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Abstract: Since 1974, more than 800 disinfection byproducts (DBPs) have been identified from
disinfected drinking water, swimming pool water, wastewaters, etc. Some DBPs are recognized as
contaminants of high environmental concern because they may induce many detrimental health
(e.g., cancer, cytotoxicity, and genotoxicity) and/or ecological (e.g., acute toxicity and development
toxicity on alga, crustacean, and fish) effects. However, the information on whether DBPs may elicit
potential endocrine-disrupting effects in human and wildlife is scarce. It is the major objective of
this paper to summarize the reported potential endocrine-disrupting effects of the identified DBPs in
the view of adverse outcome pathways (AOPs). In this regard, we introduce the potential molecular
initiating events (MIEs), key events (KEs), and adverse outcomes (AOs) associated with exposure
to specific DBPs. The present evidence indicates that the endocrine system of organism can be
perturbed by certain DBPs through some MIEs, including hormone receptor-mediated mechanisms
and non-receptor-mediated mechanisms (e.g., hormone transport protein). Lastly, the gaps in our
knowledge of the endocrine-disrupting effects of DBPs are highlighted, and critical directions for
future studies are proposed.

Keywords: disinfection byproducts; endocrine-disrupting effect; adverse outcome pathways;
molecular initiating event; receptor-mediated mechanism

1. Introduction

Disinfection processes, used for the public water system and aimed at inactivating
viable pathogenic microorganisms and protecting against the occurrence of water-borne
diseases, were considered as a significant public health triumph in the beginning of the 20th
century [1–3]. However, it has been well demonstrated that several disinfection byproducts
(DBPs) are unavoidably formed from the reaction between disinfectants and naturally
organic matter, organic contaminants, or halides during water purification treatment [4,5].
Since the first group of DBPs, i.e., trihalomethanes (THMs), was found in 1974 [6], more
than 800 DBPs belonging to various classes have been gradually determined both in
real disinfection plants and in controlled laboratory tests [7,8]. With the development of
analytical methods, it is conceivable that more DBPs will be continuously identified [9–12].
For example, Zhang, et al. [13] recently analyzed the DBPs in ozonated wastewater, and
they identified eight new Br-DBPs, including 2-bromostyrene, 2-bromo-benzaldehyde, and
2-bromophenylacetonitrile. What are the potential harmful effects of the exposure of DBPs
on human and wildlife?

It was reported that DBPs could enter organisms through a variety of exposure
routes [10,14]. Individuals could intake DBPs not only through drinking water, but also
via skin penetration and inhalation pathways when showering or swimming. DBPs have
been detected in human biological matrices such as blood, urine, and alveolar air sam-
ples [15–17]. DBP exposure might adversely lead to health risks, including neurotoxicity,
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mutagenicity, teratogenicity, genotoxicity, developmental and reproductive issues, cyto-
toxicity, and carcinogenesis [4,18–26]. For instance, there is convincing evidence that
exposure to THMs and haloacetic acids (HAAs) is associated with a high risk of bladder
and colorectal cancer [4,27,28]. Recently, the results from epidemiological studies also
implied that nitrogenous byproducts (haloamides, amines, halonitriles, and nitrosamines)
may trigger bladder cancer [29]. To circumvent this health problem, the concentrations
of a small fraction of DBPs, mainly THMs and HAAs in drinking water, are regulated
by World Health Organization (WHO), United States Environmental Protection Agency,
European Union, etc. [30–32]. However, recent studies revealed that commonly regulated
DBPs cannot be the major contributor to the adverse health effects induced by consuming
chlorinated drinking water [33,34]. Compared with regulated DBPs, some emerging DBPs,
such as halobenzoquinones, iodinated DBPs, nitrogenous DBPs, and aromatic DBPs, are
more worthy of attention [35,36].

Recently, concern has grown regarding the potential acute toxicity of certain wastewater-
derived DBPs toward aquatic organisms. This concern is based upon the belief that the
aquatic organisms may be exposed to increasing types of wastewater-derived DBPs because
those compounds may enter the aquatic environment with the discharge of disinfected
wastewater. To date, the potential acute toxicity of certain DBPs on typical aquatic or-
ganisms, such as alga, crustacean, and fish, has been reported [8,14,37–47]. For instance,
we investigated the acute toxicity of seven wastewater-derived phenolic DBPs that be-
long to the typical five groups of phenolic DBPs (i.e., 2,4,6-trihalo-phenols, 3,5-dihalo-4-
hydroxybenzaldehydes, 2,6-dihalo-4-nitrophenols, halo-salicylic acids, and 3,5-dihalo-4-
hydroxybenzoic acids) toward Gobiocypris rarus and found that the half lethal concentration
(LC50) values of 2,4,6-trihalo-phenols and 2,6-dihalo-4-nitrophenols was in the 1–10 mg/L
range, indicating that their acute toxicity should not be neglected [48]. In addition to the
aforementioned health and ecological effects, can DBPs elicit other potential adverse effects,
such as endocrine-disrupting effects?

The endocrine hormones of organisms such as thyroid hormones (THs), estrogen,
and androgen regulate many critical physiological processes, e.g., growth and metamor-
phosis [49–51]. However, it is well known that a number of anthropogenic substances
named endocrine-disrupting chemicals (EDCs) can elicit potential endocrine-disrupting
effects on human and wildlife [52–54]. In this regard, EDCs are recognized as a serious
threat to human health and the environment. In order to minimize the adverse health
and environment impacts of EDCs, it is urgent to identify and screen potential EDCs from
artificial chemical substances and unintentional production chemicals (e.g., DBPs) [55].
Actually, despite more than 800 individual DBPs having been identified in previous studies,
only a few have been assessed for their potential endocrine-disrupting potency. Recently,
Gonsioroski et al. reviewed the adverse reproductive effects in nonhuman animals and
humans for some groups of EDCs in water such as DBPs, fluorinated compounds, bisphe-
nol A, phthalates, pesticides, and estrogens [26]. However, it deserves mention that no
comprehensive information related to the potential endocrine-disrupting effects of DBPs in
the view of adverse outcome pathways (AOPs) is available up to now. Thus, it is significant
to clarify which types of DBPs can exhibit endocrine-related detrimental effects, and which
endocrine-related targets can be disturbed by DBPs.

Here, we attempted to present a significant overview of the potential endocrine-
disrupting effects of DBPs in the view of AOPs on the basis of data derived from the
published literature. The aim of this work was to (1) provide an updated, systematic and
comprehensive review on the aspects of molecular initiating events (MIEs) disturbed by
DBPs, (2) review the underlying toxicological key events (KEs) of DBPs, and (3) present
adverse outcomes (AOs) of DBPs in mammals and aquatic vertebrates.

2. Performance of Publications

The endocrine-disrupting data of disinfection byproducts referred to in this study
were obtained from published papers identified in the database of Web of Science (www.
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isiwebofknowledge.com, accessed on 7 January 2022) within the years 2000 to 2022. The
search terms were “disinfection byproducts” and “endocrine”. The available literature
was further refined by considering whether MIEs were defined or not. Finally, 32 studies
related to the endocrine system-disrupting effects of DBPs were selected in the present
investigation [28,49–51,56–83]. As expected, most of the research on the endocrine-related
detrimental effects of various DBPs were published in the last ten years even though the
first publication dated back to 2003 (only seven publications from 2000 to 2009 and 25
from 2010 until now) (Figure 1). This means that the endocrine-perturbing effects of DBPs
have gradually attracted people’s attention. In total, 131 DBPs and 14 endocrine-related
targets were summarized from these studies. Detailed information of the studies, DBPs,
and endocrine-related targets is listed in Supplementary Table S1.
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3. Characterization of DBPs with Endocrine-Disrupting Data

As shown in Figure 2, these 131 DBPs could be divided into four classes (i.e., aro-
matic, aliphatic, alicyclic, and heterocyclic DBPs) on the basis of their chemical structure.
Aromatic DBPs could be further classified into eight subgroups (i.e., halogenated phenyl
esters, estrogen DBPs, halophenols, halogenated phenyl acids, halogenated phenyl alde-
hydes, halogenated phenyl nitriles, halonitrophenols, and nonhalogenated phenyl alde-
hydes). Aliphatic DBPs included seven subgroups (i.e., halogenated nitriles, halogenated
acids, halogenated amides, halogenated alkanes, halogenated alcohols, nitrosamines and
nitramines, and halogenated nitroalkanes). Alicyclic DBPs contained two subgroups
(halogenated benzoquinones and others). Heterocyclic DBPs were represented by nonhalo-
genated furanone.

The studied endocrine endpoints, as well as the corresponding DBP subgroups, are
listed in Table 1. As shown, several DBPs in each studied subgroup except for halo-
genated phenyl esters and estrogen DBPs were investigated for their potential endocrine-
disrupting effects. For halogenated phenyl esters and estrogen DBPs, however, more than
20 substances for each subgroup were tested for their potential activating/inhibiting po-
tency toward human estrogen receptor α (hERα) and human aryl hydrocarbon receptor
(hAhR). In addition, special attention was given to whether halophenols may pose a haz-
ard to the endocrine system of organisms. For example, 12 out of 14 studied endocrine
endpoints were tested using halophenols as model compounds. We also found that at least
four subgroups of DBPs were evaluated for their potential interactions with hERα, human
androgen receptor (hAR), and human transthyretin (hTTR).
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Table 1. Summary of all groups of DBPs focusing on endocrine activity.

Endpoints Groups of DBPs

hERα

Halogenated phenyl esters (31); estrogen DBPs (29); halophenols (14); halogenated nitriles (8); halogenated acids
(7); halogenated amides (4); halogenated phenyl nitriles (2); halogenated benzoquinones (2); halogenated

alcohols (1); halogenated alkanes (1); halogenated nitroalkanes (1); nitrosamines and nitramines (1);
nonhalogenated phenyl aldehydes (1); nonhalogenated furanone (1); others (1)

hERβ Halophenols (4)
fERα Estrogen DBPs (4)

hAR
Halogenated nitrile (8); halogenated acids (7); halogenated amides (4); halophenols (2); halogenated

benzoquinones (2); halogenated alcohols (1); halogenated alkanes (1); halogenated nitroalkanes (1); nitrosamines
and nitramines (1); nonhalogenated furanone (1)

hTRα Halophenols (6)
bTRβ Halophenols (7)
cTRβ Halophenols (7)
hAhR Halogenated phenyl ester (28)
hRXR Halophenols (2)

hPPAR Halophenols (11)
hTTR Halogenated phenyl acid (7); halophenols (5); halogenated phenyl aldehydes (3); halonitrophenols (2)
bTTR Halophenols (7)
cTTR Halophenols (7)
hHSA Halophenols (2)

Note: Numbers in brackets represent the total number of DBPs studied for potential endocrine-disrupting
effects in each group. Abbreviations: hERα—human estrogen receptor α; hERβ—human estrogen receptor
β; fERα—medaka fish estrogen receptor α; hAR—human androgen receptor; hTRα—human thyroid receptor
α; bTRβ—bullfrog thyroid receptor β; cTRβ—chicken thyroid receptor β; hAhR—human aryl hydrocarbon
receptor; hRXR—human retinoic X receptor; hPPAR—peroxisome proliferator–activated receptor; hTTR—human
transthyretin; bTTR—bullfrog transthyretin; cTTR—chicken transthyretin; HSA—human serum albumin.

For each studied endocrine endpoint, we also summarized the number of active
compounds, inactive compounds, and compounds without available data. As shown in
Figure 3, the number of active compounds for hERα was more than that of other endpoints.
For hERα, human aryl hydrocarbon receptor (hAhR), and human androgen receptor (hAR),
the number of active compounds was greater than that of inactive compounds. On the
other hand, all the tested DBPs were active compounds for human transthyretin (hTTR),
bullfrog transthyretin (bTTR), chicken transthyretin (cTTR), human serum albumin (HSA),
peroxisome proliferator–activated receptor (hPPAR), human retinoic X receptor (hRXR),
bullfrog thyroid receptor β (bTRβ), chicken thyroid receptor β (cTRβ), and human estrogen
receptor β (hERβ).
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receptor; hTRα—human thyroid receptor α; bTRβ—bullfrog thyroid receptor β; cTRβ—chicken
thyroid receptor β; hAhR—human aryl hydrocarbon receptor; hRXR—human retinoic X receptor;
hPPAR—peroxisome proliferator–activated receptor; hTTR—human transthyretin; bTTR—bullfrog
transthyretin; cTTR—chicken transthyretin; HSA—human serum albumin.

4. Endocrine-Related MIEs of DBPs

DBPs can disturb normal endocrine homeostasis by regulating the hormone system for
fundamental physiological and developmental control [84]. The perturbing mechanisms of
DBPs include activating/inhibiting nuclear receptors and interfering with non-receptor-
mediated pathways. It is reported that most of adverse outcomes of endocrine-disrupting
chemicals (EDCs) are attributed to the fact that they interfere with nuclear receptor (NR)-
mediated hormone signals [60]. The substance structure of some DBPs is similar to that
of natural hormones; thus, they can directly bind with receptors, interfere with the hor-
mone pathway, and show distinct disrupting activities. The mediated physiological and
biochemical pathways of several receptors on which the Guidance for the Identification of
Endocrine Disruptors (EFSA/ECHA, 2018) focuses [85], including androgen receptor (AR),
estrogen receptor (ER), and thyroid receptor (TR), are of critical importance in significant
biological studies of endocrine disruption effects. All the tested molecular-initiating events
related to DBPs are illustrated in Figure 4.

4.1. Hormone Receptor-Mediated Mechanism of Endocrine Disruption

Estrogen receptors (ERs) have critical roles in the growth and development of organ-
isms [53]. The recombinant yeast screening bioassay, the E-screen assay of MCF-7 and
MVLN cell line, and the uterotrophic bioassay are usually adopted for identifying potential
estrogenic disruptors [51,71,83]. Our analysis results indicated that 70 DBPs have been
proven to have estrogenic activity, i.e., they can interfere with ER. There is evidence in toxi-
cological and epidemiological research in cell cultures that haloacetonitriles (HANs), e.g.,
dibromoacetonitrile (DBAN) and 2,3-dibromopropionitrile (DBPN), can invoke adverse
effects on the endocrine system by binding to the human estrogen receptor and androgen
receptor [50,66]. Additionally, Nakamura et al. [58] reported that halogenated derivatives
of E1, E2, E3, and EE2 showed estrogenic activity, interfering with estrogen receptor α,
using yeast two-hybrid assays between human and medaka fish (Oryzias latipes), and the
ER-binding potency of halogenated DBPs of estrogens substituted at the 2- and 4-positions
displayed a similar trend.
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The androgen hormone regulates the androgen signaling pathway via binding with
the androgen receptor (AR), and it plays an essential role in the physiological processes of
human development and reproduction [92]. Iodoacetic acid (IAA) was observed to show
AR binding in vitro [50]. Despite the discrepancies between this result and others, studies
have still demonstrated that IAA is a potential disruptor of human AR (hAR) [51]. The
differences in research results may be due to factors such as the selection of species of
cells and diverse endpoints. Additionally, among haloacetamide DBPs, bromoacetamide
(BAM) exhibited slight androgenic activity according to a yeast-based reporter bioassay [69].
Notably, iodoacetonitrile (IAN) generated from water disinfection processes was found to
have a weak androgenic effect (11.4% induction) at the highest concentration [71].

Thyroid hormones (THs), a series of essential endocrine hormones, are synthesized
and secreted by thyroid follicular cells. They exist in many tissues in the brain, heart,
liver, etc., where they regulate metabolism and development [82]. THs, especially tri-
iodothyronine (T3), mainly moderate gene transcription or protein expression via binding
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to thyroid hormone receptors (TRs) [93]. Halogenated derivatives of bisphenol A (BPA)
have been shown to act as agonists/antagonists for TH receptors, affecting the levels of
THs and invoking thyroid system disruption in organisms. 3,3’,5,5’-Tetrabromobisphenol A
(TBBPA), 3,3’,5,5’-tetrachlorobisphenol A (TCBPA), and 3,3’,5-trichlorobisphenol A (3,3’,5-
triClBPA) were proven to possess human TH agonist activity in a yeast two-hybrid assay
incorporating hTRα [59]. In addition, Yamauchi et al. [56] investigated the influence of
chlorinated compounds of BPA on T3 binding with the TR ligand-binding domains between
chicken and bullfrog but demonstrated that they were unlikely to be TH system-disrupting
compounds for these animals.

Some chemicals could bind to other receptors to indirectly participate in hormone
regulation instead of acting directly on hormone receptors. For example, peroxisome
proliferator-activated receptor gamma (PPARγ), expressed in the fatty tissue, is a criti-
cal transcription element in the development and metabolism of adipocytes [65]. The
imbalance of PPAR might be associated with diseases such as diabetes, obesity, and dysgen-
esis [94]. A previous 293T cell-based luciferase reporter bioassay indicated that chlorinated BPS
analogs enhanced PPAR activities as opposed to the parent compound, and their activities were
correlated to the values of logKow [65]. TBBPA and TCBPA could also activate PPAR through
direct interaction with humans or animals, and the activation potential highly relied on the
halogenation degree [60,61]. The results from in vitro experiments revealed that halogenated
products of BPF were also potential disruptors of PPAR, similar to those of BPA and BPS [64].
Taken together, the presence of DBPs of BPA, BPS, and BPF in disinfected water should be of
concern because they could pose a potential risk to mitigation of inflammation.

Furthermore, human retinoic X receptor (RXRs) have also been shown to be endocrine-
related targets for DBPs action. RXRs are key partners for the nuclear receptor signaling
pathways of cell growth, differentiation, and metabolism [95]. Chlorination byproducts
of BPA have been identified as RXRβ antagonists, the antagonist activities of which are
much higher than that of BPA according to a yeast assay [63]. Considering that previous
studies documented that BPA could exhibit several detrimental effects (e.g., endocrine-
related harmful effects) on organisms [96–100], those results indicate that both BPA and its
halogenated DBPs are potential endocrine disruptors. Experimental evidence for DBPs with
respect to their AhR binding affinities is rather limited. In terms of structure, halogenated
parabens are similar to halogenated aromatic hydrocarbons, which were determined to
possess AhR potency. Experimental values obtained via a yeast bioassay and HepG2 cells
showed that the AhR activity of monochlorinated parabens was more effective than that
of their unsubstituted or chlorinated counterparts [62]. Analogously, this regular pattern
is also applicable to monobrominated by-products. Promisingly, it was noted that 3-BrBP,
3-BrBnP, and 3-BriBP, compared with their unsubstituted and brominated corresponding
counterparts, were proven to have the highest AhR activity with EC50 values of 3.9 nM,
9.0 nM, and 9.6 nM, respectively [70].

4.2. Non-Receptor-Mediated Mechanism of Endocrine Disruption

It has been recognized that activation or inhibition of nuclear receptors is not the only
endocrine-disrupting pathway for DBPs to exert endocrine-perturbing effects [85]. Another
toxicity pathway leading to an endocrine-related detrimental influence is the non-receptor-
mediated mechanism [69]. Instead of acting directly on nuclear receptors, the pathway
of non-receptor-mediated activity interference comprises inhibition of protein synthesis,
destruction of β-galactosidase gene transcription, and inhibition of enzyme activity [101].
Endocrine disruptors can affect some links of the hypothalamus–pituitary–thyroid (HPT),
hypothalamic–pituitary–gonadal (HPG), and hypothalamic–pituitary–adrenal (HPA) axes,
and further disturb hormones biosynthesis, secretion, transport, metabolism, and feedback
regulation [89,102]. There are three transporters in human blood that carry THs to target
tissues: transthyretin (TTR), thyroxine-binding globulin (TBG), and albumin (ALB) [103].

The results from Yang et al. [67] revealed that 2,4,6-trihalo-phenols, 2,6-dihalo-4-
nitrophenols, and 3,5-dihalo-4-hydroxybenzaldehydes, representing emerging polar phe-
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nolic DBPs, were identified as high-potency binders to compete with THs for binding to
human TTR. Disrupting the transportation of TH might bring about DBPs being delivered
to unexpected sites, which might further induce TH-related perturbing effects [102,104].
Previous evidence also showed that 2,6-dichloro-4-nonylphenol is a potent competitor of
T3 interacting with chicken and bullfrog TTR, along with by-products of nonylphenol [56].
Furthermore, the comparison of TTR-binding activities among brominated derivatives
of BPA indicated that the presence of a hydroxyl group at the para position and halogen
substituents were conditions for TTR-binding effects [105]. These experimental results
may confirm the conclusion that halogenated aromatic chemicals with phenol hydroxy
groups can be considered as binders to TTR owing to their similar structure to the natural
thyroxine (T4) [106]. ALB is also a potential endocrine-related target in the mechanism of
TH transport disruption. According to competitive binding assays, 4-bromophenol and
2,4-dibromophenol were observed to interfere with human serum albumin (HSA) to form
complexes [68]. Remarkably, 2,4-dibromophenol had a high binding affinity to HSA.

5. Potential Endocrine Adverse Outcome Pathways of DBPs

Compared with studies about molecular-initiating events, only a few studies focused
on revealing the potential endocrine-related key events and adverse outcomes after DBP ex-
posure. An in vivo experiment indicated that IAA, an aliphatic DBP, increased the weight of
the testes of parental male rats and shortened the anorectal distance of male pups [51]. How-
ever, the specific toxicity mechanisms remain unclear and require to be further confirmed.
Additionally, IAA exposure reduced the level of triiodothyronine (T3), but upregulated
the thyrotropin-releasing hormone level and thyrotropin level, which could also result in
changes in the thyroid follicles of Sprague-Dawley (SD) rats [82]. The possible molecular
mechanism of thyroid gland function disruption might be associated with the binding
potency of nuclear receptors. In vivo toxicity reports demonstrated that histopathologi-
cal changes in both heart and brain induced by 2,6-dichloro-1, 4-benzoquinone exposure
for adult zebrafish could be attributed to oxidative stress [107]. The results from in vivo
experiences showed that bisphenol S disinfected derivatives could influence the mRNA
expression level of TRβ in zebrafish larvae [49], which could further mediate the bioactiv-
ities of thyroid hormone. Additionally, limited toxicological reports in vivo revealed no
significant indication for plasma VTG levels in adult Danio rerio during 21 day exposure
to TBBPA and TCBPA disinfection derivatives [83]. The developmental toxicity induced
by TCBPA and TBBPA disinfection derivatives might be irrelevant to their estrogenic
activities. In vivo assays of estrogenic activity showed that 3-chlorobisphenol A and 3,3’-
dichlorobisphenol A each evidently enlarged the uterine endometrial area in rats treated
with 100 mg/kg/day of these substances [57]. Wang et al. [108] linked the developmental
toxicity of halobenzoquinone to oxidative stress, but they did not link the ROS generation
with MIEs of endocrine disruption. The relationship between endocrine-related MIEs and
oxidative stress was revealed in animal toxicity studies showing that aryl hydrocarbon
receptor (AhR) activation could increase ROS generation by regulating the expression of
Cyp1b1, which led to cardiac malformation in zebrafish embryos [86].

6. Conclusions and Future Directions

With the development of analytical methods, a large number of DBPs are being continu-
ously detected and identified in treated drinking water, purified swimming pool water, disin-
fected wastewater, etc. Here, we summarized the literature on the endocrine-disrupting effects
of DBPs. The results from the limited studies suggested that exposure to some DBPs could
elicit endocrine-related detrimental effects not only on humans, but also on other wildlife, e.g.,
aquatic vertebrates. Our analysis results also revealed that the available data related to the
potential endocrine system-disrupting properties of DBPs are limited to molecular-initiating
events, i.e., biomacromolecules in the endocrine system. The identified molecular-initiating
events mainly involved receptor-mediated toxicity pathways.

The future directions are proposed below.
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(1) Development of appropriate screening strategy for assessing the potential endocrine-
disrupting effects of DBPs

It was reported that the cost to evaluate the potential endocrine-disrupting effects
of one substance is about 1 million USD [109]. In this case, it is impossible to screen the
potential EDCs from more than 800 identified DBPs using experimental assays only. Con-
sidering that computational models are cost-effective and rapid methods, a comprehensive
screening strategy containing both computational models and experimental assays should
be employed to identify the potential EDCs from analyzed DBPs. In this comprehensive
screening strategy, the endocrine-related computational models can be firstly used to set
the priority. Then, the limited test resources can be focused on verifying whether the DBPs
with high priority are endocrine disruptors or not.

(2) Clarifying the potential endocrine-related adverse outcome after DBP exposure
In addition to revealing the endocrine-related molecular-initiating events influenced by

DBP exposure, further biological studies are expected to illustrate the potential endocrine-
related key events and adverse outcomes following DBP exposure, as well as confirm the
detailed relationship of molecular-initiating events with key events and adverse outcomes.

(3) Attention to non-receptor-mediated toxicity pathways
In addition to the receptor-mediated model of action, EDCs may perturb the endocrine

system via a non-receptor-mediated mode of action, such as by interfering with targets related
to biosynthesis and metabolism and plasma binding. In future studies, we should pay more
attention to testing the potential non-receptor-mediated toxicity pathways of DBPs.
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101. Fic, A.; Žegura, B.; Gramec, D.; Mašič, L.P. Estrogenic and androgenic activities of TBBA and TBMEPH, metabolites of novel

brominated flame retardants, and selected bisphenols, using the XenoScreen XL YES/YAS assay. Chemosphere 2014, 112, 362–369.
[CrossRef]

102. Xi, Y.; Yang, X.; Zhang, H.; Liu, H.; Watson, P.; Yang, F. Binding interactions of halo-benzoic acids, halo-benzenesulfonic acids and
halo-phenylboronic acids with human transthyretin. Chemosphere 2020, 242, 125135. [CrossRef] [PubMed]

103. Zhang, J.; Kamstra, J.H.; Ghorbanzadeh, M.; Weiss, J.M.; Hamers, T.; Andersson, P.L. In Silico Approach to Identify Potential
Thyroid Hormone Disruptors among Currently Known Dust Contaminants and Their Metabolites. Environ. Sci. Technol. 2015, 49,
10099–10107. [CrossRef] [PubMed]

104. Grimm, F.A.; Lehmler, H.J.; He, X.; Robertson, L.W.; Duffel, M.W. Sulfated metabolites of polychlorinated biphenyls are high-
affinity ligands for the thyroid hormone transport protein transthyretin. Environ. Health Perspect. 2013, 121, 657–662. [CrossRef]
[PubMed]

105. Meerts, I.; van Zanden, J.J.; Luijks, E.A.C.; van Leeuwen-Bol, I.; Marsh, G.; Jakobsson, E.; Bergman, A.; Brouwer, A. Potent
competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro. Toxicol.
Sci. 2000, 56, 95–104. [CrossRef] [PubMed]

106. Weiss, J.M.; Andersson, P.L.; Zhang, J.; Simon, E.; Leonards, P.E.; Hamers, T.; Lamoree, M.H. Tracing thyroid hormone-disrupting
compounds: Database compilation and structure-activity evaluation for an effect-directed analysis of sediment. Anal. Bioanal.
Chem. 2015, 407, 5625–5634. [CrossRef] [PubMed]

107. Xiao, C.; Wang, C.; Zhang, Q.; Yang, X.; Huang, S.; Luo, Y.; Feng, Y.; Zheng, Q. Transcriptomic analysis of adult zebrafish heart and
brain in response to 2, 6-dichloro-1, 4-benzoquinone exposure. Ecotoxicol. Environ. Saf. 2021, 226, 112835. [CrossRef] [PubMed]

108. Wang, C.; Yang, X.; Zheng, Q.; Moe, B.; Li, X.F. Halobenzoquinone-Induced Developmental Toxicity, Oxidative Stress, and
Apoptosis in Zebrafish Embryos. Environ. Sci. Technol. 2018, 52, 10590–10598. [CrossRef]

109. Mansouri, K.; Kleinstreuer, N.; Abdelaziz, A.M.; Alberga, D.; Alves, V.M.; Andersson, P.L.; Andrade, C.H.; Bai, F.; Balabin, I.;
Ballabio, D.; et al. CoMPARA: Collaborative Modeling Project for Androgen Receptor Activity. Environ. Health Perspect. 2020, 128,
027002. [CrossRef]

http://doi.org/10.1016/j.jhazmat.2019.121521
http://doi.org/10.1021/acs.est.0c06809
http://doi.org/10.1210/endocr/bqab194
http://doi.org/10.1021/acs.estlett.0c00191
http://doi.org/10.1093/toxsci/kfw034
http://doi.org/10.1016/j.ecoenv.2021.113102
http://doi.org/10.1021/acs.est.0c03984
http://www.ncbi.nlm.nih.gov/pubmed/33085465
http://doi.org/10.1289/EHP5314
http://www.ncbi.nlm.nih.gov/pubmed/31566444
http://doi.org/10.1677/JME-08-0132
http://www.ncbi.nlm.nih.gov/pubmed/19211731
http://doi.org/10.1158/0008-5472.CAN-08-4407
http://doi.org/10.3390/ijms21093129
http://doi.org/10.3390/ijms21093269
http://doi.org/10.1016/j.jsbmb.2011.05.002
http://doi.org/10.1210/er.2008-0021
http://doi.org/10.1016/j.reprotox.2013.08.008
http://doi.org/10.1016/j.chemosphere.2014.04.080
http://doi.org/10.1016/j.chemosphere.2019.125135
http://www.ncbi.nlm.nih.gov/pubmed/31669991
http://doi.org/10.1021/acs.est.5b01742
http://www.ncbi.nlm.nih.gov/pubmed/26207645
http://doi.org/10.1289/ehp.1206198
http://www.ncbi.nlm.nih.gov/pubmed/23584369
http://doi.org/10.1093/toxsci/56.1.95
http://www.ncbi.nlm.nih.gov/pubmed/10869457
http://doi.org/10.1007/s00216-015-8736-9
http://www.ncbi.nlm.nih.gov/pubmed/25986900
http://doi.org/10.1016/j.ecoenv.2021.112835
http://www.ncbi.nlm.nih.gov/pubmed/34600292
http://doi.org/10.1021/acs.est.8b02831
http://doi.org/10.1289/EHP5580

	Introduction 
	Performance of Publications 
	Characterization of DBPs with Endocrine-Disrupting Data 
	Endocrine-Related MIEs of DBPs 
	Hormone Receptor-Mediated Mechanism of Endocrine Disruption 
	Non-Receptor-Mediated Mechanism of Endocrine Disruption 

	Potential Endocrine Adverse Outcome Pathways of DBPs 
	Conclusions and Future Directions 
	References

