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Abstract
Prostate cancer (PCa) is the second most common malignancy and is the fifth lead-
ing cause of cancer mortality among men globally. Docetaxel- based therapy remains 
the first- line treatment for metastatic castration- resistant prostate cancer. However, 
dose- limiting toxicity including neutropenia, myelosuppression and neurotoxicity is 
the major reason for docetaxel dose reductions and fewer cycles administered, de-
spite a recent study showing a clear survival benefit with increased total number of 
docetaxel cycles in PCa patients. Although previous studies have attempted to im-
prove the efficacy and reduce docetaxel toxicity through drug combination, no drug 
has yet demonstrated improved overall survival in clinical trial, highlighting the chal-
lenges of improving the activity of docetaxel monotherapy in PCa. Herein, we identi-
fied 15 lethality hits for which inhibition could enhance docetaxel sensitivity in PCa 
cells via a high- throughput kinome- wide loss- of- function screen. Further drug- gene 
interactions analyses identified Janus kinase 1 (JAK1) as a viable druggable target 
with existing experimental inhibitors and FDA- approved drugs. We demonstrated 
that depletion of endogenous JAK1 enhanced docetaxel- induced apoptosis in PCa 
cells. Furthermore, inhibition of JAK1/2 by baricitinib and ruxolitinib synergizes doc-
etaxel sensitivity in both androgen receptor (AR)– negative DU145 and PC3 cells, but 
not in the AR- positive LNCaP cells. In contrast, no synergistic effects were observed 
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1  | INTRODUC TION

Prostate cancer (PCa) is the second most common cancer in men 
with an estimated worldwide incidence and mortality of 1.3 million 
new cases and 359,000 associated deaths in 2018, respectively.1 
Despite aggressive screening and public health promotion, the 
global burden of PCa is anticipated to rise by 2030.2 Furthermore, 
despite dramatic shifts in treatment options over the last 15 years 
and recent advancements in targeted therapeutics, survival re-
mains low in men presenting with metastatic disease, for whom 
median overall survival is reported to be 42.1 months (IQR: 
22.7- 90.7 months).3

Docetaxel- based therapy is the current first- line chemotherapy 
for metastatic castration- resistant prostate cancer (CRPC) with a 
response rate ranging from 17% to 33%.4- 6 Dose- limiting toxicity, 
including neutropenia, myelosuppression and neurotoxicity, is the 
major challenge that cause docetaxel dose reductions and even-
tually fewer cycles administered, despite recent study showing a 
clear association of survival benefit with docetaxel in PCa and total 
number of cycles administered.6 Several studies have attempted to 
improve the efficacy and reduce the toxicity of docetaxel through 
combination therapies, but have failed to improve the overall sur-
vival of PCa in clinical trials.7- 13 Thus, the discovery of new drug-
gable targets that could enhance docetaxel sensitivity in PCa is 
imperative.

Recent studies have demonstrated that ‘druggable’ pathways 
that regulate the survival of PCa cells can be identified through com-
prehensive loss- of- function RNA interference (RNAi) screens.14- 16 
Herein, we describe a systematic and comprehensive approach in 
employing a high- throughput kinome- wide shRNA screen coupled 
with in silico drug- gene interaction analyses to uncover druggable 
targets that could enhance docetaxel sensitivity in PCa cells. We 
identified Janus kinase 1 (JAK1) as a druggable target that regulates 
docetaxel sensitivity. Depletion of endogenous JAK1 by shRNA or 
inhibition of JAK1 activities by JAK1 inhibitors synergized docetaxel 
sensitivity in AR- negative DU145 and PC3 cells, but not in the 
AR- positive LNCaP cells. Furthermore, we showed that JAK1 acts 
through activation of STAT3 in AR- negative PCa cells. These results 
suggest that combination therapy with JAK1 inhibitor and docetaxel 
may be a useful therapeutic strategy in the treatment of PCa and 
warrants further investigation.

2  | MATERIAL S AND METHODS

2.1 | Cell lines and cell cultures

DU145, PC3 and LNCaP human prostate cancer cell lines were ac-
quired from American Type Culture Collection (ATCC) (Manassas, 
VA, USA) and maintained in RPMI 1640 (Sigma- Aldrich, St Louis, 
MI, USA) with supplementation of 10% foetal bovine serum (FBS) 
(DNA Biotechnology, Science Park Road, Singapore), 100 IU/mL 
penicillin and 100 µg/mL streptomycin (Biowest, Nuaille, France). 
The RWPE- 1 normal prostate cell line was acquired from ATCC and 
grown in keratinocyte serum- free medium consisting of 5 ng/mL of 
recombinant epidermal growth factor and 0.05 mg/mL of bovine 
pituitary extract (Invitrogen, Carlsbad, CA, USA). All cells were 
maintained in their logarithmic growth and kept in a humidified 
37°C, 5% CO2 incubator.

2.2 | Human kinome shRNA library screen

Briefly, screening was conducted using the MISSION LentiExpress™ 
Human Kinases shRNA Library (Sigma, St Louis, MO, USA) which 
consists of approximately 3200 lentiviral shRNA constructs target-
ing different regions of 501 human kinase genes. Firstly, the andro-
gen receptor (AR)– negative DU145 cells were seeded at 2500 cells/
well overnight in a white flat- bottomed 384 well plate. Cells were 
transduced with 2500 lentivirus particles (multiplicity of infection, 
MOI = 1) in the presence of 7.5μg/ml polybrene (Sigma, St Louis, 
MO, USA) for 16 hours in 37°C, 5% CO2. After 18 hours of incu-
bation, the medium containing the lentivirus particles was replaced 
with complete medium with the addition of a sublethal concentration 
of docetaxel (0.1 nM), and the cell viability was evaluated using the 
CellTiter- Glo® Luminescent Cell Viability Assay (Promega, Madison, 
WI, USA) at 72 hours post- transduction. Controls include lenti-
viral particles carrying an empty vector (pLKO.1- puro) and a non- 
target shRNA (NS) to monitor transduction efficiency. All data were 
normalized against NS controls. The sensitivity index (SI) for each 
shRNA was calculated as described previously17- 20: SI = (Rc/Cc*Cd/
Cc)- (Rd/Cc), where Rc is the viability of cells following shRNA trans-
duction (shRNA only), Rd is the viability of cells in following shRNA 
transduction and docetaxel treatment (shRNA + docetaxel), Cc is the 

in cells treated with JAK2- specific inhibitor, fedratinib, suggesting that the syner-
gistic effects are mainly mediated through JAK1 inhibition. In conclusion, the com-
bination therapy with JAK1 inhibitors and docetaxel could be a useful therapeutic 
strategy in the treatment of prostate cancers.
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average viability in cells transduced with NS (NS control), and Cd is 
the average viability in cells transduced with NS and docetaxel treat-
ment (NS + docetaxel). Positive SI values indicate sensitizing effects, 
and negative value indicate antagonizing effects. Target genes were 
identified as hits when shRNA targeting a specific gene achieved a 
SI of more than 0.2.

2.3 | Protein isolation and Western blot analysis

Protein lysates from the cells were extracted in an ice- cold lysis 
buffer (1% NP- 40, 1 mM DTT, protease inhibitors and phosphatase 
inhibitor I and II cocktails in PBS as described previously).14,15 A 
total protein of 50μg was loaded for immunoblotting. Primary an-
tibodies against JAK1 and JAK2 were obtained from Cell Signaling 
Technology, MA, USA, and β- actin was purchased from Santa Cruz 
Biotechnology, CA, USA.

2.4 | Drug combination studies and analyses

Docetaxel and JAK inhibitors (baricitinib, ruxolitinib and fed-
ratinib) were purchased from Selleckchem, Houston, TX, USA. 
For drug combination studies, cells were seeded overnight in 
96- well plates at a density of 5000 cells/well. Cells were treated 
with docetaxel and/or JAK inhibitors (baricitinib, ruxolitinib and 
fedratinib) alone or in combinations at dose- response matrix 
format. Plates were then incubated at 37°C in a humidified 5% 
CO2 incubator for 72 hours. The plates were terminated by MTT 
cell proliferation assay at 72 hours after treatment. Calcusyn 2.1 
software (Biosoft, Cambridge, UK) was used to generate com-
bination index (CI) based on Chou- Talalay method, in which CI 
<1, = 1 and >1 indicates synergism, additive and antagonism 
effect, respectively (Table S1).21- 25 The dose- response surface 
curves with levels of highest single agent (HSA) synergy were 
plotted by Combenefit software (Cancer Research UK Cambridge 
Institute).21,22,26

2.5 | Lentiviral production and transduction

Lentiviral shRNA constructs targeting JAK1 were purchased from GE 
Healthcare Dharmacon Inc with target sequences shown in Table S2. 
High- titre lentiviral stocks were generated by co- transfecting the 
HEK- 293T cells with the psPAX packaging plasmid (Addgene plasmid 
12260) and the pMD2.G envelope plasmid (Addgene plasmid 12259) 
using CalPhos Transfection Kits (Clontech, Mountain View, CA, 
USA) as described previously.14,15,27 Supernatants containing lenti-
viral stocks were supplemented with 7.5µg/mL polybrene (Sigma- 
Aldrich, St Louis, MO, USA) for transduction. The stable pools of 
cells were generated through puromycin (Sigma- Aldrich, St Louis, 
MO, USA) selection.

2.6 | Detection of apoptosis by Annexin V 
flow cytometry

All floating and attached cells were stained for cell apoptosis assay 
using a PE Annexin V Apoptosis Detection Kit (BD Biosciences, 
San Jose, CA, USA) as described previously.14,15 The samples were 
quantitated using a FACSCalibur flow cytometer and analysed by 
CellQuest Pro software (version 5.1.1; BD Biosciences, San Jose, 
CA, USA).

2.7 | Transfection

Constitutively active EF.STAT3C. Ubc.GFP was a gift from Linzhao 
Cheng (Addgene plasmid # 24983; http://n2t.net/addge ne:24983; 
RRID:Addgene_24983),28 and pcDNA3 Myr HA Akt1 was a gift 
from William Sellers (Addgene plasmid # 9008; http://n2t.net/
addge ne:9008; RRID:Addgene_9008).29 Plasmids were transfected 
into target cells using X- tremeGENE HP DNA transfection reagent 
(Roche Diagnostic, Indianapolis, IN, USA), according to the manufac-
turer's protocol.

2.8 | Statistical analysis

All results were presented as mean ± standard deviation (s.d.) from 
at least three independent experiments. Statistical significance was 
determined by Student's independent t test through SPSS (version 
19.0 INC, Chicago, IL). A P- value <0.05 was considered statistically 
significant.

3  | RESULTS

3.1 | DU145 and PC3 AR- negative PCa cells are 
inherently resistant to docetaxel

We first determined the sensitivity of a panel of PCa cells and nor-
mal prostate epithelial cancer cells against docetaxel. As shown 
in Figure 1A and Table S3, the AR- positive LNCaP PCa cells and 
RWPE- 1 normal prostate epithelial cells were significantly more sen-
sitive to docetaxel with an IC50 of <0.16 nM and 0.88 ± 0.12 nM, 
respectively, while the AR- negative DU145 and PC3 cells were in-
herently resistant to docetaxel with IC50 of >10 nM.

3.2 | Identification of synthetic lethality genes with 
docetaxel in PCa cells

Next, to identify kinases of which knock- down enhanced the doc-
etaxel sensitivity in PCa cells, we conducted a high- throughput 
kinome- wide shRNA screen in the AR- negative DU145 prostate 

http://n2t.net/addgene:24983
info:x-wiley/rrid/RRID
info:x-wiley/rrid/:A
info:x-wiley/rrid/ddgene_24983
http://n2t.net/addgene:9008
http://n2t.net/addgene:9008
info:x-wiley/rrid/RRID
info:x-wiley/rrid/:A
info:x-wiley/rrid/ddgene_9008
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cancer cells in the presence or absence of a sublethal concentration 
of docetaxel. A sensitivity index (SI) was calculated for each shRNA 
to define the sensitizing (lethality hit; SI >0.2) or antagonistic (res-
cue hit; SI < −0.2) effects on docetaxel. A total of 15 lethality hits 
and 16 rescue hits were identified in the primary screen (Figure 1B; 
Tables 1 and 2).

Cluster analysis was performed on the 15 lethality hits using K- 
means clustering method in STRING (Search Tool for the Retrieval 
of Interacting Genes/Proteins) (http://strin g- db.org/) to identify 
groups within them so as to prioritize genes for experimental valida-
tion. The analysis resulted in 3 clusters (referred to as clusters 1, 2 
and 3) (Figure 1C). Cluster 1 has five members and was found to be 
enriched in genes involved in cell proliferation and chemoresistance 

through JAK1- IGF1R signalling. Genes in clusters 2 and 3 were found 
to be related to epithelial tumorigenesis and metastasis mediated by 
ALK and p38 MAPK signalling.

Consistent with our screening results, inhibition of IGF1R,30- 36 
JAK137,38 and ACVR1 (also known as ALK2)39- 41 have been shown 
to inhibit PCa cell growth and progression, particularly in hormone- 
refractory PCa; while MAPK2 and IRAK4 have been implicated in tu-
morigenesis in other cancers including colorectal cancer,42,43 breast 
cancer,44 pancreatic ductal adenocarcinoma,45 chronic lymphocytic 
leukaemia cells,46,47 mutant MYD88 L265P diffuse large B cell lym-
phoma48- 51 and melanoma.52 Together, these candidates represent 
promising lethality targets to enhance docetaxel sensitivity in PCa 
cells.

F I G U R E  1   Kinome- wide shRNA library screen identifies determinants of docetaxel sensitivity. (A) DU145 and PC3 AR- negative PCa 
cells are inherently resistant to docetaxel. RWPE- 1, DU145, PC3 and LNCaP cells were treated with different concentrations of docetaxel 
for 72 hours and cell viability was determined by MTT assays. Points represent the mean ± SD of 3 independent experiments. (B) Kinase 
shRNA screen scatter plot. Sensitivity Index (SI) was plotted on the y- axis against 3109 corresponding shRNAs on the x- axis. The red dot 
represents lethality hit (ie genes when knock- down enhances docetaxel sensitivity) and green dots represent rescue hit (ie genes when 
knock- down confers docetaxel resistance). (C) Protein- protein interaction network and cluster analysis of the 15 lethality hits using STRING. 
The identified clusters (by k- means) are coloured in red (cluster 1), green (cluster 2) and blue (cluster 3). Nodes represent proteins. The solid 
and the dotted lines indicate connections within the same and different clusters, respectively. (D) Drug- gene interaction network. Data 
mining of potential inhibitors interacting with the lethality hits were extracted from the DGIdb database. Node size represents the number 
of interactions

http://string-db.org/
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3.3 | JAK1 as a potential druggable and 
repurposing candidate to enhance docetaxel sensitivity 
in PCa cells

To identify novel druggable targets that could enhance docetaxel 
sensitivity in PCa, we queried the lethality hits against the Drug 
Gene Interaction Database (DGIdb) and identified JAK1 and IGF1R 
as druggable targets with existing FDA- approved or experimental 
inhibitors (Figure 1D). We note that monoclonal antibodies against 
IGF1R have already shown poor efficacy and increased docetaxel 

toxicity in PCa clinical trials.53,54 In contrast, JAK inhibitors were 
shown to possess good safety profiles in randomized controlled tri-
als and their long- term extension studies have been demonstrated 
in various immune- mediated diseases such as rheumatoid arthritis 
and psoriatic arthritis.55,56 In addition, recent studies in PCa model 
also demonstrated that JAK1/2 inhibitors suppress the immune es-
cape of castration- resistant prostate cancer CRPC) to natural killer 
(NK) cells,57 inhibit PCa metastasis 37 and inhibit progression of 
CRPC.38 Hence, JAK1 represents a promising druggable target for 
repurposing existing drugs to enhance docetaxel sensitivity in PCa.

Gene symbol Gene name SI

CASK Calcium/calmodulin dependent serine protein kinase 0.393

ACVR1 Activin A receptor type 1 0.383

TLK1 Tousled like kinase 1 0.298

LRRK1 Leucine- rich repeat kinase 1 0.274

IRAK4 Interleukin 1 receptor associated kinase 4 0.261

PRKAR1A Protein kinase camp- dependent type I regulatory subunit 
alpha

0.252

MAPK12 Mitogen- activated protein kinase 12 0.244

JAK1 Janus kinase 1 0.242

IGF1R Insulin- like growth factor 1 receptor 0.234

RPS6KB2 Ribosomal protein S6 kinase B2 0.224

PASK PAS domain containing serine/threonine kinase 0.223

WNK1 WNK lysine- deficient protein kinase 1 0.220

SCYL2 SCY1- like pseudokinase 2 0.218

DAPK1 Death- associated protein kinase 1 0.207

MAP3K2 Mitogen- activated protein kinase kinase kinase 0.203

TA B L E  1   Lethality hits

Gene symbol Gene name SI

YES1 YES proto- oncogene 1, Src family tyrosine kinase −1.248

EPHA1 EPH receptor A1 −1.026

PHKA1 Phosphorylase kinase regulatory subunit alpha 1 −0.652

CAMKV Cam kinase- like vesicle associated −0.572

MAPK4 Mitogen- activated protein kinase 4 −0.243

PHKA2 Phosphorylase kinase regulatory subunit alpha 2 −0.237

ABL1 ABL proto- oncogene 1, non- receptor tyrosine kinase −0.231

ATR ATR serine/threonine kinase −0.225

TGFBR2 Transforming growth factor beta receptor 2 −0.223

TWF2 Twinfilin actin binding protein 2 −0.219

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B 
cells, kinase beta

−0.218

ALK Anaplastic lymphoma receptor tyrosine kinase −0.216

EPHA10 EPH receptor A10 −0.215

NPR1 Natriuretic peptide receptor 1 −0.214

NEK11 NIMA- related kinase 11 −0.213

ROCK2 Rho- associated coiled- coil containing protein kinase 2 −0.209

TA B L E  2   Rescue hits
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3.4 | Depletion of endogenous JAK1 enhances 
docetaxel sensitivity in PCa cells

To directly validate the effects of JAK1 inhibition in enhanc-
ing docetaxel sensitivity in PCa cells, we generated stable pools 
of JAK1- depleted isogenic cell lines in DU145 and PC3 cells. 
Efficient knock- down of endogenous JAK1 by two independent 

shRNAs were demonstrated at the protein level for both shRNA 
constructs (JAK1- si1 and JAK1- si2) (Figure 2A). Significant in-
crease in apoptosis was observed in the JAK1- depleted cells 
following treatment with 10nM docetaxel as compared to 
treated vector or NS control cells, suggesting that depletion of 
endogenous JAK1 enhances docetaxel sensitivity in PCa cells 
(Figure 2B,C).

F I G U R E  2   Depletion of endogenous 
JAK1 enhances docetaxel sensitivity 
in DU145 and PC3 cells. (A) Efficient 
knock- down of endogenous JAK1 by two 
independent lentiviral shRNA constructs 
in DU145 and PC3 cells. Vector (Vec) 
and non- target (NS) controls were 
included for accurate assessments of 
knock- down efficiency; β- actin was used 
as a loading control. (B) Morphological 
changes at 72 hours following 10 nM 
docetaxel treatment in DU145 and PC3 
cells. Original magnification, ×100. 
(C) Increased apoptosis induced by 
docetaxel in JAK1- depleted DU145 and 
PC3 cells. Cells were treated with 10 nM 
of docetaxel for 72 hours followed by 
quantitation of apoptosis using Annexin 
V/7- AAD flow cytometry. Bars represent 
the means ± SD of three independent 
experiments. Asterisks (*) indicate 
statistical significance compared with 
docetaxel- treated NS control cells 
(P < .01, Student's t test)

F I G U R E  3   JAK1/2 inhibitors synergize docetaxel sensitivity in AR- negative PCa cells. (A) Selective growth inhibitory effects of JAK1/2 
inhibitors (ruxolitinib and baricitinib) and JAK2- specific inhibitor (fedratinib) on PCa cells. DU145, PC3 and LNCaP prostate cancer cell lines, 
as well as the non- transformed RWPE- 1 prostate cell line, were treated with increasing concentrations of JAK inhibitors. Cell viability was 
determined using the MTT cell viability assay 72 hours after JAK inhibitors treatment. Each data point represents the mean ± SD of at least 
three independent experiments. (B) Synergistic effects of ruxolitinib and baricitinib, in combination with docetaxel in AR- negative DU145 
and PC3, but not the AR- positive LNCaP cells. Fedratinib exhibited mainly additive effects with docetaxel in DU145 and antagonistic effects 
in PC3. The efficacy of drug combinations was assessed by treating cells with serial dilutions of the inhibitors in an 8 × 8 combination matrix. 
Cell proliferation was evaluated in 96- well plates, using MTT cell viability assay at 72 hours after treatment. Dose response surface curves 
and synergy for each combination was assessed using the HSA model (effect- based approach), as implemented in Combenefit software. 
Level of synergism (blue) or antagonism (red) at each concentration is represented by colour scale bar. All experiments were conducted in at 
least three independent experiments
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3.5 | JAK1/2 inhibitors synergize docetaxel 
sensitivity in AR- negative DU145 and PC3 PCa cells

Next, we investigated the antitumor effects of selected JAK inhibitors 
(ruxolitinib, baricitinib and fedratinib). Of note, ruxolitinib and barici-
tinib are JAK1/2 inhibitors while fedratinib is a specific JAK2 inhibitor. 
Baricitinib, ruxolitinib and fedratinib induced selective antitumor effects 
against the AR- negative DU145 and PC3 cells, while the AR- positive 
LNCaP cells and the RWPE- 1 normal prostate epithelial cells were rela-
tively less sensitive to the JAK1/2 inhibitors (Figure 3 and Table S3).

To test whether the JAK inhibitors could synergize docetaxel sen-
sitivity in the PCa cells, we investigated the anti- proliferative effects of 
baricitinib, fedratinib and ruxolitinib in combination with docetaxel in the 
DU145, PC3 and LNCaP cells. The anti- proliferative effect of the combi-
nation treatment was evaluated via MTT assays. Analyses of drug interac-
tions using the highest single agent model (HSA) and combination index 
indicated that the JAK1/2 inhibitors, ruxolitinib and baricitinib, synergized 
docetaxel sensitivity selectively in the AR- negative DU145 and PC3 cells, 
but not in the AR- positive LNCaP cells (Figure 3B; Tables 3- 5). In con-
trast, the JAK2 inhibitor, fedratinib, exhibited mainly additive effects with 
docetaxel in DU145 and antagonistic effects in PC3 cells (Tables 3 and 4). 
Taken together, our findings demonstrate that inhibition of JAK1 syner-
gized docetaxel sensitivity in AR- negative PCa cells.

3.6 | JAK1 inhibitors synergize 
docetaxel activity in PCa cells via inhibition of 
STAT3 signalling

JAK1 has been shown to play an important role in activating 
signal transducer and activator of transcription 3 (STAT3) and 

phosphatidyl inositol- 3- kinase (PI3K/AKT) signalling.58- 60 To test 
whether the synergistic effects of JAK1 inhibitors and docetaxel 
in PCa cells could be mediated through inhibition of STAT3 and/
or PI3K/AKT signalling, we treated the DU145 and PC3 cells with 
an IC50 concentration of docetaxel (10nM) in the presence or ab-
sence of the JAK1 inhibitors (ruxolitinib and baricitinib) followed 
by evaluating the effects of the combinations on STAT3 and AKT 
phosphorylation.

As shown in Figure 4A- D, both ruxolitinib and baricitinib JAK1 in-
hibitors significantly reduced STAT3 phosphorylation in both DU145 
and PC3 cells. In contrast, down- regulation of phosphor- AKT was 
only observed in cells treated with ruxolitinib (Figure 4A and C), but 
not baricitinib (Figure 4B and D).

Finally, to test whether the synergistic effects of JAK1 inhibitors 
and docetaxel in PCa cells is dependent on STAT3 or PI3K/AKT sig-
nalling, we ectopically expressed a constitutively active STAT3 or a 
myristoylated AKT in DU145 and PC3 cells followed by docetaxel 
treatment in the presence or absence of baricitinib. Ectopic ex-
pression of constitutively active STAT3 completely abrogated the 
synergistic effects of baricitinib in combination with docetaxel 
(Figure 5A,B). In contrast, no such effects were observed in cells 
transfected with the constitutively active myristoylated AKT (my-
rAKT) (Figure 5C,D). Together, these results suggest that the combi-
nations of JAK1 inhibitors with docetaxel possess synergistic effects 
in PCa cells via inactivation of STAT3.

4  | DISCUSSION

Recent clinical studies have demonstrated the clear advantage of 
docetaxel over other chemotherapeutic agents in the treatment of 

TA B L E  3   Effects of JAK inhibitors combined with docetaxel in DU145 cells

Inhibitor
Inh:Doc
Ratio

Combination Index (CI)

Mean CI InteractionsED50 ED75 ED90

Ruxolitinib (JAK1/2) 2500:1 0.284 0.436 0.706 0.475 ± 0.214 Synergism

5000:1 0.271 0.411 0.646 0.443 ± 0.189 Synergism

10 000:1 0.264 0.435 0.729 0.476 ± 0.235 Synergism

20 000:1 0.308 0.481 0.760 0.516 ± 0.228 Synergism

40 000:1 0.315 0.457 0.667 0.480 ± 0.177 Synergism

Baricitinib (JAK1/2) 2500:1 0.282 0.258 0.250 0.263 ± 0.017 Strong synergism

5000:1 0.164 0.132 0.109 0.135 ± 0.028 Strong synergism

10 000:1 0.347 0.296 0.255 0.299 ± 0.046 Strong synergism

20 000:1 0.381 0.332 0.290 0.334 ± 0.045 Synergism

40 000:1 0.516 0.386 0.290 0.397 ± 0.114 Synergism

Fedratinib (JAK2) 2500:1 0.932 0.911 0.947 0.930 ± 0.018 Nearly additive

5000:1 0.957 0.894 0.862 0.904 ± 0.049 Nearly additive

10 000:1 1.059 1.018 0.995 1.024 ± 0.032 Nearly additive

20 000:1 0.916 0.954 1.003 0.958 ± 0.044 Nearly additive

40 000:1 0.828 0.961 1.120 0.970 ± 0.146 Nearly additive
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TA B L E  4   Effects of JAK inhibitors combined with docetaxel in PC3 cells

Inhibitor
Inh:Doc
ratio

Combination Index (CI)

Mean CI InteractionsED50 ED75 ED90

Ruxolitinib (JAK1/2) 2500:1 0.231 0.274 0.399 0.301 ± 0.087 Synergism

5000:1 0.252 0.334 0.506 0.364 ± 0.130 Synergism

10 000:1 0.201 0.307 0.509 0.339 ± 0.157 Synergism

20 000:1 0.278 0.437 0.720 0.478 ± 0.224 Synergism

40 000:1 0.374 0.601 0.990 0.655 ± 0.311 Synergism

Baricitinib (JAK1/2) 2500:1 0.321 0.341 0.380 0.347 ± 0.030 Synergism

5000:1 0.366 0.427 0.521 0.438 ± 0.078 Synergism

10 000:1 0.300 0.494 0.842 0.545 ± 0.274 Synergism

20 000:1 0.331 0.533 0.876 0.580 ± 0.275 Synergism

40 000:1 0.408 0.667 1.102 0.726 ± 0.351 Moderate 
synergism

Fedratinib (JAK2) 2500:1 8.780 > 10 > 10 > 10 Very strong 
antagonism

5000:1 1.487 1.332 1.204 1.341 ± 0.142 Moderate 
antagonism

10 000:1 1.379 1.128 0.928 1.145 ± 0.226 Slight 
antagonism

20 000:1 1.433 1.479 1.531 1.481 ± 0.049 Antagonism

40 000:1 1.144 0.992 0.861 0.999 ± 0.142 Nearly 
additive

TA B L E  5   Effects of JAK inhibitors combined with docetaxel in LNCaP cells

Inhibitor
Inh:Doc
Ratio

Combination Index (CI)

Mean CI InteractionsED50 ED75 ED90

Ruxolitinib (JAK1/2) 2500:1 1.209 1.058 0.928 1.065 ± 0.141 Nearly additive

5000:1 1.039 0.980 0.925 0.981 ± 0.057 Nearly additive

10 000:1 1.081 0.958 0.851 0.963 ± 0.115 Nearly additive

20 000:1 1.041 0.919 0.813 0.925 ± 0.114 Nearly additive

40 000:1 1.156 1.175 1.197 1.176 ± 0.021 Slight antagonism

Baricitinib (JAK1/2) 2500:1 1.104 1.030 0.961 1.032 ± 0.072 Nearly additive

5000:1 1.039 0.974 0.914 0.976 ± 0.063 Nearly additive

10 000:1 1.217 0.882 0.648 0.916 ± 0.286 Nearly additive

20 000:1 1.172 0.865 0.646 0.894 ± 0.265 Slight synergism

40 000:1 1.026 0.724 0.521 0.757 ± 0.254 Moderate 
synergism

Fedratinib (JAK2) 2500:1 1.121 0.993 0.861 0.992 ± 0.130 Nearly additive

5000:1 1.124 0.987 0.957 1.022 ± 0.089 Nearly additive

10 000:1 0.961 0.949 0.889 0.933 ± 0.038 Nearly additive

20 000:1 0.989 0.929 0.845 0.921 ± 0.073 Nearly additive

40 000:1 0.991 0.979 0.864 0.945 ± 0.071 Nearly additive
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prostate cancer.6,61- 64 However, dose- limiting adverse effects, in-
cluding neutropenia, myelosuppression and neurotoxicity,65 are the 
main reasons that docetaxel treatment is halted at a lower cumula-
tive dose, despite evidence showing that patients receiving 10 or 
more cycles of docetaxel had the greatest median overall survival 
compared to patients receiving 8 to 10 or 5- 7 cycles.6

Previous studies have attempted to improve docetaxel's effi-
cacy and to reduce its toxicity by combining with various therapeu-
tic agents with distinct mechanisms of action, including tyrosine 
kinase inhibitors (eg dasatinib), endothelin receptor antagonist 
(eg atrasentan and zibotentan), angiogenic inhibitors (eg bevaci-
zumab and aflibercept), BCL2 inhibitors and immunologic agents 
(eg GVAX and lenalidomide).7,9- 13,66- 68 However, no drug has yet 
demonstrated improved overall survival when added to docetaxel 
in a phase III trial, and in some cases, the addition proved detri-
mental to outcomes.

We hypothesized that synthetic lethality could be achieved 
by combining docetaxel with selective kinase inhibitors since 
such agents can be amenable to drug development in the event 
of specific vulnerabilities being identified. Thus, we designed a 
high- throughput kinome- wide loss- of- function shRNA screen-
ing combined with pathway analysis to identify combinatorial 
synthetic lethal and resistant interactions, specifically druggable 
targets that could enhance docetaxel sensitivity in PCa cells. We 

observed that cells deficient in 15 kinases become hypersensitive 
to docetaxel and identified JAK1 and IGF1R as potential druggable 
PCa targets. We have also identified experimental inhibitors and 
FDA- approved drugs targeting JAK1, providing opportunities for 
drug repurposing.

Although the oncogenic functions of IGF1R have been previ-
ously demonstrated in PCa 30,31,69 and inhibition of IGF1R reduced 
PCa cell growth in in vitro and in vivo models,33- 36 targeting IGF1R 
with cixutumumab failed to improve the survival outcome of meta-
static PCa.53 Similarly, addition of figitumumab to the standard reg-
imen of docetaxel/prednisone seemed to have detrimental impact 
on clinical outcomes due to increased treatment- related toxicity (eg 
hyperglycaemia, diarrhoea and asthenia), highlighting the challenges 
of improving the activity of docetaxel by targeting IGF1R.54

Recently, JAKs have emerged as an attractive therapeutic target 
in various human cancers as JAKs are key player in signalling net-
works driving cancer cell proliferation, survival, invasiveness and 
metastasis and suppressing the antitumor immune response.70,71 
JAKs comprise of four family members (JAK1, JAK2, JAK3 and TYK2) 
and interact with a variety of cytokine and growth factor receptors 
(eg GP130, IFNγR, IFNαR, IL- 10/20R, and CXCR4).70,71 Upon ligand 
binding to their cognate receptors, JAKs are activated via reciprocal 
trans- phosphorylation and mediate intracellular signalling cascades 
through phosphorylation of STATs (STAT1, STAT2, STAT3, STAT4, 

F I G U R E  4   Effects of JAK1 inhibitors 
and/or docetaxel on STAT3 and PI3K/
AKT signalling. (A and B) DU145 and 
(C and D) PC3 cells were treated with 
docetaxel in the presence or absence of 
JAK1 inhibitors (baricitinib and ruxolitinib) 
for 72 hours, and protein expression was 
analysed by immunoblotting
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STAT5A, STAT5B and STAT6).71 In turn, tyrosine- phosphorylated 
STATs form homo-  or heterodimers translocate into the nucleus and 
elicit specific transcriptional programme.71

Inhibition of JAKs has been shown to reduce tumour growth in 
various in vitro and in vivo models, including brain, breast, colorectal, 
gastric, head- and- neck, liver, lung, pancreatic, ovarian and prostate 
cancers.37,38,72- 77 Interestingly, combined inhibition of JAK1/2, STAT3 
and PD-L1 was shown to suppress the immune evasion of CRPC to 
NK cells in hypoxia.57 Suppression of JAK1/2 by AZD1480 also inhib-
ited progression of CRPC 37 and reduced IL6- induced metastases,38 
suggesting that JAK signalling is activated in prostate cancer.

Indeed, our results demonstrated that JAK1/2 inhibitors, rux-
olitinib and baricitinib, selectively inhibited the AR- negative DU145 
and PC3 cell proliferation as compared to the AR- positive LNCaP or 
RWPE- 1 normal prostate epithelial cells. Notably, ruxolitinib and baric-
itinib also synergized docetaxel sensitivity in the AR- negative DU145 
and PC3 cells, while only additive effects were observed in the AR- 
positive LNCaP cells. In contrast, the JAK2- specific inhibitor, fedrati-
nib, elicited mainly additive and antagonistic effects with docetaxel in 
all the PCa cell lines being tested. Of note, ruxolitinib, baricitinib and 

fedratinib are FDA- approved drugs for treatment of myelofibrosis, ac-
tive rheumatoid arthritis and myeloproliferative neoplasm- associated 
myelofibrosis, respectively, suggesting a potential drug repurposing of 
these agents for the treatment of prostate cancers.78- 80

Several studies have shown that IL6/JAK/STAT3 signalling plays 
a central role in regulating docetaxel sensitivity.81- 83 Indeed, both 
the AR- negative DU145 and PC3 (but not in LNCaP cells) have been 
shown to have elevated IL6 production leading to activated JAK- 
STAT signalling and constitutive NFκB activity, rendering these cells 
resistant to docetaxel.81,82,84- 88 These observations may explain 
the lack of synergism between JAK1/2 inhibitors with docetaxel 
in LNCaP cells as compared to the JAK- STAT ‘addicted’ DU145 and 
PC3 cells. Indeed, inhibition of JAK1 by ruxolitinib and baricitinib 
reduced STAT3 phosphorylation, while ectopic expression of a con-
stitutively active STAT3C significantly abrogated the synergistic ef-
fects of the baricitinib/docetaxel combination in both DU145 and 
PC3 cells. In contrast, no such effect was observed in cells overex-
pressing a myristoylated AKT, suggesting that the synergistic effects 
of docetaxel and JAK1 inhibitors mediated mainly through inhibition 
of STAT3 signalling.

F I G U R E  5   JAK1 inhibitors synergize 
docetaxel activity in PCa cells via 
inhibition of STAT3 signalling. (A and 
B) DU145 and PC3 cells were reverse- 
transfected with a constitutively active 
STAT3 or (C and D) myristoylated AKT, 
followed by treatment of cells with 
docetaxel and/or baricitinib for 72 hours. 
Protein expression was analysed by 
immunoblotting. Cell viability was 
determined by the MTT assay. Bars 
represent the means ± SD of three 
independent experiments. Asterisks (*) 
indicate statistical significance compared 
with docetaxel-  and or baricitinib- treated 
vector control cells (P <.01, Student's t 
test)
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5  | CONCLUSIONS

In conclusion, we showed that inhibition of JAK1 synergizes with 
docetaxel sensitivity in AR- negative PCa cells via inhibition of STAT3 
signalling. Overall, our findings suggest that combination therapy 
with JAK1/2 inhibitors and docetaxel may be a useful approach for 
treating patients with advanced PCa and warrant further investiga-
tion in the future in vivo models.
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