumina, San Diego, USA), starting from 500ng of total RNA. Paired-end reads of 100nt were
generated on the Hiseq2500 (Illumina, San Diego, USA). We used two independent algorithms
to predict presence of the fusion transcripts. DeFuse (v.0.6.1) [12] and EricScript [13]. DeFuse
maps the reads to the reference genome using an automated process which involves SAMtools
[14], bowtie [15], BLAT [16] and GMAP [17]. EricScript uses a series of alignment steps, by
BWA [18] and BLAT, to identify and precisely map discordant reads that point to gene fusions,
after which the RNA-seq data are screened for the presence of spanning reads to support these
putative fusions. We excluded fusions derived either from read-through transcripts or fusion
genes that mapped to multiple genomic loci with high homology. We next focused on the
fusion genes detected by both deFuse and EricScript. We inspected mapping of split reads and
spanning reads using the University of California Santa Cruz (UCSC) genome browser. Predic-
tions of the presence of an ORF in the fusion products were obtained from deFuse. RNA-seq
data have been deposited on European Nucleotide Archive (ENA) website and are available
under accession number: PRJEB12854.

Validation of the fusion products by RT-PCR
cDNA was synthesized with Superscript II reverse transcriptase and random primers according
to the company instruction starting from 500ng total RNA (Invitrogen, Carlsbad, USA). PCR
was performed using 10ng cDNA as input in a final volume of 30μl containing 1x PCR buffer
and MgCl2 (final concentration 1.5mM), 0.2μl Tag DNA polymerase (5unit/μl) (Invitrogen,
Carlsbad, USA) and 500nM primers designed using Clone Manager Suite (Sci-Ed Software,
Morrisville, USA) (Table in S1 Table). Amplification consisted of 35 (frozen samples) or 45
(FFPE) cycles using a thermocycler (Bio-Rad, Hercules, USA). PCR products were analyzed on
a 3% agarose gel, purified using Zymoclean™ Gel DNA Recovery Kit (Zymo research, Irvine,
USA) and sequenced at LGC Genomics (Berlin, Germany). Agarose gel pictures were captured
using Gel Doc XR+ System (Bio-Rad, Hercules, USA).

Identification and validation of mutations in ALK, EGFR and KRAS gene
For each patient the RNA-seq bam file, generated by RSEM (1.2.9) was inspected in IGV [19].
All exons of ALK, EGFR and KRAS genes were visually screened for coverage and the presence
of known resistance-associated mutations. To validate ALKmutations, 50ng of DNA was
amplified as described above using primers designed with Clone Manager Suite (Sci-Ed Soft-
ware, Morrisville, USA) (S1 Table). M13F or M13R tails were added to the 5’ end of the primers
designed for DNA to allow direct sequencing of the PCR products. Purification and sequencing
was performed as described above. One of the ALKmutations was validated at the RNA level
by RT-PCR and Sanger sequencing using a primer set that allowed specific amplification of the
EML4-ALK breakpoint region.

Detection of ALK C1156Y and G1269A mutations by droplet digital PCR
(ddPCR)
Mutant and wild type ddPCR primers and probes to detect C1156Y and G1269A ALK gene
mutations were obtained from Bio-Rad (Hercules, USA). The ddPCR was performed on 18ng
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of genomic DNA as measured by Qubit (Life technologies, Carlsbad, USA) according to the
manufacturer’s instruction (Bio-Rad, Hercules, USA). Briefly, 11μl ddPCR Supermix for
probes, 1μL of the mutation assay and genomic DNA were mixed in a final volume of 20μl.
Droplets were generated using the QX100 Droplet generator after addition of 70μl droplet gen-
eration oil (Bio-Rad, Hercules, USA). PCR was performed on a T100 Thermal Cycler (Bio-
Rad, Hercules, USA) using the following cycling conditions: 10 minutes at 95°C, 40 cycles of
95°C for 30 seconds, 55°C for 1 minute followed by 98°C for 10 minutes (ramp rate 2.5°C/sec).
Samples were transferred to the QX200 Droplet Reader (Bio-Rad, Hercules, USA) for fluores-
cent measurement of FAM and HEX probes and data were analyzed by Quantasoft software
version 1.6.6 (Quantasoft, Prague, Czech Republic). In addition to the pre- and post-treatment
tumor samples, 10 normal control samples were used as negative controls. Sensitivity of the
assays was 0.1 and 0.5% for C1156Y and G1269A respectively, as determined on dilution series
of the post-treatment tumor samples in combination with the total number of droplets that
could be analyzed in the primary tumor sample.

Results

Patients
The three patients, aged 27 to 56 years, were all tested positive for ALK IHC before crizotinib
treatment (pre-treatment) and at disease progression (post-treatment). All three patients were
ALK FISH positive both before crizotinib and at disease progression. Only patient #3 showed
extra ALK copies in the diagnostic FISH analysis. In addition, EML4-ALK specific FISH
revealed only one copy of this fusion per cell in this patient. Patient #1, #2 and #3 showed a par-
tial response (PR) with progression free survival (PFS) of 7.0, 9.5 and 15.9 months, respectively
(Table 1). Patient #1 was diagnosed with adenocarcinoma in March 2011 and treated with two
courses of cisplatin and pemetrexed in the same month. She received crizotinib from October
2011 and died in December 2012. Patient #2 was diagnosed with lung adenocarcinoma in
March 2010 and received cisplatin and pemetrexed in December 2011. He received crizotinib
from January 2012 and one year later switched to ceritinib. Treatment was ended in October
2013 and the patient died in January 2014. Patient #3 was diagnosed with adenocarcinoma in
May 2005 and received cisplatin and pemetrexed until June 2006, when a bilateral adnexect-
omy was performed for a large metastasis. In May 2008 she developed liver metastases and was
treated with a single agent pemetrexed. She received crizotinib from November 2011 based on
an ALK-positive FISH in the primary tumor sample and had a near complete response. In Jan-
uary 2013 she developed liver metastasis, which were treated with metastasectomy and radio-
frequency ablation. In July 2013, she started treatment with ceritinib and had a complete
response. Since then she is well and alive on maintenance ceritinib.

Detection of fusion products
A total of 19.9, 19.9 and 28.9 million reads were aligned for post-treatment tumor samples of
patient #1, #2 and #3, respectively. Seven fusion gene products were identified in these three
tumor samples, including an ALK fusion gene in each patient (Table 1). The fusion partner was
EML4 in all three patients according to the deFuse and EricScript analysis. The breakpoint was
in intron 20 of the EML4 gene in patient #1 and intron 6 of the EML4 gene in patients #2 and
#3. The EML4 gene was fused to exon 20 of the ALK gene in all three patients.

In patient #1, one additional fusion gene, i.e. NRG1-RBPMS, without a predicted ORF
according to deFuse was detected. In patient #2, no additional fusion products were identified.
Patient #3 contained three additional fusion genes, one with and two without predicted ORFs
(Table 1). Two of the fusion genes (CLIP4-VSNL1 andMCFD2-CLIP4) were the result of
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multiple genomic aberrations at the ALK gene region on chromosome 2 (Fig 1A). Both fusion
products involved the CLIP4 gene mapping 8kb downstream of the ALK gene. In one fusion
transcript, exon 14 of the CLIP4 gene was fused to exon 2 of the VSNL1 gene, resulting in a
fusion transcript with a predicted ORF. In the second fusion transcript, exon 15 of the CLIP4
gene was fused to the non-coding exon 1 of theMCFD2 gene. This fusion did not have a pre-
dicted ORF.

Validation of the fusion products by RT-PCR
EML4-ALK fusion transcripts were confirmed by RT-PCR followed by Sanger sequencing in
post-treatment tumor samples of patients #1, #2 and #3 (Fig 1B). We failed to validate the
NRG1-RBPMS fusion in patient #1 on both the frozen and FFPE post-treatment sample,
despite good amplification product for the house keeping gene (data not shown). This might
be due to low expression level, or to design of a suboptimal primer sets, precluding efficient
amplification. We next validated the three novel fusion products identified in patient #3. A
PCR product of the expected size was observed for all three fusion genes in the frozen biopsy of
the post-treatment tumor samples (Fig 1C). Sanger sequencing of these RT-PCR products con-
firmed the expected sequence consistent with the prediction of deFuse and EricScript. Next, we
evaluated whether these fusion transcripts were also present in the pre-treatment FFPE tumor
samples of these patients. FFPE samples of the post-treatment tumors were included as positive

Fig 1. Schematic representation of fusion gene products clustered at the ALK locus and selected fusions validation. (A) Three fusion products
clustered at a 25Mb genomic region including the ALK gene locus in the tumor of patient #3. Two of the three fusion products are the result of an inversion
(EML4-ALK andMCFD2-CLIP4), whereas the third fusion product is generated via an eversion (CLIP4-VSNL1). EML4-ALK andCLIP4-VSNL1 contain a
predicted ORF. (B) Detection of EML4-ALK fusion in three crizotinib post-treatment tumor samples (post 1, post 2 and post 3, corresponding to post-
treatment samples of patient #1, #2 and #3 respectively). (C) Validation of three novel fusion genes in frozen post-treatment tumor sample of patient #3. (D)
Detection of the fusion genes in FFPE samples of post-treatment samples and analysis of the fusion gene in pre-treatment tumor sample of patient #3. Norm:
Normal lung tissue; Pre: pre-treatment tumor sample; Post: post-treatment tumor sample; Neg: Negative control.

doi:10.1371/journal.pone.0153065.g001
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controls. The CLIP4-VSNL1,MCFD2-CLIP4 and KIAA0040-RFWD2 fusion transcripts were
detected in the pre- and post-treatment tumor sample of patient #3 (Fig 1D).

Identification and validation of mutations in ALK, EGFR and KRAS
Mutations in ALK, EGFR and KRAS have been reported to confer resistance against crizotinib.
To determine presence of mutations in these genes in the three post-treatment samples, we
inspected the RNA-seq bam files in IGV. In patient #1 no EGFR gene mutations were observed,
whereas for KRAS the coverage was too low. Analysis of the paired-end RNA-seq data revealed
no mutations in the EGFR and KRAS genes in the post-treatment samples of patients #2 and #3
(Table 2). A mutation was found in 57% of the RNA-seq reads in the ALK gene, i.e. p.C1156Y
(NM_004304.3:c.3467G>A), in patient #1. Sanger sequencing of the RT-PCR product using
EML4-ALK fusion gene specific primers confirmed presence of both wild type and mutant
EML4-ALK fusion gene transcripts consistent with the RNA-seq data (Fig 2A). No mutations
were observed in the ALK gene in the post-treatment sample of patient #2. In patient #3, an
ALKmutation was observed in 100% of the RNA-seq reads, i.e. p.G1269A (NM_004304.3:
c.3806G>C). Sanger sequencing confirmed presence of the mutations at the DNA level in the
post-treatment tumors of both patients (Fig 2B). No mutations were observed in the KRAS and
EGFR genes (Table 2).

Analysis of the ALKmutations in the pre-treatment tumor samples of patients #1 and #3 by
Sanger DNA sequencing revealed no mutations. To exclude presence of a minor clone with the
ALKmutation in the pre-treatment tumor samples we performed ddPCR. In the pre-treatment
samples no mutations were detected. In the post-treatment tumors, the fractional abundance
of the corresponding mutant alleles was 26% and 19.8% in patients #1 and #3, respectively (Fig
2C).

Discussion
ALK-break positive NSCLC patients respond to crizotinib in over 60% of cases, but after 9 to
12 months drug resistance develops in all patients [20]. In several studies mutations in the ALK
gene or mutations in KRAS and EGFR in re-biopsies were observed as mechanisms of the resis-
tance [1,9,21]. In this study we focused on detection of novel fusion products as possible resis-
tance mechanisms to crizotinib using RNA-seq. In addition, we also evaluated the presence of
hotspot mutations in ALK, KRAS and EGFR known to be associated with crizotinib resistance
using the same RNA-seq data.

In patient #1, we confirmed the presence of the EML4-ALK fusion gene in the post-treat-
ment sample taken from a tumor growing under crizotinib. One additional fusion gene without
a predicted ORF was identified in this patient, but could not be confirmed by RT-PCR. An
C1156Y ALKmutation was observed in approximately half of the RNA-seq reads in this
patient. This suggests that the ALKmutation was gained after duplication of the EML4-ALK
fusion or that the mutation is present only in a proportion of the tumor cells, while being wild
type in the other tumor cells. The alternative explanation, i.e. gain of a de novo fusion gene in
combination with gain of an ALKmutation on one of the two fusion genes seems unlikely. The
mutation was not present in the pre-treatment biopsy using the sensitive ddPCR. In patient #3,
we confirmed the presence of the EML4-ALK fusion gene in the post-treatment sample. Three
additional fusion genes were detected, of which one had a predicted ORF. However, all three
fusion genes were present in the pre-treatment sample, and thus not treatment induced. In
addition, we observed an G1269A ALKmutation in the post-treatment tumor, which was not
detectable in the pre-treatment tumor sample using ddPCR. Gain of an ALKmutation most
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likely caused the crizotinib resistance in patients #1 and #3. ALK-dependent crizotinib resis-
tance mechanisms were thus involved in 2 of the 3 patients.

Functional analysis of the two observed resistance-associated mutations in Ba/F3 and
NIH3T3 cells has proven their role in crizotinib resistance [9,21]. The G1269A mutation is
located close to the crizotinib binding site and induces a stronger resistance towards crizotinib
than the C1156Y mutation [9]. The relative quick appearance of crizotinib resistance in patient
#1 may be due to the combination of different post-treatment mechanisms, the milder C1156Y
mutation and the potential EML4-ALK duplication. Moreover, based on the normalized RNA-
seq reads, this patient had a 2 to 3 fold higher expression level of the ALK fusion gene as com-
pared to the two other patients. Thus, despite gain of the less effective mutation, EML4-ALK
duplication and the higher expression level might also have contributed to the short PFS.

A number of studies have investigated mechanisms of resistance to crizotinib in post-treat-
ment tumor samples of NSCLC patients. ALKmutations were the most commonly observed
aberrations identified in post-treatment biopsies of 16 out of 51 (31%) patients [1,9,21–24]. We
detected ALKmutations in 2 of the 3 patients. Using ddPCR we showed that these mutations
were not detectable in pre-treatment biopsies that is in agreement with the fact that these muta-
tions are associated with resistance to crizotinib. ALK gain has been reported as resistance
mechanism in 4 out of 36 (11%) patients [1,9,23]. We observed EML4-ALK RNA-seq reads
with and without the ALKmutation in patient #1. This might indicate a mixed tumor cell pop-
ulation or duplication of the fusion gene with gain of an ALKmutation in one of the two copies
of the EML4-ALK fusion gene. Of the 36 patients studied for both ALKmutations and ALK
gain, only one case was positive for both.

In patient #2, we confirmed presence of the EML4-ALK fusion gene in the post-treatment
sample. No additional fusion genes were identified. We did not find ALKmutations or gain of
ALK copies, indicating the occurrence of an ALK-independent resistance mechanism. Also, we
did not find evidence for the other currently known ALK-independent crizotinib resistance-
associated aberrations in this patient. As the number of aligned reads in this patient was similar
to patient #1 and we did detect the EML4-ALK fusion gene, it seems unlikely that we failed to
detect other fusion genes. Moreover, we found no evidence of increased expression of ALK or
EGFR in the RNA-seq data (results not shown). Other currently unknown ALK-independent
resistance mechanisms might have been induced in this tumor sample.

In patient #3, three novel fusion gene products (one with and two without a predicted ORF)
were present in both the pre- and post-treatment tumor samples. Given the gain of a function-
ally confirmed ALKmutation, it seems less likely that these fusions are associated with resis-
tance to crizotinib. Moreover, these fusion products were already present in the pre-treatment
tumor sample. The role of the three novel fusion gene products, one with and two without a
predicted ORF in patient #3, remain unknown. The clustering of three fusion gene products

Table 2. Summary of the diagnostic FISH, immunohistochemistry and the transcriptome analysis results.

Patient Pre-treatment Post-treatment

ALK FISH (%) ALK IHC ALK FISH (%) ALK IHC ALK Mutation EML4-ALK duplication EGFR mutation KRAS mutation

#1 >15 + >50 + p.C1156Y +* WT Unknown

#2 >50 + >50 + WT none WT WT

#3 >15 + >50 + p.G1269A none WT WT

WT: Wild type; ALK-IHC is either positive or negative using D5F3 antibody for immunohistochemistry in combination with the Optiview system.

*See discussion.

doi:10.1371/journal.pone.0153065.t002
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Fig 2. Detection of ALK genemutations in tumor samples. (A) RNA-sequencing reads of the two mutations. Grey bars show the wild type positions, the
colored bar indicates the mutant position. The number of wild type and mutant reads were 56/75 for patient #1 (c.3467G>A) and 0/25 for patient #3
(c.3806G>C)(Top). RNA Sanger sequencing in the post-treatment tumor sample of patient #1 confirmed presence of wild type and mutated EML4-ALK copy
using primers covering the ALK break (Bottom). The sequences in this picture are based on plus strand, whereas the ALK gene is located on the minus
strand of chromosome 2. (B) DNA Sanger sequencing results in the pre- and post-treatment tumor samples. (C) ddPCR results of the pre-and post-treatment
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within the ALK gene region suggests that this genomic region is an unstable region in advanced
NSCLC. The frequent loss of (parts of) the short arm of chromosome 2 (2p14-16, 2p23.3 and
2p24.3) as observed in NSCLC is consistent with this region being susceptible to chromosomal
breaks [25–26]. Based on the orientation of the genes, the FISH results and the two breakpoints
in the CLIP4 gene, it is most likely that the CLIP4-VSNL1 andMCFD2-CLIP4 are present on
the same chromosome as a result of a duplication followed by an inversion. The ELM4-ALK
fusion gene might be present on the same or on the sister chromosome.

The question is what can be done for patients that become resistant to crizotinib. Besides,
crizotinib and ceritinib that both show high tumor response rates, next generation ALK inhibi-
tors such as alectinib, brigatinib (AP26113) and lorlatinib (PF-06463922) are under develop-
ment and show high response rates in diverse resistance associated ALK mutants. For instance,
ceritinib is active against crizotinib resistant ALK mutant forms such a L1196M, G1123S,
G1269A, S1206Y and I1171T. Alectinib is active against L1196M, C1156Y, 1151T-ins, L1152R,
F1174L, G1269A, and R1275Q. Brigatinib is active against L1196M, F1174L, G1269A, but not
S1206Y. PF-6463922 is active against all the above-mentioned ALK mutant forms [27–30]. A
recent study on a single patient with NSCLC has shown that crizotinib-resistant ALK-positive
cells can be resensitized to crizotinib after treatment with loratinib via acquiring ALK L1198F
mutation [31].

In conclusion, we identified four novel gene fusion products in two of the three crizotinib
resistant post-treatment tumor samples. In two patients gain of ALKmutations was the most
likely resistance mechanisms. In the third patient, the putative ALK-independent resistance
mechanism remained unclear. Overall, it is unlikely that the fusion genes identified in our
study are involved in resistance to crizotinib.
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